
OS 1100
Procedure Definition
Processor (PDP)
Operations
Reference Manual

Printed in U S America
Priced Item UP–10070.1–A

January 1988

All rights reserved.
Copyright � 1988 Unisys Corporation.

Unisys is a registered trademark of Unisys Corporation.

Relative to Release
Level 13R1

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and related
material disclosed herein are only furnished pursuant and subject to the terms and conditions of a duly
executed Program Product License or Agreement to purchase or lease equipment. The only warranties
made by Unisys, if any, with respect to the products described in this document are set forth in such
License or Agreement. Unisys cannot accept any financial or other responsibility that may be the result
of your use of the information in this document or software material, including direct, indirect, special,
or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies
with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded using the Business Reply Mail form in
this document, or remarks may be addressed directly to Unisys Corporation, PI Response Card,
P.O. Box 64942, St. Paul, Minnesota, 55164–9749, U.S.A.

UP–10070.1–A iii

Contents

About This Manual v.

Section 1. Overview

1.1. General 1–1.

1.2. @PDP Format 1–1.

1.3. Files 1–4.

1.4. Reusability 1–4.

Section 2. Symbolic Input

2.1. General 2–1.

2.2. COBOL PDP Procedures (Library Entries) 2–2.

2.3. FORTRAN (FTN) PDP Procedures 2–4.

2.4. PLUS PDP Procedures 2–7.

2.5. MASM Procedures 2–10.

2.6. ASM Procedures 2–13.

Section 3. Symbolic Output

3.1. General 3–1.

3.2. Procedure Table Output 3–1.

3.3. Listing 3–2.

3.4. Diagnostic Messages 3–4.

Section 4. Copying Procedures

Appendix A. PDP Diagnostic Messages

A.1. Introduction A–1.

A.2. Messages A–2.

Contents

UP–10070.1–Aiv

Appendix B. Restrictions

UP–10071.1–A v

About This Manual

Purpose
This guide describes the OS 1100 Procedure Definition Processor (PDP) level 13R1
software. PDP is used to create and update symbolic entry points in a program file’s
procedure table.

Organization
This manual is organized as follows:

Section 1. Overview

This section provides an overview of the Procedure Definition Processor (PDP).

Section 2. Symbolic Input

This section describes the procedure definition directives used as symbolic input to PDP.

Section 3. Symbolic Output

This section describes the symbolic output produced by PDP.

Section 4. Copying Procedures

This section discusses the transfer of PDP symbolic elements.

Appendix A. PDP Diagnostic Messages

This appendix lists the four types of PDP diagnostic messages.

Appendix B. Restrictions

This appendix lists the restrictions for the current level of PDP.

Related Product Information
The following related documents apply to this guide when you use the OS 1100 software.
Use the version that corresponds to the level of software at your site. Consult the 2200

Systems Product Information Library Directory (7831 1578) for specific levels and
document numbers.

About This Manual

UP–10071.1–Avi

OS 2200 Exec System Software Executive Control Language (ECL) End Use

and Programming Reference Manual, SB5R2 (7830 7949)

This manual provides a complete reference for all ECL statements. It describes the
purpose, format, options, and individual fields of each statement. The manual also
includes guidelines for using ECL statements for specific situations, such as creating and
naming files.

OS 1100 ASCII COBOL Programming Reference Manual (UP–8582.2–A)

This manual describes OS 1100 ASCII COBOL and is intended for programmers using
COBOL under control of the OS 1100 Executive.

ASCII FORTRAN Programming Reference Manual (UP–8244.4–B)

This manual provides the necessary information for you to write programs in ASCII
FORTRAN. It describes all the features of the American National Standard FORTRAN,
X3.9–1978 (also known as FORTRAN 77), as well as the extensions that provide
increased programming capabilities.

OS 1100 Universal Compiling System (UCS) PLUS Programming Reference

Manual Volume 1, PLUS Statements (7831 0497)

This manual is a detailed reference for the UCS PLUS language. It describes the
language structure and compiler operations of UCS PLUS and contains syntax
information and instructions for writing systems programs.

OS 1100 Universal Compiling System (UCS) PLUS Programming Reference

Manual Volume 2, Compiler and System Interface (7831 2287)

This manual is a detailed reference for the UCS PLUS language. It describes how to
compile, link, and execute a UCS PLUS program, using the appropriate compiler options.
It also describes how UCS PLUS interacts with other system software, such as Executive
requests.

OS 1100 Meta-Assembler (MASM) Programming Reference Manual

(7830 8269)

This manual provides programmers and systems analysts with a detailed reference
manual for the OS 1100 Meta-Assembler (MASM) processor and language. It includes
comprehensive information about this release level of MASM. It is not a tutorial and
does not attempt to teach anyone how to write MASM programs.

OS 1100 System Service Routines Library (SYSLIB) Programming Reference

Manual (UP–8728)

This manual describes the routines in the System Service Routines Library (SYSLIB).

OS 2200 FURPUR End Use Reference Manual (7831 1271)

This manual serves as a reference for the use of FURPUR on 2200 Series systems. The
manual describes FURPUR commands and command options that are used to control
and move data within 2200 Series files and elements.

UP–10070.1–A 1–1

Section 1
Overview

1.1. General
This section provides an overview of the Procedure Definition Processor (PDP). It
explains the format of the PDP control statement and discusses the options.

1.2. @PDP Format
PDP is normally a standard processor in the system absolute library file SYS$*LIB$;
however, it may reside in a user file. (See the ECL End Use and Programming

Reference Manual for additional information on processor control statements.)

The @PDP control statement is used to call the PDP. It must precede any procedure
source images appearing in the runstream (I option only).

Format:

@label :PDP,options si ,so ,,time–and–date

where:

options

Are the following:

B

Processes one or more Assembler (ASM) procedures.

C

Processes one or more COBOL PDP library entries.

E

Lists only those line images in which errors are detected and all error messages.

F

Processes one or more FORTRAN PDP procedures.

I

Creates a symbolic source language procedure element from the symbolic input
in the runstream following the @PDP control statement. The si parameter
specifies the name to be given to the symbolic source language procedure
element. so is ignored and should be omitted. The procedure element is
subtyped according to the procedure type option specified, that is, B = ASM, C =
COB, F = FOR. J = PSP, and M = MSM.

Overview

UP–10070.1–A1–2

J

Processes one or more PLUS PDP procedures.

L

Produces a complete listing of the symbolic input including Conversational Time
Sharing (CTS) line numbers, if present.

M

Processes one or more MASM procedures (default option).

N

Suppresses all symbolic listing (default option).

T

Creates or updates the procedure table without generating a symbolic procedure
element. This requires the procedure type option to specifically match the type
of the source input element. This option cannot be used in conjunction with the
I option.

V

Produces base and Permanent Correction File (PCF) relative line numbers along
with new line numbers in a listing. This option is used in conjunction with
updating a procedure element and the listing options. This option cannot be
used in conjunction with the I option.

W

SIR$ option; list line–change statements and change images only.

X

Takes error exit (ER ERR$; see the ER Programming Reference Manual from
PDP if errors are detected.

The B, C, F, J, and M options indicate the type of procedure source images input
(and output, if output is specified). PDP assumes the Meta-Assembler (MASM)
procedure source image type if no option is given.

The E, L, and N options indicate the type of listing PDP prints. PDP suppresses all
symbolic listings if no listing option is specified.

The remaining options control the input, output, and processing of PDP.

si

Normally specifies the source input element. However, when the I option is
specified, si specifies the source output procedure element.

When only the si field is given and the T option is not used, PDP only reads the
symbolic input. This enables the user to obtain a listing of the procedures, using the
E or L options, without updating the procedure table or generating a new symbolic
procedure element.

Overview

UP–10070.1–A 1–3

so

Specifies the source output procedure element. so is specified only if PDP is to
create or update a procedure element.

When the I option or T option is specified, this field is ignored.

time-and-date

This field is used to time stamp the symbolic output procedure element. This field is
not required and is only recognized with the I option. If this field is omitted, the
preceding commas must also be omitted. In addition, if the time-and-date field is
omitted and symbolic output is specified, then the time and date that the symbolic
element is entered in the program file is used as a time stamp.

This field is produced in the @PDP,I call statement generated by FURPUR when an
@PCH,S statement is performed on a PDP procedure element. The time stamp
indicates the date and time the symbolic element was created. time-and-date is
used to retain this date when an element is recreated in another file by @PDP,I.

The time–and–date are specified in octal, in the following format:

ttttttmmddyy

where tttttt is the number of seconds past midnight, mm is the month, dd is the date,
and yy is the last two digits of the year (modulo 1964). Six digits must appear in the
first field and two digits in each of the other three. Zeros should be used to fill the
fields where necessary.

Note: This field is not checked for validity or syntax; therefore, extreme care

must be taken in coding this field.

si and so must follow the conventions for file and element notation as described in the
ECL End Use and Programming Reference Manual. Also, if only the file name is
specified in the so field, the element name that is specified in the si field is assumed for
so.

Overview

UP–10070.1–A1–4

1.3. Files
If the si and so files are not already assigned to the run, PDP will exclusively assign
these files. This is necessary when accessing the si and so files with a write function.
PDP attaches an internal name to the file, if needed. When processing is complete, PDP
restores these files to their original assign state and removes the internal file name.

1.4. Reusability
PDP is a reusable processor. This means that if successive calls on PDP are separated
by the control statements @ADD, @EOF, @HDG, @JUMP, @LOG, @MSG, @SETC, and
@TEST, PDP is not reloaded from mass storage but reads its own control statement,
reinitializes itself, and processes the next source input element. This saves considerable
time and I/O resources. This feature is also available if PDP is called from a user file
(rather than from SYS$*LIB$) provided that all calls on PDP after the first in a sequence
do not specify the user file (in other words, the call is @PDP...) from which PDP was
obtained. If a reload of PDP is desired, any other control statement (other than those
listed above), such as @ENDX, may be used to terminate the reusability sequence. When
PDP is reused, it resets the storage size of its workspace to the original minimum value.

UP–10070.1–A 2–1

Section 2
Symbolic Input

2.1. General
The symbolic input and generated symbolic output are both accessible to the user
through other system processors such as @ELT, @ED, and @CTS.

The symbolic input to PDP consists of source language statements and PDP procedure
definition directives, coded in the Fieldata, ASCII/ISO, or the Attributed Character Data
(ACD) character sets.

This symbolic input may be either in a program file SDF element or in the runstream
following the @PDP statement (I option only).

If the symbolic input is in the runstream, it must be followed by an end-of-file (@EOF) or
other control statement.

The symbolic input may contain one or more PDP procedure definitions; however, all
the procedures must contain source language statements of the same type as specified
by the procedure type option on the @PDP statement.

The character strings ‘�PROC∆’, ‘�END’, ‘#PROC�’, ‘#ENDPROC�’, and ‘DEF’ (in
uppercase, lowercase, or a combination of both) are considered reserved words for PDP.
Therefore, these character strings may not appear within the symbolic input in any con
other than to define the start or end of a PDP procedure. However, these character
strings may appear in comment statements or character string constants within the
symbolic input.

Each procedure must be coded following the PDP procedure format for the symbolic
input source language, as specified in 2.2 through 2.6.

Symbolic Input

UP–10070.1–A2–2

2.2. COBOL PDP Procedures (Library Entries)
The symbolic input defining a COBOL PDP library entry has the following format:

label∆PROC

source statements

∆END

where:

label

is a character string, beginning in column one, that does not exceed 30 characters in
length.

The label may contain alphabetic characters A,B,...,Z, digits 0,1,...,9, and the minus
character (-).

The label must contain at least one alphabetic character and must not have a minus
character (-) as its first or last character.

The character string specified by label is the name of the COBOL PDP library entry
entered into the COBOL procedure table.

PROC7

is a PDP directive separated from the label by at least one space. PROC indicates
that a COBOL PDP library entry is beginning.

The word address of the symbolic image containing this directive is saved in the
COBOL procedure table.

source statements

are COBOL source statements. source statements may include data declarations
and COBOL directives. The COBOL COPY directive is not allowed.

Note: PDP does not check these source statements for syntax or validity.

∆END

is a PDP directive that must begin in column two. It indicates the last symbolic
image in the COBOL PDP library entry.

Any line image in the symbolic input, defining a COBOL PDP library entry, that contains
an asterisk character in column seven is considered to be a comment line image no
matter what characters precede or follow the asterisk character.

COBOL PDP library entries may not be nested, either physically or implied. Physical
nesting is indicated when the symbolic images defining another COBOL PDP library
entry appear within the source statements section of a previous COBOL PDP library
entry. Implied nesting is indicated when the COBOL COPY directive appears in the
source statements section of a COBOL PDP library entry.

Symbolic Input

UP–10070.1–A 2–3

For information on accessing COBOL PDP library entries, see the ASCII COBOL

Programming Reference Manual.

Example

The following example illustrates COBOL PDP procedures:

 1. @PDP,IC COBOL–PROC
 2. *
 3. * This procedure contains COBOL data declarations
 4. *
 5. DATA-DECLARATION01 PROC
 6. 01 STATE–TABLE
 7. 05 STATE–CODE.
 8. 10 FILLER PIC X(20) VALUE ‘01ALABAMA ’.
 9. 10 FILLER PIC X(20) VALUE ‘02ARKANSAS ’.
10. END
11. *
12. * This procedure contains more COBOL data declarations
13. *
14. DATA–DECLARATION02 PROC
15. *
16. * This is the county table declaration
17. *
18. 05 COUNTY–CODE.
19. 10 FILLER PIC X(20) VALUE ‘01ALBANY COUNTY ’.
20. END
21. @EOF

1. This is a PDP processor call statement with the I and C options. The I
option indicates that a new procedure element is inserted in the file TPF$
with a name of COBOL–PROC. The C option indicates that the images in
the runstream following the processor call are processed as COBOL PDP
procedures and the COBOL procedure table in the file TPF$ is updated.

2–4. COBOL comment lines.

Note: These comments will not appear when the procedure is referenced

because they do not reside within the procedure.

5. Procedure declaration, starting in column one. The symbolic entry point
name is DATA–DECLARATION01. The word address of this line image is
saved by PDP as the starting address of procedure
DATA–DECLARATION01.

6–9. Symbolic source lines in procedure DATA–DECLARATION01.

Note: PDP does not check these statements for validity or syntax.

Symbolic Input

UP–10070.1–A2–4

10. End declaration, starting in column two. This declaration causes PDP to
save the information about the COBOL PDP procedure
DATA–DECLARATION01 for subsequent entry into the COBOL procedure
table.

11–13. COBOL comment lines.

Note: These comments will not appear when the procedure is referenced

because they do not reside within the procedure text.

14. Another procedure declaration, starting in column one. The symbolic entry
point name is DATA–DECLARATION02. The word address of this line
image is saved by PDP as the starting address of the procedure
DATA–DECLARATION02.

15–17. COBOL comment lines.

Note: These comments will appear when the procedure is referenced because

they reside within the procedure text.

18–19. Symbolic source lines in procedure DATA–DECLARATION02.

Note: PDP does not check these statements for validity or syntax.

20. End declaration, starting in column two. This declaration causes PDP to
save the information about the COBOL PDP procedure
DATA–DECLARATION02 for subsequent entry into the COBOL procedure
table.

21. End-of-file control statement. This completes the input from the runstream
and causes PDP to complete processing and terminate.

2.3. FORTRAN (FTN) PDP Procedures
The symbolic input defining a FORTRAN PDP procedure has the following format:

label∆PROC

 source statements

∆END

Symbolic Input

UP–10070.1–A 2–5

where:

label

is a character string, beginning in column one, that does not exceed 12 characters in
length.

The label may contain alphabetic characters A,B,...,Z, digits 0,1,...,9, and the dollar
sign character ($). (See the ECL End Use and Programming Reference Manual for
caution on the use of ‘$’.)

The character string specified by label is the name of the FTN PDP procedure
entered into the FORTRAN procedure table.

PROC

is a PDP directive separated from the label by at least one space. PROC indicates
that an FTN PDP procedure is beginning.

The word address of the symbolic image containing this directive is saved in the
FORTRAN procedure table.

source statements

are FTN source statements. These may include data declarations and FTN
directives. The FTN INCLUDE directive is not allowed.

Note: PDP does not check these statements for validity or syntax.

∆END

is a PDP directive that must begin in column two. It indicates the last symbolic
image in the FTN PDP procedure.

An FTN comment line of the form:

Cxxx∆PROC∆yyyyyy ...

where C is in column one and xxx is nonexistent or a character string with the same
attributes as label indicates the beginning of an FTN PDP procedure; for example:

C∆PROC∆ is the start of processing

is interpreted as the beginning of an FTN PDP procedure named ‘C’, instead of a
comment line.

FTN PDP procedures may not be nested, either physically or implied. Physical nesting is
indicated when the symbolic images defining another FTN PDP procedure appear within
the source statements section of a previous FTN PDP procedure. Implied nesting is
indicated when the FTN INCLUDE directive appears in the source statements section of
an FTN PDP procedure.

For information on accessing FTN PDP procedures with the INCLUDE statement, see
the ASCII FORTRAN Programming Reference Manual.

Symbolic Input

UP–10070.1–A2–6

Example:

The following example illustrates FORTRAN PDP procedures:

 1. @ELT,I FTN–PROC
 2. C
 3. C This procedure contains FTN data specifications
 4. C
 5. SPECS3 PROC
 6. COMPLEX C
 7. REAL I,J,K
 8. COMMON /CB1/ C(5),K,O
 9. END
10. *
11. * This procedure contains format declarations
12. *
13. PRTFMT PROC
14. C
15. C These are print format declarations
16. C
17. 100 FORMAT (/,20x,13hTABLE HEADING)
18. 200 FORMAT (5x,i3,2x,5f5.2)
19. END
20. @PDP,FL FTN–PROC
source statements
21. @EOF

1. This is an ELT processor call statement for building a symbolic input
element named FTN–PROC in the file TPF$ for PDP. The ELT statement
indicates that procedure text can be created by other processors, but must
be processed by the @PDP statement (see item 20).

2–4. FTN comment lines.

Note: These comment lines will not appear when the procedure is referenced

because they are not within the procedure text.

5. Procedure declaration, starting in column one. The symbolic entry point
name is SPECS3. The word address of this line image is saved by PDP as
the starting address for the procedure SPECS3.

6–8. Symbolic source lines in the FTN PDP procedure SPECS3.

Note: PDP does not check these source statements for validity or syntax.

9. End declaration, starting in column two. This causes PDP to save the
information about the FTN PDP procedure SPECS3 for subsequent entry
into the FORTRAN procedure table.

10–12. FTN comment lines.

Symbolic Input

UP–10070.1–A 2–7

Note: These comment lines will not appear when the procedure is referenced

because they are not within the procedure text.

13. Another procedure declaration, starting in column one. The symbolic entry
point name is PRTFMT. The word address of this line image is saved by
PDP as the starting address for the procedure PRTFMT.

14–16. FTN comment lines.

Note: These comment lines will appear when the procedure is referenced

because they are within the procedure text.

17–18. Symbolic source lines in the FTN PDP procedure PRTFMT.

Note: PDP does not check these source statements for validity or syntax.

19. End declaration, starting in column two. This causes PDP to save the
information about the FTN PDP procedure PRTFMT for subsequent entry
into the FORTRAN procedure table.

20. This is the PDP processor call with the F and L options. The so field
specified on the processor call causes PDP to generate a source output
procedure element (the F option types the element as a FORTRAN
procedure). The F option indicates that the images in the symbolic input
element are to be processed as FTN PDP procedures and the FORTRAN
procedure table in the file TPF$ will be updated. The L option indicates a
complete listing of the symbolic input is desired.

21. End-of-file control statement. This completes correction image input from
the runstream (none in this case) and causes PDP to complete processing
and terminate. No correction image input causes an exact copy of the
symbolic input element to be placed in a FORTRAN procedure element.

2.4. PLUS PDP Procedures
The symbolic input defining a PLUS PDP procedure has the following format:

#PROC∆label

source statements

#ENDPROC

where:

#PROC

is a PDP directive beginning in column one. It indicates the beginning of a PLUS
PDP procedure.

Symbolic Input

UP–10070.1–A2–8

The word address of the symbolic image containing this directive is saved in the
FORTRAN procedure table.

label

is a character string, beginning in column seven, that does not exceed 12 characters
in length.

The label may contain alphabetic characters A,B,...,Z, digits 0,1,...,9, the minus
character (-), and the dollar sign character ($). (See the ECL End Use and

Programming Reference Manual for caution on the use of ‘$’.)

The character string specified by label is the name of the PLUS PDP procedure
entered into the FORTRAN procedure table.

source statements

are PLUS source statements and may include data declarations and PLUS directives.

#ENDPROC

is a PDP directive beginning in column one. It indicates the last symbolic image in
the PLUS PDP procedure.

PLUS PDP procedures may be nested either physically or implied. Physical nesting is
indicated when the symbolic images defining another PLUS PDP procedure appear
within the source statements section of a previous PLUS procedure. Each physically
nested PLUS PDP procedure must be bracketed properly (in other words, matching
#PROC, #ENDPROC pairs). Implied nesting is indicated when the PLUS COPY directive
appears in the source statements section of a PLUS PDP procedure. The physical
nesting level of PLUS PDP procedures may not exceed 10 levels.

For more information on accessing PLUS PDP procedures, see the COPY statement in
the UCS PLUS Programming Reference Manual Volume 1 and the UCS PLUS

Programming Reference Manual Volume 2.

Example:

The following example illustrates a physically nested PLUS PDP procedure.

 1. @PDP,IJ PLUS–PROC
 2. ”
 3. ” This procedure contains only PLUS declarations
 4. ”
 5. #PROC PLUSPROC
 6. DECLARE test_var01 : 36 BIT SIGNED INTEGER;
 7. ”
 8. ” This variable is for testing
 9. ”
10. DECLARE test_var02 : MACHINE WROD LOGICAL;
11. ”
12. ” The following is a nested PLUS PDP procedure
13. ”
14. #PROC NESTEDPROC
15. BEGIN
16. END;
17. #ENDPROC
18. DECLARE test_var03 : MACHINE WORD POINTER;

Symbolic Input

UP–10070.1–A 2–9

19. DECLARE test_var04 : 18 BIT INTEGER;
20. #ENDPROC
21. @EOF

1. This is a PDP processor call with the I and J options.

2–4. PLUS comment lines.

Note: These comment lines will not appear when the procedure is referenced

because they do not reside within the procedure text.

5. Procedure declaration, starting in column one. The symbolic entry point
name is PLUSPROC. The word address of this line image is saved by PDP
as the starting address of the PLUS PDP procedure PLUSPROC.

6. Symbolic source line in procedure PLUSPROC.

7–9. PLUS comment lines.

Note: These comment lines will appear when the procedure is referenced

because they are in the procedure text.

10. Symbolic source line in procedure PLUSPROC. Notice the misspelling of
‘WORD’; PDP does not check the syntax of the procedure source lines.

11–13. PLUS comment lines.

14. Nested procedure declaration, starting in column one. The symbolic entry
point name is NESTEDPROC. The word address of this line image is saved
by PDP as the starting address of the PLUS PDP procedure NESTEDPROC.

15–16. Symbolic source lines in procedure NESTEDPROC.

17. End declaration, starting in column one. This causes PDP to save the
information about the PLUS PDP procedure PLUSPROC for subsequent
entry into the FORTRAN procedure table, and to close out the procedure
PLUSPROC.

18–19. Symbolic source lines in procedure PLUSPROC.

20. End declaration, starting in column one. This causes PDP to save the
information about the PLUS PDP procedure PLUSPROC for subsequent
entry into the FORTRAN procedure table, and to close out the procedure
PLUSPROC.

21. End-of-file control statement. This completes the input from the runstream
and causes PDP to complete processing and terminate.

Symbolic Input

UP–10070.1–A2–10

2.5. MASM Procedures
This subsection discusses MASM and ASM procedures in terms of what directives PDP
recognizes and how PDP processes them. All MASM directives may start in any column
except column one but the standard convention is to start in column 11. See the MASM

Programming Reference Manual for the correct format and usage of all the MASM
directives that PDP recognizes and for detailed information on MASM procedures,
nesting, external labels, etc.

MASM procedures have a variety of formats that PDP can recognize. This subsection
describes a basic format for these procedures and each of the MASM directives that PDP
recognizes.

The symbolic input defining a MASM procedure has the following format:

 DEF

 definitions

label $PROC

 source statements

 $END

where:

DEF

is a PDP directive used to introduce values and functions into the MASM assembly.

This directive is optional and, if omitted, the definitions section must also be
omitted. The PDP DEF directive is distinct from the MASM $DEF (known as DEF)
directive. PDP does not recognize the $DEF form of this directive. PDP interprets
all DEF directives as the PDP type instead of the MASM type.

This directive enables PDP to save the word address in the file of the next symbolic
line image. This word address is used as the starting address of the procedure
definition following the definitions section.

definitions

are line images containing one of the following MASM directives: $EQU, $EQUF,
$FORM, or $FUNC definitions. There are no other line images (except comments)
allowed. See the MASM Programming Reference Manual for the correct usage and
form of these directives.

The definitions section must appear only if the DEF directive appears.

label

is the MASM label field, starting in column one, as described in the MASM

Programming Reference Manual.

Symbolic Input

UP–10070.1–A 2–11

$PROC

is a MASM directive recognized by PDP as the start of a MASM procedure definition.

If the DEF directive and definitions section do not precede the line image
containing the $PROC directive, the word address of this line image is used as the
starting address of the procedure.

Note: The MASM $PROC directive may contain additional fields, but they are

ignored by PDP (see the MASM Programming Reference Manual for the

correct form and use of this directive).

source statements

are line images containing MASM directives, instructions, declarations, etc.

The only MASM directives that PDP recognizes in this section are the $NAME and
$FUNC definitions (see discussion below).

Note: PDP does not check these source statements for syntax or validity.

$END

is a MASM directive that indicates the last symbolic line image in the MASM
procedure.

Note: The MASM $END directive may contain an additional field, but PDP

ignores it. See the MASM Programming Reference Manual for the correct

form and use of this directive).

MASM procedures may be nested, either statically or dynamically. Static nesting occurs
when two or more $PROC directives appear in sequence without an intervening $END
directive. Dynamic nesting occurs when a procedure reference image is part of the
source statements section of another procedure.

The DEF directive and its definitions section may not be nested. If they appear within
the source statements section of a MASM procedure, PDP ignores them.

PDP detects static nesting of MASM procedures by matching $PROC and $END
directives. Each procedure declaration must have only one corresponding $END
directive. Each $PROC directive increases the static nesting level and each $END
decreases the static nesting level. PDP does not detect dynamic nesting.

Within the source statements section of a MASM procedure, PDP recognizes the
definition of an internal name by using the MASM $NAME directive. The format for this
directive is:

label $NAME

where label is a MASM label field (as described in the MASM Programming Reference

Manual and $NAME is the MASM directive.

Note: The MASM $NAME directive may contain an additional field, but PDP

ignores it.

Symbolic Input

UP–10070.1–A2–12

PDP only recognizes the $NAME directive if it appears within the source statements

section of an unnested MASM procedure.

PDP uses the symbol subfield of the label field appearing on $NAME and $PROC
directives as the procedure name/symbolic entry point entered into the Assembler
procedure table. PDP uses the symbol as a procedure name only if the label field
contains a dictionary control character (an asterisk) and the MASM$NAME or PROC
directive on which the label appears does not occur within a nested MASM procedure.

MASM $FUNC definitions may appear in either the definitions or source statements

sections. PDP only recognizes $FUNC definitions for the purpose of not confusing
matching $PROC and $END pairs with $FUNC and $END pairs. PDP ignores all line
images within the function text (in other words, between the $FUNC and $END
directives). See the MASM Programming Reference Manual for the correct format of
the $FUNC directive and additional information on functions.

The following two examples illustrate MASM procedures.

Example 1:

1. @PDP,IM MASM–PROC–1
2. DEF
3. A $EQU 24
4. D $EQUF TAG,X2
5. P $PROC
6. AA* $NAME
7. $END
8. @EOF

1. This is the PDP processor call with the I and M options.

Note: The M option is the default option and need not be specified.

2. The DEF statement directs PDP to save the word address of the symbolic
line following the DEF statement; in this case line 3.

3–4. These are values to be introduced into the MASM assembly.

5. The $PROC directive indicates the beginning of the MASM procedure
associated with the DEF directive encountered.

6. The procedure symbolic entry point name is AA since the MASM label field
on the $NAME directive contains a dictionary control character, and the
$NAME directive does not appear within a nested MASM procedure.

7. The $END statement directs PDP to build an assembly procedure item with
the start address pointing to line 3.

8. End-of-file control statement. This completes the input from the runstream
and causes PDP to complete processing and terminate.

Symbolic Input

UP–10070.1–A 2–13

Example 2:

1. @PDP,IM MASM–PROC–2
2. P* $PROC
3. A $EQU TAG
4. PI $PROC
5. N** $NAME
6. B $EQU TAG
7. $END
8. $END
9. @EOF

1. This is the PDP processor call with the I and M options.

2. The $PROC statement indicates the beginning of a MASM procedure. The
MASM symbol P is saved as the procedure symbolic entry point name,
since the MASM label field contains a dictionary control character. The
word address of this line image is saved by PDP as the starting address of
the MASM procedure, since no DEF directive and definitions section
precede this image.

3. This is a line in procedure P.

4. The $PROC directive indicates the beginning of a nested procedure. PDP
increases the static nesting level.

5. PDP ignores this line image even though the MASM label field contains a
dictionary control character, since it appears within a nested procedure.

6. This is a line in procedure P1.

7. The $END statement directs PDP to decrease the static nesting level and to
close out procedure P1.

8. The $END statement directs PDP to decrease the static neting level and to
close out procedure P.

9. End-of-file control statement. This completes the input from the runstream
and causes PDP to complete processing and terminate.

2.6. ASM Procedures
PDP only recognizes the following differences between ASM and MASM procedures:

� The MASM form of the directives (in other words, beginning with the ‘$’) is not
acceptable input to ASM.

� The format of the ASM label field is slightly different than the format of the MASM
label field.

For additional information on ASM procedures and the ASM incompatibilities with
MASM, see the MASM Programming Reference Manual.

UP–10070.1–A 3–1

Section 3
Symbolic Output

3.1. General
The symbolic output that PDP generates is accessible to users through other system
processors such as @ELT, @ED, and @CTS.

This symbolic output consists of a line-by-line copy of the symbolic input to PDP (see
Section 2 for more information) or an updated copy of the symbolic input to PDP.

The symbolic input may be updated by specifying a source output procedure element (so

field) on the PDP control statement and entering correction images in the runstream
following the PDP control statement, followed by and end-of-file (@EOF) or other
control statement. The format of line-change statements used to apply corrections is
described in the DATA Processor and ELT Processor Operations Reference Manual. An
exact copy of the symbolic input to PDP may be obtained by specifying a source output
procedure element (so field) on the PDP control statement and entering an end-of-file
(@EOF) or other control statement in the runstream immediately following the PDP
control statement.

The symbolic output is placed in a program file symbolic procedure element specified by
the so (si if I option) field on the @PDP statement. The element cycle of this symbolic
element is always zero (in other words, no “updating” of the symbolic input element to a
higher element cycle may be performed using PDP).

Symbolic output is the same character code as the symbolic input, except when the
symbolic input is in the Fieldata character set. In that case, the symbolic output is in the
ASCII/ISO character set.

3.2. Procedure Table Output
The procedure table is not directly accessible to the user but is provided for access to
the PDP procedures by the language processors. This table is accessed indirectly by
using the Basic Service Package (BSP$). For additional information on BSP$, see the
SYSLIB Programming Reference Manual.

PDP generates a procedure table entry for each valid procedure coded within the
symbolic input. This entry contains information about the symbolic entry point to the
PDP procedure. For additional information on procedure table entries, see the Basic
Service Package (BSP$) in the SYSLIB Programming Reference Manual. All procedure
table entries generated by one execution of PDP apply to the same procedure table (in
other words, only one type of procedure table is updated per execution of PDP).

Symbolic Output

UP–10070.1–A3–2

The updated procedure table resides in the Table of Contents (TOC) of the program file
containing the symbolic input element, except when symbolic output is specified. In
that case, the updated procedure table resides in the TOC of the program file containing
the symbolic output procedure element.

If a procedure table does not exist in the program file for the procedure type being
processed, PDP creates a procedure table in the program file.

Procedure names entered into the procedure tables are coded in the Fieldata character
set.

If a user attempts to enter a procedure name that already exists in a procedure table,
PDP will automatically delete the duplicate procedure name. This assures a unique
procedure name for each procedure. However, duplicate procedure names may exist in
different procedure tables. All PLUS and FORTRAN procedure names combined are
considered unique because they are entered into the same table. This is also true for
ASM and MASM.

3.3. Listing
PDP generates printed output (L option) that consists of the following information for
every line image input:

� Field 1: Image Number

This is a 9-digit number representing the integral line number associated with this
line image, or the CTS line number associated with this image, or a 20-digit number
representing the segmented line number associated with this image.

� Field 2: Nesting Level

This field is a 2-digit number indicating the static nesting level of PDP procedures.
This field does not appear if the static nesting level is zero.

A partial or error listing (E option) produces the same information as an L option but
only displays the line images on which an error is detected.

A base and Permanent Correction File (PCF) listing (V option) consists of line-change
statements, source input images, and correction images. Source input and correction
images contain the following information:

� Field 1: Image Number

This is a 10-digit number representing the integral line number associated with this
line image, or the CTS line number associated with this image, or the segmented line
number associated with this image.

� Field 2: Base/PCF Number

This is a 9-digit number representing the integral base line number for source input
images. For correction images, this is a 9-digit number representing the integral PCF
line number associated with this image.

Symbolic Output

UP–10070.1–A 3–3

� Field 3: Nesting Level

This field is a 2-digit number indicating the static nesting level of PDP procedures.
This field does not appear if the static nesting level is zero.

The termination line image for PDP consists of two lines with the following format:

END PDP. Errors: f Fatal s Syntax w Warning
 Lines: i Entry Points: e Time: t Storage: is/nm/fs/ha

where:

f

is the number of fatal errors detected by PDP.

s

is the number of syntax errors detected by PDP.

w

is the number of warnings detected by PDP.

i

is the number of line images input and processed by PDP.

e

is the number of procedure entry points created or updated in the appropriate
procedure table by PDP.

t

is the SUPs used by this execution of PDP. This field has for the form: mm:ss.msc,
where mm is minutes, ss is seconds, and msc is milliseconds. The minutes and
seconds subfields do not appear if they are zero; the milliseconds subfield will
always appear.

is

is the initial number of words in PDP’s work area.

nm

is the number of ER MCORE$s performed during this execution of PDP.

fs

is the final number of words in PDP’s work area.

ha

is the highest D-bank address (in octal) obtained by PDP.

Symbolic Output

UP–10070.1–A3–4

3.4. Diagnostic Messages
PDP produces four types of messages: fatal errors, syntax errors, warnings, and
informational messages. The messages are prefixed with either ‘*FATAL ERROR:’,
‘*ERROR:’, ‘*WARNING:’, or ‘*NOTICE:’.

Fatal errors interrupt PDP processing, produce an error message, and terminate PDP
with an error exit (ER ERR$). No procedure table entries are created or updated.
Symbolic output may or may not be produced.

If a syntax error is found, a message is generated and analysis of the remaining symbolic
input continues, but there is no procedure table produced or updated and no symbolic
output produced (if specified).

Warning messages do not prevent normal output.

In general, the diagnostic messages include symbolic input scanning errors,
preprocessor interface routine errors, Basic Service Package (BSP$) errors, Executive
Request (ER) errors, and Symbolic Access Routine (SAR$) errors.

See Appendix A for a detailed description of each diagnostic message.

1234 5678–000 4–1

Section 4
Copying Procedures

When a PDP symbolic element is transferred to an element file (on tape) using the
FURPUR statement @COPOUT (see the FURPUR End Use Reference Manua), the
procedure table entries are carried along with the element. On an @COPIN statement of
a PDP symbolic element, FURPUR puts the procedure table items of that element into
the Table of Contents (TOC) of the program file.

When a PDP symbolic element is transferred from one program file to another program
file using the FURPUR statements @COPY,P or @COPY,S, the procedure table entries are
carried along with the element. Therefore, it is not necessary to reprocess a PDP
symbolic element using PDP if the element has been copied into a program file using
PDP if the element has been copied into a program file using the FURPUR statements
@COPIN, @COPY,P, or @COPY,S. @COPY,SL (copy only latest cycle information) is not
allowed.

If a symbolic procedure element is updated with the symbolic output in the same file as
the symbolic input, procedure names that appear in the symbolic input but not in the
symbolic output are not marked as deleted in the procedure table in the program file
TOC, even though the element in which they appear is marked as deleted in the element
table. An @PACK statement on the file following the PDP processing removes the
deleted element along with the corresponding procedure table entries.

UP–10070.1–A A–1

Appendix A
PDP Diagnostic Messages

A.1. Introduction
The diagnostic messages in this appendix are grouped into four categories: Fatal Error,
Error, Warning, and Notice. There is a separate error count in PDP’s termination line for
each category of errors except Notice.

� Fatal Error

This type of message is always printed by PDP. It causes the PDP to stop
processing, thus producing no procedure table entries. Fatal error messages have
the prefix ‘*FATAL ERROR:’.

� Error

This type of message is always printed by PDP. Analysis of the remaining symbolic
input continues, but there are no procedure table entries or symbolic output
produced. If the X option is specified on the @PDP control statement, this type of
diagnostic causes PDP to take an error exit. Error messages have the prefix
‘*ERROR:’.

� Warning

Warning messages have the prefix ‘*WARNING:’.

� Notice

This is not an error message, but a normal notification of an action taken. This type
of message is only printed after an error-type message. Notice messages have the
prefix ‘*NOTICE:’.

PDP Diagnostic Messages

UP–10070.1–AA–2

A.2. Messages
The following messages are listed in error-type order.

*FATAL ERROR: BSP$ Add Proc-type Procedure Table Item error, return status:
status

Indicates an error occurred while adding an item to the procedure table input from
mass storage. Proc-type indicates the specific procedure table. See the SYSLIB

Programming Reference Manual for a description of the status bits.

*FATAL ERROR: BSP$ Delete Proc-type Procedure Table Item error, return status:
status

Indicates an error occurred while deleting an item from the procedure table input
from mass storage. Proc-type indicates the specific procedure table. See the
SYSLIB Programming Reference Manual for a description of the status bits.

*FATAL ERROR: BSP$ Read File Table Index error, return status: status

An error occurred while reading the File Table Index from the program file’s TOC on
mass storage. See the SYSLIB Programming Reference Manual for a description of
the status bits.

*FATAL ERROR: BSP$ Write File Table Index error, return status: status

An error occurred while writing the File Table Index back to the program file’s TOC
on mass storage. See the SYSLIB Programming Reference Manual for a description
of the status bits.

*FATAL ERROR: BSP$ Write Proc-type Procedure Table error, return status:
status

Indicates an error occurred while writing the procedure table back to the program
file’s Table of Contents (TOC) on mass storage. Proc-type indicates the specific
procedure table. See the SYSLIB Programming Reference Manual for a description
of the status bits.

*FATAL ERROR: Conflicting control options – I option implies symbolic output

Indicates that both the T and I options were specified on the PDP control statement.
The T option implies no symbolic output whereas the I option implies symbolic
output—PDP cannot decide which is desired.

*FATAL ERROR: Executive Request CLIST% error, unable to terminate CLIST% mode,
possible next control statement loss

Indicates an error occurred while attempting to terminate CLIST$ mode. The next
1100 control statement following the PDP control statement may be ignored. See
the ER Programming Reference Manual and ECL End Use and Programming

Reference Manual for additional information about CLIST$ mode.

PDP Diagnostic Messages

UP–10070.1–A A–3

*FATAL ERROR: Executive Request PFS$ error, return status: status

Indicates an error occurred while searching for the symbolic I/O element in the
program file’s Table of Contents (TOC). See the ER Programming Reference

Manual and ECL End Use and Programming Reference Manual for a description of
the status bits.

*FATAL ERROR: Missing si field on PDP call statement

Indicates the symbolic input element was not specified on the processor call or the
symbolic output element was not specified on the processor call when the I option
was specified. PDP must have a symbolic element to work with.

*FATAL ERROR: Procedure type option conflict

Indicates two or more procedure type options were specified on the processor call
statement. Only one type of procedure may be processed by PDP at any one time.

*FATAL EROR: SAR$ Element Add error, write status word: status

Indicates an error occurred in adding the symbolic output element to the symbolic
output file’s Table of Contents (TOC). See the SYSLIB Programming Reference

Manual for a description of the status bits.

*FATAL ERROR: SAR$ SAR$–func error, read status word: status

Indicates an internal error or a corrupted file was encountered during SAR$
processing of the symbolic input element. SAR$–func specifies the SAR$ Input
function during which the error occurred. See the SYSLIB Programming Reference

Manual for a description of the status bits.

*FATAL ERROR: SAR$ SAR$–func error, write status word: status

Indicates an internal error or a corrupted file was encountered during SAR$
processing of the symbolic output element. SAR$-unc specifies the SAR$ Output
function during which the error occurred. See the SYSLIB Programming Reference

Manual for a description of the status bits.

*FATAL ERROR: SAR$ SAR$–func error, write status word: status

Indicates an internal error or a corrupted file was encountered during SAR$
processing of the standard print file. SAR$–func specifies the SAR$ Print function
during which the error occurred. See the SYSLIB Programming Reference Manual

for a description of the status bits.

*FATAL ERROR: SAR$ SAR$–func I/O error, read status word: status

An I/O error occurred during SAR$ processing of the symbolic input element.
SAR$–func specifies the SAR$ Input function during which the error occurred. See
the SYSLIB Programming Reference Manual for a description of the status bits.

PDP Diagnostic Messages

UP–10070.1–AA–4

*FATAL ERROR: SAR$ SAR$–func I/O error, write status word: status

An I/O error occurred during SAR$ processing of the symbolic output element.
SAR$–func specifies the SAR$ Output function during which the error occurred.
See the SYSLIB Programming Reference Manual for a description of the status bits.

*FATAL ERROR: SAR$ SAR$–func I/O error, write status word: status

An I/O error occurred during SAR$ processing of the standard print file. SAR$–func
specifies the SAR$ Print function during which the error occurred. See the SYSLIB

Programming Reference Manual for a description of the status bits.

*FATAL ERROR: SAR$ Open Input error – Bad Label Control Record, read status
word: status

An invalid SDF file or element label control record was read in the symbolic input
file.element. See the SYSLIB Programming Reference Manual for a description of
the status bits.

*FATAL ERROR: SAR$ Open Input error – File not SDF, read status word: status

The symbolic input file is not in Standard Data Format (SDF). See the SYSLIB

Programming Reference Manual for a description of the status bits.

*FATAL ERROR: SAR$ Print error – Invalid Attribute Type or Value, write status
word: status

Indicates an internal error or the image read contained an invalid attribute type or
an invalid value for the attribute type. See the SYSLIB Programming Reference

Manual for a description of the status bits.

*FATAL ERROR: SAR$ Read ACD or Shift-Code Format error, read status word:
status

The image read from the symbolic input element contains incorrectly formatted
ACD or incorrectly formatted embedded shift-coded Kanji. See the SYSLIB

Programming Reference Manual for a description of the status bits.

*FATAL ERROR: SAR$ Read error – Invalid Control Record, read status word:
status

An invalid SDF control record was encountered while reading the symbolic input
element. See the SYSLIB Programming Reference Manual for a description of the
status bits.

*FATAL ERROR: SAR$ Read error–SDF Image Exceeds Maximum Length, read status
word: status

The SDF data record or control record read from the symbolic input element
exceeds the maximum allowed length of an SDF record. See the SYSLIB

Programming Reference Manual for a description of the status bits.

PDP Diagnostic Messages

UP–10070.1–A A–5

*FATAL ERROR: SAR$ Write error–Invalid Attribute Type or Value, write status
word: status

Indicates an internal error or the image read contained an invalid attribute type or
an invalid value for the attribute type. See the SYSLIB Programming Reference

Manual for a description of the status bits.

*FATAL ERROR: Symbolic input element type does not match procedure type
specified

Indicates that, with the T option specified, the type or subtype of the element
specified in the si field of the PDP control statement does not match the type or
subtype specified by the procedure-type option of the PDP control statement. These
must match for the appropriate procedure table to be updated and for the procedure
table entries to remain when the file is packed (@PACK).

*FATAL ERROR: SYSLIB Get Scratch File Routine error,return status: status

Indicates an error occurred while obtaining a processor scratch file in which to
place the “corrected” symbolic. See the SYSLIB Programming Reference Manual

for a description of the status bits.

*FATAL ERROR: SYSLIB Identification Line ID$ routine error, return status:
status

Indicates an error occurred during formation or output of the PDP processor
identification line. See the SYSLIB Programming Reference Manual for a
description of the status bits.

*FATAL ERROR: SYSLIB Postprocessor routine POSTPR$ error

Indicates an error occurred during restoration of the Input/Output (I/O) files to their
original assign state. See the SYSLIB Programming Reference Manual for
additional information on this error.

*FATAL ERROR: SYSLIB PREPRM$ Preprocessor routine error

Indicates an error occurred during interpretation of the processor call line or during
the assign of the I/O files on the initial entrance to PDP. The message preceding this
message provides additional information about this error.

*FATAL ERROR: SYSLIB REPRM$ routine error

Indicates an error occurred during interpretation of the processor call line or during
the assign of the I/O files on the reusable entrance to PDP. The message preceding
this message provides additional information about this error.

*FATAL ERROR: SYSLIB SIR$ Correction Image Sequence or partial-line-change
error

SIR$ detected a line-change statement out of sequence or a partial-line-change
syntax error. See the SYSLIB Programming Reference Manual for additional
information about this error.

PDP Diagnostic Messages

UP–10070.1–AA–6

*FATAL ERROR: SYSLIB SIR$ I/O error, return status: status

Indicates an I/O error occurred while processing the symbolic input sith SIR$. See
the SYSLIB Programming Reference Manual for a description of the status bits.

*FATAL ERROR: SYSLIB SIR$ Invalid SDF label error

Indicates SIR$ detected an invalid SDF label record. See the SYSLIB Programming

Reference Manual for additional information about this error.

*ERROR: Attributed character data not allowed in procedure symbolic entry point
name

Attributed character data was encountered in the procedure symbolic entry point
name field. The format of procedure table entries do not allow for attributed
character data.

*ERROR: COBOL procedure symbolic entry point name greater than thirty
characters

COBOL procedure symbolic entry point names are limited by the size of two
procedure table entries to a maximum of thirty characters.

*ERROR: COBOL procedure symbolic entry point name must contain at least one
letter

COBOL requires that at least one character of the procedure symbolic entry point
name be an alphabetic character (in other words, ‘A’,...,‘Z’ or ‘a’,...,‘z’). See the ASCII

COBOL Programming Reference Manual for additional information.

*ERROR: Directives with $ prefix not recognized in ASM – line image ignored

The directive encountered on this line image began with the dollar sign character
($). This form of directive is not acceptable input to ASM.

*ERROR: Illegal character encountered in source–lang procedure symbolic entry
point name

A character not allowed in this source language PDP procedure symbolic entry point
name was encountered. Source–lang specifies the source language type. See
Section 2 for a description of the characters allowed in the procedure symbolic entry
point name.

*ERROR: Illegal first character for COBOL procedure symbolic entry point name

COBOL does not allow the minus character (i.e., ’–’) to be the first character of a
COBOL PDP procedure symbolic entry point name. See the ASCII COBOL

Programming Reference Manual for additional information.

PDP Diagnostic Messages

UP–10070.1–A A–7

*ERROR: Illegal last character for COBOL procedure symbolic entry point name

COBOL does not allow the minus character (i.e., ’–’) to be the last character of a
COBOL PDP procedure symbolic entry point name. See the ASCII COBOL

Programming Reference Manual for additional information.

*ERROR: Label field on a DEF directive is illegal – line image ignored

PDP does not allow a MASM label field on a PDP DEF directive line image.

*ERROR: MASM $DEF (or DEF) directive is not allowed – line image ignored

PDP does not recognize the MASM form of this directive. This also indicates a
MASM source line precedes a PDP DEF or MASM $PROC declaration.

*ERROR: MASM procedure static nesting level exceeds 63 – procedure declaration
ignored

The number of MASM procedure declarations encountered in sequence without an
intervening MASM end declaration is greater than 63. MASM does not allow more
than 63 statically nested procedures. See the MASM Programming Reference

Manual for additional information.

*ERROR: Misplaced procedure declaration or source line encountered before
procedure declaration – line image ignored

PDP encountered a line image, beginning in column two, that is not a comment,
preceding a valid PDP procedure declaration.

*ERROR: Missing function end declaration and missing procedure or procedure end
declaration

The end of the symbolic input element was encountered before a line image
containing a MASM function $END declaration. Also, this indicates that the line
image (i.e., definitions or procedure text) where this function was declared is
incomplete.

*ERROR: Missing MASM directive field or source line encountered before
declaration – line image ignored

A line image with only a MASM label field was encountered before a PDP DEF or
MASM $PROC declaration. MASM source lines must only appear within the
procedure text.

*ERROR: Missing PROC directive or unrecognizable characters in the symbolic
entry point name field – line image ignored

PDP encountered characters in the symbolic entry point name field of this line
image but no recognizable characters followed this field. This may also indicate that
a source line precedes the PDP procedure declaration.

PDP Diagnostic Messages

UP–10070.1–AA–8

*ERROR: Missing procedure end declaration on nested procedures – procedures
ignored

The end of the symbolic input element was encountered before the PDP end
declarations matching the PDP nested procedure declarations were encountered.

*ERROR: Missing symbolic entry point name field on PDP procedure declaration

PDP encountered a PLUS PDP procedure declaration directive, but no characters
followed it specifying the symbolic entry point name.

*ERROR: Misspelled PDP directive or unrecognizable characters in PDP directive
field – line image ignored

PDP encountered the special character in column one of the line image indicating a
PLUS PDP procedure declaration, but the characters that followed the special
character were not recognizable to PDP.

*ERROR: Misspelled/unrecognizable directive in PDP directive field or
unrecognizable charactes in the symbolic entry point name field – line image
ignored

PDP encountered a symbolic entry point name field and a PDP directive field, but
the PDP directive field contained characters not recognized by PDP. This may also
indicate a source line precedes the PDP procedure declaration.

*ERROR: Nested PDP procedures not allowed in the source–lang source language –
procedure declaration ignored

A PDP procedure declaration was encountered following a previous PDP procedure
declaration without an intervening PDP end declaration. Source–lang specifies the
source language that does not allow nested PDP procedures.

*ERROR: Nested procedure end encountered – nested procedure ignored

A PDP end declaration matching the PDP procedure declaration for a nested PDP
procedure was encountered in a PDP procedure that does not allow nested PDP
procedures.

*ERROR: No PDP procedure declarations encountered in the symbolic input – No
symbolic entry points produced

The end of the symbolic input element was encountered and no PDP procedure
declarations were encountered. Check the PDP procedure declaration format for
the source language desired. The error messages preceding this message will
provide additional information.

*ERROR: PDP Procedure end declaration encountered before PDP procedure
declaration – line image ignored

A PDP end declaration was encountered before a valid PDP procedure declaration
was encountered.

PDP Diagnostic Messages

UP–10070.1–A A–9

*ERROR: PLUS PDP procedure static nesting level exceeds ten – procedure
declaration ignored

The number of PLUS PDP procedure declarations encountered in sequence without
an intervening PLUS PDP end declaration is greater than 10. PLUS does not allow
more than 10 physically nested PDP procedures. See the UCS PLUS Programming

Reference Manual Volume 1 and Volume 2 for additional information.

*ERROR: Procedure declaration encountered before function end – procedure
declaration ignored

A MASM $PROC declaration was encountered before the function’s matching $END
declaration was encountered. This indicates a procedure declaration nested within
a function—which is ignored by PDP.

*ERROR: source–lang procedure symbolic entry point name greater than twelve
characters

Procedure symbolic entry point names are limited, by the size of the procedure table
entries, to a maximum of 12 characters, except for COBOL. Source–lang specifies
the source language type.

*ERROR: Source line encountered before procedure declaration – line image
ignored

A no-comment, unrecognizable line image was encountered before a valid PDP
procedure declaration was encountered. Source language line images may only
appear within the procedure text.

*ERROR: Source line encountered between DEF directive and procedure declaration
– line image ignored

A line image, not containing one of the following MASM directives, was encountered
following a PDP DEF declaration but preceding the subsequent MASM $PROC
declaration: $EQU, $EQUF, $FORM, or $FUNC. PDP does not allow MASM source
lines in the definitions section.

*ERROR: Source line with sequence number encountered before procedure
declaration – line image ignored

A no-comment, unrecognizable line image, with a sequence number in the beginning
of the image, was encountered before a valid PDP procedure declaration was
encountered. Source language line images may only appear within the procedure
text.

*WARNING: CLIST$ failure to register PDP control statement with executive,
return status: status

This indicates that the Executive Request to register the @PDP statement with the
EXEC failed. See the ER Programming Reference Manual and the ECL End Use

and Programming Reference Manual for a description of the status bits.

PDP Diagnostic Messages

UP–10070.1–AA–10

*WARNING: Correction images may not be applied when input is from the runstream
– V option ignored

Both the I and V options were specified in the PDP control statement. When the
symbolic input is from the runstream, correction images to update the symbolic
input may not also appear in the runstream. Therefore, listing base and PCF line
numbers is meaningless and will be ignored.

*WARNING: Fieldata output is not allowed – ASCII output assumed

The PDP control statement contains the P option. PDP converts all Fieldata-coded
input to ASCII-coded output and is not designed to generate any Fieldata-coded
output.

*WARNING: Final procedure missing end declaration – END assumed

The end of the symbolic input element was encountered before the PDP end
declaration matching the last PDP procedure declaration. PDP assumes a PDP end
declaration and completes processing.

*WARNING: Line change images may not be applied when input is from the
runstream – W option ignored

The PDP control statement contains both the I and W options. When the symbolic
input is from the runstream, correction images to update the symbolic input may not
also appear in the runstream. Therefore, listing line-change statements and change
images is meaningless and will be ignored.

*WARNING: Listing type option conflict – no listing assumed

Two or more conflicting listing options have been specified on the @PDP statement.
The conflict is ignored and no listing is assumed.

*WARNING: Microstring in externalized MASM label, no substitution performed –
externalized label ignored

PDP encountered a microstring in the symbol subfield of an externalized label.
Because PDP does not do any microstring substitition, the actual symbol cannot be
determined and therefore the label field is ignored.

*WARNING: No external labels encountered in the symbolic input – no procedure
symbolic entry points produced

PDP has scanned the entire MASM/ASM symbolic input and has not encountered
any dictionary control characters appearing on the label fields attached to
non-nested PROC or NAME directives. PDP will not create or update the Assembler
procedure table.

*WARNING: No procedure type option specified – MASM procedure type assumed

No procedure-type option was specified on the @PDP statement; therefore PDP
assumes that the symbolic input contains MASM procedures.

PDP Diagnostic Messages

UP–10070.1–A A–11

*WARNING: Not defined or unsupported option specified – option ignored

An A option was specified on the @PDP statement, which PDP does not recognize or
support. See 1.2 for the format of the @PDP statement.

*WARNING: S option not recognized – L option assumed

PDP does not have a “short” listing; therefore, the standard listing is assumed when
the S option is specified on the PDP call statement.

*WARNING: Symbolic output not allowed with T option – so field ignored

The so field was specified in the PDP control statement along with the T option. The
T option implies that no symbolic output is generated; therefore the so field is
meaningless and will be ignored.

*WARNING: V option print is only meaningful with symbolic output – V option
ignored

Both the T and V options or the V option and no so field are specified in the PDP
control statement. Correction images are applied only when the symbolic input is
updated, creating symbolic output. Therefore, listing base and PCF line numbers is
meaningless and will be ignored.

*NOTICE: No symbolic entry point produced

This procedure that no procedure symbolic entry point information was saved for
this PDP procedure declaration.

*NOTICE: PDP may not be reused

This indicates that an error occurred that caused PDP to not be reusable. See 1.4 for
additional information.

UP–10070.1–A B–1

Appendix B
Restrictions

The following restrictions exist with PDP level 13R1:

� W Option Output

Correction images containing Attributed Character Data (ACD) or embedded
shift-coded Kanji characters will not appear correctly on the listing. SIR$ does not
allow printing of images in character sets other than Fieldata or ASCII.

� COBOL Procedure Names

PDP allows the dollar sign character ($) in COBOL procedure names, even though
the COBOL compiler does not recognize this character. This restriction exists
because DMS 100 COBOL procedure names are padded with the dollar sign ($)
character.

� MASM Procedures

Line levelers and microstrings are ignored by PDP. No microstring substitution or
line leveling is performed by PDP. In addition, multiple symbols in MASM label
fields are not handled by PDP. It is recommended that MASM procedure processing
with PDP be replaced by MASM definition mode assemblies.

� T Option Output

Procedure table entries deleted by T option processing will not be eliminated when
the file is packed (@PACK). FURPUR only eliminates procedure table entries
associated with a deleted procedure element. This may cause the procedure table to
be full when most of the entries are deleted.

� Segmented Line Numbers

Segmented line numbers printed in the listing reflect, at most, 10 digits of the
fractional part of the line number. On a V option listing, no digits of the fractional
part of a segmented line number are printed in the listing.

� FORTRAN Procedures

FORTRAN procedures generated by PDP will not be recognized by the FORTRAN V
compiler. The FORTRAN V compiler only recognizes Fieldata-coded FORTRAN
procedures and PDP cannot generate Fieldata-coded procedures.

� Partial-Line Changes

Partial-line changes will not work on line images containing Attributed Character
Data (ACD) or embedded shift-coded Kanji data. Only whole-line changes may be
applied to symbolic input containing ACD or embedded shift-coded Kanji data.

� Asterisk on COBOL/FORTRAN Procedure Names

PDP allows the asterisk character to be appended to COBOL/FORTRAN procedure
names even though the compilers do not recognize this character in procedure

Restrictions

UP–10070.1–AB–2

names. PDP will remove the asterisk character from the procedure name before the
name is entered into the appropriate procedure table and generate a warning
message. In addition, this will specifically allow the COBOL procedure name field to
contain 31 characters (including the asterisk) and the FORTRAN procedure name
field to contain 13 characters (including the asterisk). This restriction exists
because DPS 1100 erroneously appends the asterisk character to the COBOL
procedure name it generates.

	Documentation Notes
	Contents
	About This Manual
	Section 1. Overview
	1.1. General
	1.2. @PDP Format
	1.3. Files
	1.4. Reusability

	Section 2. Symbolic Input
	2.1. General
	2.2. COBOL PDP Procedures (Library Entries)
	2.3. FORTRAN (FTN) PDP Procedures
	2.4. PLUS PDP Procedures
	2.5. MASM Procedures
	2.6. ASM Procedures

	Section 3. Symbolic Output
	3.1. General
	3.2. Procedure Table Output
	3.3. Listing
	3.4. Diagnostic Messages

	Section 4. Copying Procedures
	Appendix A. PDP Diagnostic Messages
	A.1. Introduction
	A.2. Messages

	Appendix B. Restrictions

