
OS 1100

ASCII COBOL
Supplementary
Reference Manual

Printed in U S America
Priced Item UP-8584 Rev. 1

January 1988

All rights reserved.
Copyright � 1988 Unisys Corporation.

Unisys is a registered trademark of Unisys Corporation.

Relative to Release 5R1

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and related
material disclosed herein are only furnished pursuant and subject to the terms and conditions of a duly
executed Program Product License or Agreement to purchase or lease equipment. The only warranties
made by Unisys, if any, with respect to the products described in this document are set forth in such
License or Agreement. Unisys cannot accept any financial or other responsibility that may be the result
of your use of the information in this document or software material, including direct, indirect, special,
or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies
with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded using the Business Reply Mail form in
this document, or remarks may be addressed directly to Unisys Corporation, PI Response Card,
P.O. Box 64942, St. Paul, Minnesota, 55164-9749, U.S.A.

UP-8584 Rev. 1 iii

Contents

Section 1. Introduction

Section 2. Nucleus

2.1. Inline Section in the Control Division 2-1.

2.2. The REMARKS Paragraph in the Identification
Division 2-3.

2.3. Data Division 2-4.
2.3.1. Data Division Structure 2-4.
2.3.2. Reserved Data-Names 2-4.
2.3.3. The POINT LOCATION Clause 2-5.
2.3.4. The USAGE Clause 2-5.

2.4. Procedure Division 2-7.
2.4.1. The ACCEPT Statement 2-7.
2.4.2. The DISPLAY Statement 2-8.
2.4.3. The EXAMINE Statement 2-8.
2.4.4. The EXHIBIT Statement 2-10.
2.4.5. The INSPECT Statement 2-11.
2.4.6. The MONITOR Statement 2-12.
2.4.7. The NOTE Statement 2-13.
2.4.8. The ON Statement 2-14.
2.4.9. The TRANSFORM Statement 2-15.

Section 3. Sequential I-O

3.1. Environment Division 3-1.
3.1.1. The FILE-CONTROL Paragraph 3-1.
3.1.2. The I-O-CONTROL Paragraph 3-4.

3.2. Data Division 3-5.
3.2.1. The BLOCK CONTAINS Clause 3-5.
3.2.2. The LABEL RECORDS Clause 3-5.
3.2.3. The RECORDING MODE Clause 3-6.
3.2.4. The VALUE OF Clause 3-10.

3.3. Procedure Division 3-16.
3.3.1. The CLOSE Statement 3-16.
3.3.2. The OPEN Statement 3-20.
3.3.3. The READ Statement 3-24.
3.3.4. The REWRITE Statement 3-26.

Contents

UP-8584 Rev. 1iv

3.3.5. The USE Statement 3-26.
3.3.6. The WRITE Statement 3-29.

3.4. 1968 Standard COBOL Tape Files 3-33.
3.4.1. Unlabeled File Structure 3-33.
3.4.2. Labeled File Structure 3-34.
3.4.3. Label Record Formats 3-39.
3.4.4. Data Block Format 3-44.

3.5. CFH Files 3-45.
3.5.1. Unlabeled File Structure 3-45.
3.5.2. Labeled File Structure 3-46.
3.5.3. Label Record Formats 3-50.
3.5.4. Data Block Format 3-51.

3.6. Compatible Files 3-52.
3.6.1. Unlabeled File Structure 3-52.
3.6.2. Labeled File Structure 3-52.
3.6.3. Label Record Formats 3-54.
3.6.4. Data Block Format 3-54.

3.7. LION Files 3-55.
3.7.1. Unlabeled File Structure 3-56.
3.7.2. Labeled File Structure 3-56.
3.7.3. Label Record Formats 3-57.
3.7.4. Data Block Formats 3-59.

3.8. 1968 Standard COBOL Sequential Mass Storage
Files 3-62.

3.8.1. Unlabeled File Structure 3-62.
3.8.2. Labeled File Structure 3-62.
3.8.3. Label Record Formats 3-63.
3.8.4. Data Block Format 3-66.

3.9. SDF Mass Storage and Tape Files 3-67.

Section 4. Direct I-O

4.1. General 4-1.

4.2. Environment Division 4-1.
4.2.1. The FILE-CONTROL Paragraph 4-1.
4.2.2. The I-O-CONTROL Paragraph 4-4.

4.3. Data Division 4-5.
4.3.1. The BLOCK CONTAINS Clause 4-5.
4.3.2. The LABEL RECORDS Clause 4-6.
4.3.3. The RECORDING MODE Clause 4-7.
4.3.4. The VALUE OF Clause 4-8.

4.4. Procedure Division 4-12.
4.4.1. The CLOSE Statement 4-12.
4.4.2. The FREE Statement 4-13.
4.4.3. The OPEN Statement 4-14.
4.4.4. The READ Statement 4-15.

Contents

UP-8584 Rev. 1 v

4.4.5. The REWRITE Statement 4-17.
4.4.6. The START Statement 4-17.
4.4.7. The USE Statement 4-18.
4.4.8. The WRITE Statement 4-19.

4.5. Direct Files 4-21.
4.5.1. Unlabeled File Structure 4-21.
4.5.2. Labeled File Structure 4-21.
4.5.3. Label Record Formats 4-22.
4.5.4. Data Block Format 4-25.

4.6. SDF Direct Files 4-25.

Section 5. Indexed Sequential I-O

5.1. General 5-1.

5.2. Environment Division 5-2.
5.2.1. The FILE-CONTROL Paragraph 5-2.
5.2.2. The I-O-CONTROL Paragraph 5-4.

5.3. Data Division 5-6.
5.3.1. The BLOCK CONTAINS Clause 5-6.
5.3.2. The LABEL RECORDS Clause 5-6.
5.3.3. The RECORDING MODE Clause 5-7.
5.3.4. The VALUE OF Clause 5-8.

5.4. Procedure Division 5-12.
5.4.1. The CLOSE Statement 5-12.
5.4.2. The DELETE Statement 5-13.
5.4.3. The FREE Statement 5-14.
5.4.4. The OPEN Statement 5-15.
5.4.5. The READ Statement 5-16.
5.4.6. The REWRITE Statement 5-18.
5.4.7. The START Statement 5-18.
5.4.8. The USE Statement 5-19.
5.4.9. The WRITE Statement 5-20.

5.5. Indexed Sequential Files 5-22.
5.5.1. Unlabeled File Structure 5-22.
5.5.2. Labeled File Structure 5-22.
5.5.3. Label Record Formats 5-23.
5.5.4. Data Block, Overflow Block, and Index Block

Format 5-25.
5.5.5. File Size Considerations 5-25.

5.6. ACTUAL KEY Updating 5-25.

Contents

UP-8584 Rev. 1vi

Section 6. Report Writer

6.1. The Special-Names Paragraph in the Environment
Division 6-1.

6.2. The Report Description Entry in the Data
Division 6-1.

Section 7. Library

7.1. The COPY Statement 7-1.

7.2. Library Entries for the Environment Division 7-2.

7.3. Library Entries For the Data Division 7-3.

7.4. Library Entries for the Procedure Division 7-4.

Section 8. Interprogram Communications

8.1. The ENTER Statement 8-1.

8.2. COBOL Calling FORTRAN 8-2.

8.3. Downward Compatible Subprogramming 8-3.

Section 9. Asynchronous Processing

9.1. The Saved-Area Description in the Data Division 9-1. .

9.2. Procedure Division 9-1.
9.2.1. The PROCESS Statement 9-1.
9.2.2. The SET Statement 9-2.

Section 10. Processor Call Statement

UP-8584 Rev. 1-A 1-1

Section 1
Introduction

This supplementary reference manual documents items that are currently in use in ASCIl
COBOL but lie outside the mainstream of COBOL language features. They remain a part
of the ASCII COBOL system to assist users in converting to American National Standard
COBOL X3.23-1974. Their use in new applications is discouraged because future OS
1100 COBOL systems will not provide these items.

Note: Existing programs. when updated should be modified to exclude the use of the

items documented in this manual.

This document contains only the nonstandard items of ASCll COBOL. For more
information regarding ASClI COBOL, see the OS 1100 ASCII COBOL Programming
Reference Manual, UP-8582 (current version).

References to the American National Standard COBOL of X3.23-1968 and X3.23-1974 in
the remainder of this manual are shortened to Standard COBOL 1968 and Standard
COBOL 1974, respectively.

UP-8584 Rev. 1-A 2-1

Section 2
Nucleus

2.1. Inline Section in the Control Division
Function

The Inline Section is obsolete since the compiler automatically generates inline code.

Format

ADD
ALL
CONVERSION
IF
INSPECT
MOVE
SIGN

FOR

ALL PROCEDURES
procedure-name-1

THROUGH
THRU

procedure-name-2

INLINE SECTION

...

...APPLY INLINE

Syntax Rules

1. The words THRU and THROUGH are equivalent.

2. Within the source program, procedure-name-1 must appear before
procedure-name-2.

General Rules:

1. The Inline Section is obsolete since inline code is automatically generated by the
compiler for all the cases mentioned in the following general rules.

Nucleus

UP-8584 Rev. 1-A2-2

2. The functions for which inline code can be generated within specific procedures of
the Procedure Division ore INSPECT, MOVE, IF, ADD, SIGN, and CONVERSION.
These functions do not apply to array nonsynchronized (all occurrences do not have
the same starting byte) data items. If the functions use a mixture of Fieldata (FD)
and ASCII data items. special code will not be generated. The CONVERSION,
INSPECT, and SIGN functions will generate special code for ASCII usage data items
only. If one of the operands in the function is of variable length, inline code will not
be generated.

3. The procedures for which the inline functions will be generated depend on the
procedure-names specified in the FOR clause. It should be noted that the functions
apply to the physical location of the procedures, not the logical locations.

4. If ALL PROCEDURES is specified. the inline functions specified will be generated
for the entire Procedure Division.

5. If only procedure-name-1 is specified. the inline functions apply only to that
procedure.

6. If procedure-name-1 THROUGH procedure-name-2 is specified, the inline functions
apply to all procedures starting at procedure-name-1 and continuing through
procedure-name-2.

7. If procedure-name-1 is specified but not defined within the Procedure Division, no
inline code will be generated.

8. If procedure-name-2 is specified but not defined within the Procedure Division,
inline code will be generated starting at procedure-name-1 and ending at the last
line of the source program.

9. If procedure-name-2 appears before procedure-name-1, inline code will be
generated as if procedure-name-2 were not defined.

10. When the APPLY INLINE ADD clause is specified, inline code will be generated for
all additions and subtractions where both operands are unsigned and less than two
words in length.

11. When the APPLY INLINE ALL clause is specified, it includes all the special functions
described in this section.

12. When the APPLY INLINE CONVERSION clause is specified, inline code will be
generated for the following conversions:

a. Converting from a binary (USAGE IS COMPUTATIONAL) item to a numeric
character (PIC 9 DISPLAY) item where they are either signed or unsigned and
are less than five characters in length.

b. Converting from a numeric character item to a binary item where they are either
signed or unsigned and less than six characters in length.

13. When the APPLY INLINE IF clause is specified. inline code will be generated for all
comparisons where both fields have equal start bytes, are less than 512 bytes in
length, and are equal in length, or if after scaling and padding, two items of different
lengths are less than two words in length.

Nucleus

UP-8584 Rev. 1-A 2-3

14. When the APPLY INLINE INSPECT clause is specified, INSPECT statements with
any of the following attributes will not generate inline code:

a. The item being examined is described as a signed numeric item.

b. Any tallying or replacing items ore not single character items.

c. Multiple tallying items ore stated.

d. Multiple replacing clauses are stated.

e. The UNTIL FIRST option is used.

f. A BEFORE/AFTER INITIAL clause is specified.

15. When the APPLY INLINE MOVE clause is specified, inline code will be generated for
alphanumeric moves when the sending and receiving fields have equal start bytes
and the size of the receiver is less than 512 bytes in length. If both sender and
receiver start at byte 0, there is no restriction on length.

16. When the APPLY INLINE SIGN clause is specified, inline code will be generated for
trailing overpunch sign extractions and stored for signed numeric items.

2.2. The REMARKS Paragraph in the Identification
Division
Format

REMARKS. comment-entry ...

Description

This paragraph contains a general description of the program. A comment-entry may be
made up of any combination of characters from the allowable COBOL character set.

Standard COBOL 1974 has replaced the REMARKS paragraph by a generalized comment
facility. An asterisk (*) in character position 7 identifies any line as a comment line. A
slash (/) in character position 7 causes the line to be treated as a comment and causes
page ejection. See the OS 1100 ASCII COBOL Programming Reference Manual, UP-8582
(current version).

Nucleus

UP-8584 Rev. 1-A2-4

2.3. Data Division

2.3.1. Data Division Structure

The fixed names of the sections in their required order of appearance as section headers
in the Data Division are:

FILE SECTION
COMMUNICATION SECTION
WORKING-STORAGE SECTION
COMMON-STORAGE SECTION
LINKAGE SECTION
REPORT SECTION
FILE SECTION
COMMON-STORAGE SECTION
WORKING-STORAGE SECTION
LINKAGE SECTION
COMMUNICATION SECTION
REPORT SECTION

2.3.2. Reserved Data-Names

Special registers are data-names with implicit data descriptions. Since special registers
are merely special predefined data-names, they may be used in any context where a
data-name is legal. However. since these special registers have particular functions
during execution, modification of their values should be done only with full realization
of the impact on subsequent processing. It is illegal to explicitly define any special
register data-name.

2.3.2.1. MCFLAG Register

The word MCFLAG is the name of a special register whose implicit definition is that of a
36-bit binary integer, initially set equal to 1. MCFLAG is defined for all COBOL programs
but is intended to allow dynamic suppression of output from the MONITOR statement.
(See 2.4.6.)

Setting MCFLAG to zero will suppress monitor output; thus, by setting and resetting
MCFLAG to zero and nonzero values, the user can dynamically inhibit monitor printing.

2.3.2.2. TALLY Register

The word TALLY is the name of a special register whose implicit description is that of a
36-bit binary integerù TALLY is defined for all COBOL programs. The primary use of the
TALLY register is to hold information produced by the EXAMINE Statement. (See 2.4.3.)
The word TALLY may also be used as a data-name wherever an elementary data item of
integral value may appear.

Nucleus

UP-8584 Rev. 1-A 2-5

2.3.2.3. PICTURE “H”

An “H” represents COMPUTATIONAL usage. Only one “H” is allowed in a PICTURE. It
must appear as the leftmost character except in a signed item, in which case “H” must
immediately follow “S”. The “H” is not used in determining the size of an item.

2.3.3. The POINT LOCATION Clause

Function

The POINT LOCATION clause states the decimal scaling for an exact binary item.

General Format

LEFT
RIGHT; POINT LOCATION is integer-1 PLACE

PLACES
Syntax Rules

1. The POINT LOCATION clause can only be used with an exact binary PICTURE.
See the OS 1100 ASCII COBOL Programming Reference Manual, UP-8582 (current
version).

2. In the absence of the POINT LOCATION clause, an exact binary data item is
assumed to be an integer.

3. The parameter integer-1 is the decimal scale of the data-name.

2.3.4. The USAGE Clause

Function

The USAGE clause specifies the format of a Fieldata item in storage. For aIl other valid
usages and rules, see the OS 1100 ASCII COBOL Programming Reference Manual,
UP-8582 (current version).

General Format

COMPUTATIONAL-4
COMP-4
DISPLAY-1
DISP-1

USAGE IS[]

Syntax Rules

1. The PICTURE character-string of a COMPUTATIONAL-4 item can contain only 9’s,
the operational sign character “S”, the implied decimal point character “V”, or one or
more P’s (see the OS 1100 ASCII COBOL Programming Reference Manual, UP-8582
(current version)).

2. COMP-4 and DISP-1 are abbreviations for COMPUTATIONAL-4 and DISPLAY-1,
respectively.

Nucleus

UP-8584 Rev. 1-A2-6

Description

If the group usage is defined as DISPLAY-1 or COMPUTATIONAL-4, the group is
considered to be an alphanumeric string of Fieldata characters. If the group usage is not
explicitly defined, the group is considered to be an alphanumeric string of ASCII
characters unless the first contained elementary non-FILLER item has USAGE
DISPLAY-1 or COMPUTATIONAL-4, in which case the group is considered to be an
alphanumeric string of Fieldata characters.

When mixing ASCII and Fieldata items in the same group. each group item must have
explicit usage declared in order to ensure proper data allocation. There are two general
cases where a group containing exact binary or 6-bit items must have an explicit 6-bit
usage to ensure proper allocation:

� The group item does not start on a half-word boundary.

� An occurring group item which contains a 6-bit item does not both start and end
on a half-word boundary.

A COMPUTATIONAL-4 item is capable of representing a value to be used in
computations and must be numeric. If a group item is described as
COMPUTATIONAL-4, the elementary items in the group are COMPUTATIONAL-4. The
group item itself is not COMPUTATIONAL-4 (cannot be used in computations).

DISPLAY-1 and COMPUTATIONAL-4 are aligned on sixth-word boundaries. The meaning
and allocation of DISPLAY-1 and COMPUTATIONAL-4 are as follows:

Usage Meaning Allocation

DISPLAY-1 Fieldata characters 6 bits, 1/6 word, per allocation character
represented in PICTURE clause.

COMPUTATIONAL-4 Fixed-point binary:
Also called Fieldata
sync-binary

1 digit, 1/6 word, 6 bits

2-3 digits, 1/3 word, 12 bits

4-5 digits, 1/2 word, 18 bits

6 digits, 2/3 word, 24 bits

7-8 digits, 5/6 word, 30 bits

9-10 digits, 1 word, 36 bits

11-12 digits, 1-1/6 words, 42 bits

13-14 digits, 1-1/3 words, 48 bits

15 digits, 1-1/2 words, 54 bits

16-17 digits, 1-2/3 words, 60 bits

18 digits, 1-5/6 words, 66 bits

Nucleus

UP-8584 Rev. 1-A 2-7

When the usage of the sender is Fieldata and the receiver is ASCII or vice versa,
character conversion is performed for MOVE statements. Also, if the move is such that
Fieldata or ASCII numerics are moved to a computational data item and conversion and
truncation are required for that move, the truncation will be binary. That is, the Fieldata
to ASCII conversion, or vice versa, will be performed before the truncation.

When mixing USAGE clauses in the STRING statement, it should be noted that the
processing time will be increased because of the required conversions between ASCII
and Fieldata.

2.4. Procedure Division

2.4.1. The ACCEPT Statement

Function

The ACCEPT statement causes low-volume data to be made available to the specified
data item.

Format 1

CARD-READER
CONSOLE

FROMACCEPT .identifier

Format 2

ACCEPT identifierFROM DATE-TIME

General Rules

Format 1

See the OS 1100 ASCII COBOL Programming Reference Manual, UP-8582 (current
version).

Format 2

DATE-TIME is composed of the data elements month, day, year, hour, minutes, seconds,
with each value being a 2-character number. Month will contain 01 through 12; day 01
through 31; year 00 through 99; hour 00 through 23; minute and second 00 through 59.

DATE-TIME, when accessed by a COBOL program, behaves as if it had been described in
a COBOL program as an unsigned elementary numeric integer data item 12 digits in
length.

Nucleus

UP-8584 Rev. 1-A2-8

2.4.2. The DISPLAY Statement

Function

The DISPLAY statement causes low-volume data to be transferred to an appropriate
hardware device.

Format

DISPLAY
identifier-1
literal-1

,identifier-2
,literal-2

... UPON
CARD-PUNCH
CONSOLE
PRINTER

Description

See the OS 1100 ASCII COBOL Programming Reference Manual, UP-8582 (current
version).

2.4.3. The EXAMINE Statement

Function

The EXAMINE statement replaces or counts the number of occurrences of a given
character in a data item.

Format

EXAMINEidentifier-5

TALLYING

UNTIL FIRST
ALL
LEADING
TRAILING

REPLACING BY
literal-2
identifier-2

literal-1
identifier-1

REPLACING

ALL
LEADING
[UNTILl FIRST
TRAILING

literal-3
identifier-3

literal-4
identifier-4

BY

Description

The description of identifier-5 must have USAGE DISPLAY or DISPLAY- 1, but may have
any legal picture for USAGE DISPLAY or DISPLAY-1 items.

The items identifier-1, identifier-2. identifier-3, identifier-4, literal-1, literal-1,
literal-2, literal-3. and literal-4 must be single characters and belong to a class
consistent with that of identifier-5. Literals may be any figurative constant except ALL.

Nucleus

UP-8584 Rev. 1-A 2-9

Examination starts with the leftmost character in identifier-5 and proceeds
character-by-character to the right, unless TRAILING is specified, in which case
examination begins with the rightmost character and proceeds to the left.

If identifier-5 is an elementary numeric item, it must consist of numeric characters and
may possess an operational sign (e.g., an overpunch on the low order character). If the
letter “S” is used in the PICTURE character-string of the data item description to indicate
the presence of an operational sign, the sign is completely ignored by the EXAMINE
statement.

Nonnumeric items may contain any character in the COBOL character set.

The TALLYING phrase creates an integral count which replaces the value of a special
register called TALLY. (See 2.3.2.2.) The count represents the number of:

1. Occurrences of literal-1 or identifier-1 when the ALL phrase is used.

2. Occurrences of literal-1 or identifier-1 prior to encountering a character other
than literal-1 or identifier-1 when the LEADING phrase is used.

3. Characters not equal to literal-1 or identifier-1 encountered before the first
occurrence of literal-1 or identifier-1 when the UNTIL FIRST phrase is used.

4. Occurrences of literal-1 or identifier-1 prior to encountering a character other than
literal-1 or identifier-1 when the TRAILING phrase is used.

When TALLYING and REPLACING BY are both used, replacing occurs only within the
examining scope of the TALLYING phrase.

The REPLACING phrase without TALLYING does not change the current contents of
TALLY. The rules for either type of REPLACING are:

1. When the ALL phrase is used. literal-2, identifier-2 or literal-4, identifier-4 is
substituted for each occurrence of literal-1, identifier-1 or literal-3, identifier-3.

2. When the LEADING phrase is used, the substitution of literal-2, identifier-2 or
literal-4, identifier-4 terminates as soon as a character other than literal-1,
identifier-1 or literal-3, identifier-3 or the right-hand boundary of the data item is
encountered.

3. When the UNTIL FIRST phrase is used, the substitution of literal-2, identifier-2 or
literal-4, identifier-4 terminates as soon as literal-1, identifier-1 or literal-3,
identifier-3 or the right-hand boundary of the data item is encountered.

4. When the FIRST phrase is used, the first occurrence of literal-1, identifier-1 or
literal-3, identifier-3 is replaced by literal-2, identifier-2 or literal-4, identifier-4.

5. When the TRAILING phrase is used, the substitution of literal-2, identifier-2 or
literal-4, identifier-4 terminates as soon as a character other than literal-1,
identifier-1 or literal-3, identifier-3 or the left-hand boundary of the data item is
encountered.

When the APPLY INLINE EXAMINE clause is specified in the Inline Section of the
CONTROL DIVISION, inline code will be generated for all EXAMINE statements except
when the item being examined is a signed numeric.

Nucleus

UP-8584 Rev. 1-A2-10

The INSPECT statement offers many of the same features as EXAMINE plus several
significant extensions which make INSPECT more desirable or appropriate than
EXAMINE. See the OS 1100 ASCII COBOL Programming Reference Manual, UP-8582
(current version).

2.4.4. The EXHIBIT Statement

Function

The EXHIBIT statement is a debugging tool which causes a formatted display of
specified items to be written to the program print file.

Format

EXHIBIT
NAMED
CHANGED
CHANGED NAMED

data-name-1
literal-1

, data-name-2
literal-2

...

Description

The data-name can be qualified. The literal may be any nonnumeric literal or any
figurative constant except ALL. A figurative constant, if used, is interpreted as a
single-character literal.

An EXHIBIT NAMED statement functions like a DISPLAY statement with the following
string substituted for each data-name in the syntax:

identifier-name = data-name-value

with two to five spaces inserted before the symbol ‘=’, a single space following the
symbol ‘=’, and one through four spaces inserted after the data-name-value.

The data-name-value is converted, if necessary, to a printable form. COMPUTATIONAL,
COMPUTATIONAL-4, and exact binary items are converted to their decimal equivalent.
COMPUTATIONAL-1 and COMPUTATIONAL-2 items are printed as 10- and 18-digit
integers with decimal places truncated.

An EXHIBIT CHANGED statement is the same as an EXHIBIT NAMED statement except
that for each data-name which has not changed value since the last execution of this
EXHIBIT CHANGED statement, blanks are printed instead of the name and value of the
item. An EXHIBIT CHANGED statement reveals, both by data-name and column
position, which variables have changed value. If none have changed value, a blank line
is printed.

The EXHIBIT CHANGED NAMED statement is the same as the EXHIBIT CHANGED
statement. except that changed values are printed consecutively without regard to
column and blank lines are not printed.

When the total size of an EXHIBIT line exceeds the single transfer capacity of the printer
or demand terminal, the EXHIBIT statement, like the DISPLAY statement, will cause
multiple lines of output. Each EXHIBIT statement may list no more than 14 items if the

Nucleus

UP-8584 Rev. 1-A 2-11

CHANGED phrase is used. and no more than nine items if the NAMED or CHANGED
NAMED phrase is used.

2.4.5. The INSPECT Statement

Format 1

INSPECT TALLYING

FOR

TRAILING
ALL
LEADING

CHARACTERS

BEFORE

AFTER
,, identifier-2

identifier-3
literal-1

identifier-7
literal-2

identifier-1

INITAL

Format 2

INSPECT REPLACING

CHARACTERS BY BEFORE
AFTER

INITIAL

TRAILING
ALL
LEADING
FIRST

BY
BEFORE
AFTER

INITIAL, ,
identifier-5

literal-3
identifier-6
literal-4

identifier-7
literal-5

identifier-6
literal-4

identifier-7
literal-2

identifier-1

Format 3

INSPECT TALLYING

FOR

TRAILING
ALL
LEADING

CHARACTERS

BEFORE

AFTER
,, identifier-2

identifier-3
literal-1

identifier-7
literal-2

identifier-1

INITAL

REPLACING

CHARACTERS BY BEFORE
AFTER

INITIAL

TRAILING
ALL
LEADING
FIRST

BY
BEFORE
AFTER

INITIAL, ,
identifier-5

literal-3
identifier-6
literal-4

identifier-7
literal-5

identifier-6
literal-4

identifier-7
literal-2

Description

All rules for the LEADING phrase apply to the TRAILING phrase, except that the word
“rightmost” must be substituted for the word “leftmost” and the words “last comparison
cycle” must be substituted for the words “first comparison cycle” in all references to the
LEADING phrase. See the OS 1100 ASCII COBOL Programming Reference Manual,
UP-8582 (current version).

Nucleus

UP-8584 Rev. 1-A2-12

2.4.6. The MONITOR Statement

Function

The MONITOR statement is a compiler-directing statement which causes the contents of
a specified item to be written to the program print file each time the item is referenced.

Format

MONITOR
ALL

UNTIL
procedure-name-1
identifier-1

,procedure-name-2

,identifier-2
...

[procedure-name-n]

Description

The identifier may refer to any data item in the COBOL program. The parameter
identifier-1 must not be subscripted or indexed. If identifier-1 is specified without
subscripting or indexing and identifier-1 refers to a table element. the effect is as if
each element of the table had been individually specified. The label procedure-name-1

may be any section or paragraph-name in the program. Both identifiers and
procedure-names may be qualified as necessary.

The MONITOR statement can appear anywhere in the Procedure Division, but must be
in a sentence by itself. Following the MONITOR sentence and continuing until either
the source line containing the procedure-name label specified in the UNTIL phrase or
the end of the program source is reached, the object program will be constructed so as
to print out monitor information on each explicit reference to the identifiers or
procedures specified in the MONITOR statement and on each definition of procedures
specified in the MONITOR statement.

The ALL phrase means all data references and all procedure tags and references will be
monitored over the specified range.

The monitor output line for data references is constructed after the execution of the
statement containing the reference. When the referenced data is possibly changed as in
arithmetic operations, moves. etc., monitor output is constructed both before and after
the execution of the statement. For each reference, the line will contain a reference
number which matches the reference number in the resolved source listing, the name of
the identifier, and the value of the data item. Values are converted, as necessary, in the
same manner as for the DISPLAY and EXHIBIT statements. A value of an index-name
will be the occurrence number.

The monitor output for procedures is generated for both explicit transfers to the
procedure and when execution “falls through” a specified procedure label.

The output line is similar to that for a data reference but does not contain a value or
definition line number.

The selection of references for which to generate monitor calls is done statically at
compile time, and not dynamically at object time. The compiler will not generate
monitor code if the program is compiled with the M option on the @ACOB statement.

Nucleus

UP-8584 Rev. 1-A 2-13

The inclusion of monitoring, particularly over a large range, will significantly increase
the size of the resultant object program.

A user may dynamically control monitor output by explicitly setting and clearing the
special register data item. (See 2.3.2.)

The MCFLAG field is implicitly defined as a 1-word binary integer initially set to 1. If
MCFLAG is zero and a monitored identifier or procedure is referenced. the monitor
output is suppressed. Therefore, by setting MCFLAG to zero and nonzero, the user can
dynamically and selectively inhibit printing by the debugging monitor routine.

The Debug module of Standard COBOL 1974 has replaced the MONITOR statement. See
the OS 1100 ASCII COBOL Programming Reference Manual, UP-8582 (current version).

2.4.7. The NOTE Statement

Function

The NOTE statement allows the programmer to write commentary which is produced on
the listing but not compiled.

Format

NOTE character-string.

Description

Any combination of the characters from the computer’s character set may be included in
the character-string.

If a NOTE statement is the first statement of a paragraph. the entire paragraph is
considered to be part of the character-string. Proper format rules for paragraph
structure must be observed.

If a NOTE statement appears as other than the first statement of a paragraph, the
commentary ends with the first instance of a period followed by a space.

Standard COBOL 1974 has replaced the NOTE statement by a generalized comment
facility. An asterisk (*) in character position 7 identifies any line as a comment line. A
slash (/) in character position 7 causes the line to be treated as a comment and causes
page ejection. The * and the /, unlike the NOTE, may appear anywhere in a COBOL
program and do not in any way affect the compilation of subsequent statements. See the
OS 1100 ASCII COBOL Programming Reference Manual, UP-8582 (current version).

Nucleus

UP-8584 Rev. 1-A2-14

2.4.8. The ON Statement

Function

The ON statement is a conditional statement whose truth or falseness is determined by
the number of times the statement has been executed.

Format

ON AND EVERY UNTIL

NEXT SENTENCE
OTHERWISE
ELSE NEXT SENTENCE

[[]]

; ;

integer-1 integer-2 integer-3

imperative-statement-1 imperative-statement-2

Description

A counter is created for this statement with an initial value of zero. The counter is
automatically incremented by 1 immediately before each execution of the statement.

If integer-2 and integer-3 are absent (only integer-1 is present), the ON condition is true
once, when the counter equals integer-1, and not at any other time.

If integer-2 is present and integer-3 is absent, the ON condition is true whenever the
counter equals integer-1 + k* integer-2, where k is a positive integer.

If integer-2 and integer-3 are both present. the condition is true whenever the counter
equals integer-1 + k * integer-2 and the counter is less than integer-3.

If integer2 is absent and integer-3 is present, integer-2 is assumed to be equal to 1.

If the ON statement appears in a USE FOR RANDOM PROCESSING declarative or in a
subprogram. a separate counter is established for each processing cycle or for each time
the subprogram is called or entered.

When the examination results in a true condition. the imperative statements preceding
the OTHERWISE/ELSE are executed. When the condition is false, the imperative
statements following OTHERWISE/ELSE are executed. In either case, control proceeds
to the next sentence unless a GO TO directs execution elsewhere.

Nucleus

UP-8584 Rev. 1-A 2-15

2.4.9. The TRANSFORM Statement

Function

The TRANSFORM statement is issued to alter characters according to a transformation
rule.

Format

TRANSFORM CHARACTERSFROM

TO

identifier-3
figurative-constant-1
nonnumeric-literal-1
identifier-1

figurative-constant-2
nonnumeric-literal-2
identifier-2

Description

The parameter identifier-3 must represent an elementary alphabetic, alphanumeric, or
numeric-edited item, or a group item.

The parameters identifier-1 and identifier-2 must be elementary alphabetic, or
alphanumeric items, or fixed-length group items less than 97 characters in length. A
fixed-length group is defined as a group which does not contain an OCCURS
DEPENDING ON.

Literals and figurative-constants may not contain ALL.

A character may not be repeated in nonnumeric-literal-1 or in the area defined by
identifier-1. If a character is repeated, the results will be unpredictable.

Transformation, in general, results in a character in identifier-3 being replaced if it is
equal to any character in a FROM operand.

The replacement character is either:

� The TO operand character if the TO operand is a single-character item, or

� The character that is in the same relative position in the TO operand as the match
character is in the FROM operand.

If the TO operand is not a single-character item, the TO and FROM operands must be of
equal length. The figurative constant is by definition a single-character item.

The INSPECT statement offers many of the same features as the TRANSFORM
statement plus several significant extensions which make the INSPECT statement more
desirable or appropriate than the TRANSFORM statement. See the OS 1100 ASCII
COBOL Programming Reference Manual, UP-8582 (current version).

UP-8584 Rev. 1-A 3-1

Section 3
Sequential I-O

3.1. Environment Division

3.1.1. The FILE-CONTROL Paragraph

3.1.1.1. The ASSIGN Clause

Format

ASSIGN TO implementor-name-1 implementor-name-2[,] ...

Description

Implementor-name-1 may be one of the following depending on the external media:

MASS-STORAGE

MASS-STORAGE-28

MASS-STORAGE-56

MASS-STORAGE-112

SEQUENTIAL-FILE

UNISERVO

UNISERVOS

770-PRINTER

In the forms, MASS-STORAGE-nnn, the integer value nnn refers to the prepping factor
of the mass storage files. These alternatives are available to allow blocking of records to
be sensitive to different physical record sizes on disk devices. The block size will be
calculated according to the BLOCK CONTAINS clause and then rounded up to the next
multiple of the specified physical record size. With the implementor-name

MASS-STORAGE, a default value of 28 words is used in rounding up block size (unless
the user changes FC$PREP to 56 or 112, then 56 or 112 is used).

For files assigned to other than 770-PRINTER:

� If implementor-name-2 is specified, it is a 1- to 12-character name used to link the
COBOL file to OS 1100 Exec file control and should appear on an @ASG or @USE
statement in the run stream for executing the object program.

� When implementor-name-2 is not specified, the first 12 characters of the file-name
are used to link the COBOL file to the OS 1100 Exec file control.

Sequential I-O

UP-8584 Rev. 1-A3-2

For files assigned to 770-PRINTER:

� When present, implementor-name-2 is a 1- to 12-character name specifying an
alternate system output file.

� When implementor-name-2 is not specified, implementor-name-1 is linked to the
system output files associated with each run unit.

All recursions of implementor-name-1, implementor-name-2 are for documentation
only.

3.1.1.2. The FILE-LIMITS Clause

Format

data-name-1
literal-1

data-name-2
literal-2

data-name-3
literal-3

data-name-4
literal-4

;

; ...

FILE-LIMIT IS
FILE-LIMITS ARE

THRU
THROUGH

THRU
THROUGH

Description

The FILE-LIMITS clause specifies that logical records are retrieved or placed
sequentially in the file by the implicit progression from one segment to another. Each
pair of operands associated with the keyword THRU represents a logical segment of the
file. The logical beginning of the file is that address represented by the first operand of
the first or only pair of the FILE-LIMITS clause. The logical end of the file is that
address represented by the last operand of the last pair of the FILE-LIMITS clause.

The parameters data-name-1, literal-1, etc., must be positive numeric integers with no
positions to the right of the assumed decimal point.

The parameters data-name-1, literal-1, etc., represent the relative record number of a
within the file.

When a file containing a FILE-LIMITS clause is opened for output. the file handler
ignores the BLOCK CONTAINS clause, and the file is created with one logical record per
physical block.

When a file containing a FILE-LIMITS clause is opened for input or I-O, processing will
be in error unless the file has been created with a FILE-LIMITS clause or with
ORGANIZATION DIRECT.

All physical blocks are allocated the same amount of mass storage. This allows the Mass
Storage Control System (MSCS) to make direct address FILE-LIMITS computations for
operands.

The FILE-LIMITS clause may not be specified by RECORDING MODE SDF files.

Sequential I-O

UP-8584 Rev. 1-A 3-3

3.1.1.3. The PROCESSING MODE Clause

Function

The PROCESSING MODE clause specifies the order in which logical records are
processed by the COBOL program.

Format

PROCESSING IS SEQUENTIALMODE[,]

Description

The PROCESSING MODE clause specifies the order in which logical records are
processed by the COBOL program.

When PROCESSING MODE IS SEQUENTIAL is specified, the logical records are
normally processed in the order in which they are accessed. In this case, only one area
is allocated to contain a logical record. If the COBOL program has reference to such a
file in a USE FOR RANDOM PROCESSING declarative section, appropriate lock
techniques must be used by the programmer to ensure the integrity of the logical record
if simultaneous accesses to it are possible. See the OS 1100 ASCII COBOL Programming
Reference Manual, UP-8582 (current version).

3.1.1.4. The RESERVE Clause

Format

ALTERNATE, AREA
AREAS

RESERVE
NO
integer-1

Description

The RESERVE clause is used to specify the number of buffer storage areas used to be in
processing the file.

For synchronously processed files; in other words, those for which PROCESSING
MODE is SEQUENTIAL. a maximum of two buffer areas is allocated regardless of the
number specified by integer-1. For input/output (I-O) files that are being randomly
processed (in other words, contain the PROCESSING MODE IS RANDOM clause; see
the OS 1100 ASCII COBOL Programming Reference Manual, UP-8582 (current version)).
integer-1 buffer areas are allocated. If the RESERVE clause is not specified, two buffer
areas are allocated. If NO is specified, only one buffer area is allocated.

Buffer areas are not compiled as part of the object program. Instead, during execution,
the object program is dynamically extended to allow for the buffer areas when the file is
opened. The buffer areas are released when the file is closed.

The RESERVE clause may not be specified for RECORDING MODE SDF files.

Sequential I-O

UP-8584 Rev. 1-A3-4

3.1.2. The I-O-CONTROL Paragraph

3.1.2.1. The APPLY WRITE-ONLY Clause

Format

[; ON []...]APPLY WRITE_ONLY file-name-1 ,file-name-2

Description

The APPLY WRITE ONLY clause has no meaning for unit record or mass storage files.
For tape files, it directs the compiler to allocate an area separate from the buffer area to
contain the logical record. Such a file is referred to as a move mode file. A file for
which the logical record is contained within the buffer area is referred to as a locate
mode file.

The APPLY WRITE-ONLY clause can be used for files opened either for input or output.
Its primary purpose however, is to allow variable length records to be packed into a
block for output. Each record is moved into the buffer after it. has been processed and
consequently requires minimum space. If the clause is absent, the records are
processed directly in the buffer where each record of the file occupies the area required
for the largest record of the file.

This clause (actually. packing of variable length records) is implied by other clauses
referencing the same file. The other clauses are: SAME RECORD AREA, RECORDING
MODE other than INTERNAL, and PROCESSING MODE IS RANDOM.

The APPLY WRITE-ONLY clause may not be specified for RECORDING MODE IS SDF
files.

3.1.2.2. The RERUN Clause

Format

;

EVERY OF

RERUN ON UNISERVO
UNISERVOS
MASS-STORAGE

END OF REEL
UNIT
RECORDS

file-name-1

integer-1 file-name-2 ...

Description

The RERUN EVERY integer RECORDS format is the only one recognized by
RECORDING MODE IS SDF files. Also, file-name-1 of the RERUN clause cannot
RECORDING be a MODE IS SDF file.

Sequential I-O

UP-8584 Rev. 1-A 3-5

3.2. Data Division

3.2.1. The BLOCK CONTAINS Clause

Format

; CONTAINS []
CHARACTERS

BLOCK RECORDSTOinteger-1 integer-2

Description

For RECORDING MODE IS SDF files, the BLOCK CONTAINS clause specifies the size of
the physical block. Absence of this clause will cause block size to default to 224 words;
when records are greater than 224 words in length, the blocks will be spanned. The
presence of the clause will cause a block size to be calculated as follows:

� If the CHARACTERS phrase is specified, integer-2 is divided by 4 and then rounded
up to a 112-word multiple.

� If the RECORDS phrase is specified, integer-2 is multiplied by the maximum record
length in words plus 1 and then rounded up to a 112-word multiple.

3.2.2. The LABEL RECORDS Clause

Format

LABEL RECORD
RECORDS

STANDARD
OMITTED

IS
ARE

;

data-name-1[]...,data-name-2
Description

The LABEL RECORDS clause is required for each file description.

3.2.2.1. Tape Files

Label records are located at both the beginning and end of a file or clause reel. This
permits the identification of these label records.

If the user desires only the system standard label records, then the STANDARD phrase
may be used. The OMITTED phrase specifies that no explicit labels exist for the file or
for the device to which the file is assigned.

OMITTED may not be specified on a tape file which is to be opened is REVERSED or
referenced by the MULTIPLE FILE clause.

Sequential I-O

UP-8584 Rev. 1-A3-6

3.2.2.2. Mass Storage Files

Label records on a mass storage file always occupy sectors 0 through 3 of that file. The
LABEL RECORDS clause permits the identification of these label records.

3.2.2.3. Tape and Mass Storage Files

The label record data-name-1 must be the subject of a Record Description entry
associated with the file. The data-name must not appear in the DATA RECORDS clause
of the File Description.

When user label records are specified (data-name-1, data-name-2.. . .), the user may
define fields in the description of data-name-1 (up to 80 characters) and have values
placed in them (OUTPUT) and checked for (INPUT and I-O) the by using VALUE OF
clause. All fields described in a LABEL RECORDS clause must have DISPLAY usage.
Such fields may not be referred to outside of the USE for LABEL declarative sections in
the Procedure Division.

The specification of user labels indicates the presence of these labels in addition to the
system standard labels.

3.2.2.4. RECORDING MODE SDF Files

RECORDING MODE IS SDF files have their own labeling conventions which are
independent of conventional COBOL labels. Hence, the LABEL RECORDS clause is
ignored for these files.

3.2.3. The RECORDING MODE Clause

Format

; MODE IS

[]

[]

[]
RECORDING

LION
CFH
FORMO1
FORMO2
FORMO3
BLANK
COMPACT
INTERNAL
SIGN
SDF

SIGN

AN

U

Description

The RECORDING MODE clause is not meaningful for unit record files or report files.
For tape and mass storage files, it specifies the format of the logical records or record
control information on tape or mass storage which may be different from the format in
main storage. Any appropriate data conversions are performed as data records are
transferred between main storage and tape or mass storage.

Sequential I-O

UP-8584 Rev. 1-A 3-7

When RECORDING MODE is INTERNAL or SDF is specified, it means that all records
are read or written exactly as they appear in main storage with no data conversion
taking place. If a RECORDING MODE clause is not present. INTERNAL is assumed.

If AN, FORM01, FORM02 FORM03, SDF, or INTERNAL is not specified and the file
contains multiple data record descriptions, then a record selector field within each
record description is required. See the OS 1100 ASCII COBOL Programming Reference
Manual, UP-8582 (current version) for a description of record selector fields.

When the record is read or written, the selector is tested to determine which record
conversion must be performed.

To guarantee a unique external representation of +0 and -0 for signed numeric fields on
ASCII output files, the SIGN option must be specified.

If a REDEFINES clause is used within a record description, then the original definition is
used rather than the redefinition for the purposes of record conversion.

3.2.3.1. The RECORDING MODE IS BLANK Clause

When the RECORDING MODE IS BLANK clause is stated, leading blanks in numeric
DISPLAY or DISPLAY-1 fields are converted to leading zeroes as the read records are
from tape or mass storage.

3.2.3.2. The RECORDING MODE IS BLANK SIGN Clause

The RECORDING MODE IS BLANK SIGN clause means that the conversions for both
RECORDING MODE IS BLANK and RECORDING MODE IS SIGN are to be performed
on the file.

3.2.3.3. The RECORDING MODE IS CFH Clause

The RECORDING MODE IS CFH clause indicates that any tape written or read the is in
external format compatible with that produced by the COBOL File Handler (CFH).

When the AN option is used, the records are assumed to consist entirely of Fieldata
characters. No data conversion is performed on these files. All record descriptions
must be specified as USAGE DISPLAY-1 fieldata).

Sequential I-O

UP-8584 Rev. 1-A3-8

When the AN phrase is not used, the following conversion is performed when
transferring a logical record between main storage and tape:

� USAGE IS COMPUTATIONAL-4. For all fields greater than 11 digits in size, the field
has a single sign in main storage and it carries two signs on tape.

� CFH files must contain 28-word label blocks. Only the first four words of each block
will be recognized and processed by ASCII COBOL. Neither VALUE OF nor label
declarative processing is performed. Label blocks on output files contain only the
minimum information necessary for proper processing. Files must use the LABEL
RECORDS ARE OMITTED or STANDARD clause.

3.2.3.4. The RECORDING MODE IS COMPACT Clause

The RECORDING MODE IS COMPACT clause means that the records on the file contain
variable length arrays. Each record on tape is compressed and is converted to or from
expanded form in main storage. The DEPENDING phrase of the OCCURS clause is used
whenever a variable number of occurrences of a dimensioned item is desired. If a
DEPENDING phrase is used within a record description of a file whose RECORDING
MODE IS COMPACT, the value of a data item is used to specify the conversion required
so that unused occurrences do not appear in the external media.

If a RECORDING MODE IS COMPACT file specifies the APPLY EXDEF clause and the
file contains a forward-referenced OCCURS DEPENDING ON data item, the APPLY
EXDEF clause can only be used in the main program.

3.2.3.5. The RECORDING MODE IS FORM01, FORM02, or FORM03 Clause

The RECORDING MODE IS FORM0X clause specifies that the tape was written to or is
to be read by a system which processes tapes with this external format.

All record descriptions must be specified as USAGE DISPLAY-1 (Fieldata).

When the U option is not used, the last block is padded with records of all 9’s when
necessary to fill the block. These records are given to the user as valid records on input.

When the U option is used, the last block will not be padded to fill a short block.

Compatible files may contain label blocks, but neither VALUE OF nor label declarative
processing is performed.

3.2.3.6. The RECORDING MODE IS LION Clause

The RECORDING MODE IS LION clause specifies that the tape was written or be is to
read by a system which processes tapes with this external format.

This format is different from the standard tape format used by the ASCII COBOL
compiler and is included for compatibility and interchangeability with other systems.

Sequential I-O

UP-8584 Rev. 1-A 3-9

When the AN phrase is used, the records are assumed to consist entirely of Fieldata
characters. No data conversion is performed on these files. All record descriptions
must be specified as USAGE DISPLAY-1 (Fieldata).

When the AN phrase is not used, the following conversions will be made when
transferring a logical record to and from main storage and tape:

� USAGE IS DISPLAY-1 (Fieldata). For signed numeric fields, the sign is carried in
main storage as an overpunched sign on the lower order digit. On tape, the sign is
carried as a 6-bit byte preceding the high order digit of the field.

� USAGE IS COMPUTATIONAL-4 (Fieldata). For all fields greater than 11 digits in
size, the field has a single sign in main storage and it carries two signs on tape.

LION files can be of two forms: fixed length record format and variable length record
format. The variable length record format is selected when two or more record
descriptions with different lengths are present for the file.

LION files may contain label blocks, but neither VALUE OF nor LABEL declarative
processing is performed Label blocks are written to LION output files containing the,
minimum information necessary for the files to be processed properly. Files must use
the LABEL RECORDS ARE OMITTED or STANDARD clause.

3.2.3.7. The RECORDING MODE IS SDF Clause

The RECORDING MODE IS SDF clause specifies that the file is in the System the Data
Format (SDF] on external media. These files are processed by the OS 1100 Processor
Common Input/Output System (PClOS).

For Sequential Organization files assigned to MASS-STORAGE, this file format format is
identical to the file used for Sequential Organization files assigned to DISC. See the OS
1100 ASCII COBOL Programming Reference Manual, UP-8582 (current version).

3.2.3.8. The RECORDING MODE IS SIGN Clause

The RECORDING MODE IS SIGN clause indicates that every signed numeric data
DISPLAY or DISPLAY-1 item is given an overpunched sign on the low order digit as it is
read into main storage. On mass storage or tape the sign is carried as an explicit
character preceding the high order digit of the field.

Sequential I-O

UP-8584 Rev. 1-A3-10

3.2.4. The VALUE OF Clause

Format

; ISVALUE OF

FILE-ID
SET-ID
CREATION-DATE
PURGE-DATE

FILE-QUALIFIER
FILE-ACCESS

data-name-1

data-name-2
literal-1

...

Description

 The VALUE OF clause specifies the value of an item in a label record. This clause
should not be present for a file when LABEL RECORDS ARE OMITTED is specified.

Since files with RECORDING MODE IS LION, CFH, SDF, FORM01, FORM02, or FORM03
do not have system standard labels, this clause has no meaning and is ignored.

The following are the names of fields in the system standard labels and have the implied
definition of:

Field Name Implied Definition

02 FILE-ID PIC X(17)

02 SET-ID PIC X(6)

02 CREATION-ID PIC 9(6)

02 PURGE-DATE PIC 9(6)

02 FILE-ACCESS PIC X(1)

02 FILE-QUALIFIER PIC X(12)

Sequential I-O

UP-8584 Rev. 1-A 3-11

In the absence of any or all of these names in the VALUE OF clause when a file is opened
for output, the following values will be assumed:

� For tape file sets using the 8-bit tape labeling system:

− FILE-ID

will be set to qualifier*external-name. The qualifier will be truncated if the
FILE-ID is longer than 17 characters.

− SET-ID

will be set to the first reel number.

− FILE-QUALIFIER

will be set to “U1100-1”.

� For all other file types:

− FILE-ID

will be set to the 12-character external file name.

− SET-ID

will be set to the first reel number, except when the file is initially opened on a
nonfirst reel it will be set to “UNIVAC”.

− CREATION-DATE

will be set to the current date.

− PURGE-DATE

will be set to the current date plus the expiration period specified on the @ASG
statement or system default if no expiration is specified.

− FILE-ACCESS

will be set to a space indicating unlimited access to the file.

− FILE-QUALIFIER

will be set to the qualifier of the file.

With the 8-bit tape labeling system, the CREATION-DATE cannot be set by the user.

In addition to these system standard label names, the VALUE OF data-name-1 form may
be used provided LABEL RECORDS ARE data-name is also specified. In this case,
data-name-1. etc., must be defined in the record description for a label record.

The contents of data-name-2 or literal-1 will be moved to the label field on output or
checked against the label field on input. The parameter data-name-2 must be described
as USAGE DISPLAY (ASCII).

Sequential I-O

UP-8584 Rev. 1-A3-12

When user label records are specified, the VALUE OF processing takes place in two
steps:

1. When the system standard label records are being read or written, the VALUE OF
standard label names are checked or moved, respectively.

2. When user label records are being read or written, the VALUE OF data-name clauses
are checked or moved, respectively.

3.2.4.1. The VALUE OF CREATION-DATE Clause

The contents of this field are set to the current date at the time the file is opened for
output. The VALUE OF CREATION-DATE clause modifies the contents of the field to
the value specified. The value field is written in the COBOL program in the form
MMDDYY and is converted to Julian form when the HDR1 label is created. At this time,
the contents of the month, day, and year values are verified for a legal range of numbers.
With the 8-bit tape labeling system, this field cannot be set by the user.

3.2.4.2. The VALUE OF data-name Clause

In addition to the system standard labels, tape and mass storage files may optionally
include user labels.

In order to create user labels on an output file. the COBOL program must include the
LABELS ARE data-name clause. User labels are then created by the use of the VALUE
OF data-name clause or by the specification of one or more USE ... LABEL
PROCEDURE declarative sections.

The VALUE OF processing is performed each time a user label may be created. No
distinction is made between references to data names in different label record
descriptions. It is the users responsibility to ensure that the VALUE OF items are
meaningful at the time a user label may be created.

This chart indicates the time at which a user label may be created (or processed on
input). and the sequence of processing:

Label Identifier Events Causing Label
Processing to Occur

Sequence of Label Processing

UVL-User beginning
volume labels

• OPEN

• CLOSE REEL (after

1. BEFORE BEGINNING REEL declarative
is executed.

(9-bit tape labeling only) tape swap)

• End of reel on READ
or WRITE

2. VALUE OF processing.

3. AFTER BEGINNING REEL declarative is
executed.

continued

Sequential I-O

UP-8584 Rev. 1-A 3-13

Label Identifier Sequence of Label ProcessingEvents Causing Label
Processing to Occur

UHL-User file header
labels

OPEN 1. BEFORE BEGINNING FILE declarative
is executed.

2. VALUE OF processing.

3. AFTER BEGINNING FILE declarative is
executed.

UTL-User end-of-file
labels

CLOSE 1. BEFORE ENDING FILE declarative is
executed.

2. VALUE OF processing.

3. AFTER ENDING FILE declarative is
executed.

UTL-User end-of-volume
labels

• End of reel on
CLOSE file

• CLOSE REEL on
output file

• End of reel on READ
or WRITE

1. BEFORE ENDING REEL declarative is
executed.

2. VALUE OF processing.

3. AFTER ENDING REEL declarative is
executed.

For output files. the user label is written only if the label identifier is set correctly in the
label record area. When a valid label exists, it is written.

For input files, label processing is performed only if a label with that appropriate
identifier exists.

3.2.4.3. The VALUE OF FILE-ACCESS Clause

The VALUE OF FILE-ACCESS clause only has significance for 8-bit labeled tapes. The
only allowable functioning characters are ASCII “1” through “7” and space (octal values
061 through 067,000, and 040, respectively). Any other character will be treated as a
space (in other words, unrestricted access).

The function of the values 061-067 corresponds to the F, R, and W options on the
COASG statement; e.g., if the R option is specified on the @ASG statement when the file
is created, the file is read-only until it expires.

NUL indicates that the @ASG statement options F, R. and W will be used. This is
equivalent to not specifying a FILE-ACCESS clause.

Sequential I-O

UP-8584 Rev. 1-A3-14

ccessibi ity
Assign Options

Access b l ty
Character F R W

“ ” or 040 X

“1” or 061

“2” or 062 X X

“3” or 063 X

“4” or 064 X X

“5” or 065 X

“6” or 066 X X X

“7” or 067 X X

NUL or 000 As specified on
@ASG statement

As specified on
@ASG statement

As specified on
@ASG statement

3.2.4.4. The VALUE OF FILE-ID Clause

The file identifier is checked by the Exec each time a reel specified on an @ASG
statement is mounted. It must match the file name specified on the @ASG statement
unless the F option was present at creation time. In either case, the expiration date
must indicate that the previous use of the file has expired.

If, when creating a file. the VALUE OF clause is used to modify the file identifier to
some name other than the one specified as the external file name in the SELECT clause.
that file may not be assigned in another run unless the file name on the @ASG statement
is changed. The @USE statement may, however, be later used to equate the file identifier
and the @ASG file name with the external file name used in the COBOL program.

For example, given a COBOL program which creates a file with the following clauses:

 .
 .
 .
SELECT MASTER-FILE ASSIGN TO UNISERVO XN
 .
 .
 .
VALUE OF FILE-ID IS “TAPE-FILE”

the execution of the program which creates the file (unless the @USE statement is used)
will be preceded by an @ASG XN,T,reel-no.

Sequential I-O

UP-8584 Rev. 1-A 3-15

Once the tape is created, if it is desired to read the file in another run using the same
ASSIGN clause, the following procedure may be used:

@ASG TAPE-FILE, T, reel-no
@USE XN, TAPE-FILE

If the user wishes to subsequently access a labeled tape file without a VALUE OF
FILE-ID clause (in other words, non-COBOL use of the file), the qualifier and an asterisk
(*) should be included in the FILE-ID value for use with an 8-bit labeled tape and should
not be included in the FILE-ID value for use with a 9-bit labeled tape.

3.2.4.5. The VALUE OF FILE-QUALIFIER Cause

The contents of the FILE-QUALIFIER field are set originally to the qualifier specified in
the @ASG statement or the qualifier specified in the currently active @QUAL statement
(or by default to the project field in the @RUN statement). The VALUE OF
FILE-QUALIFIER clause modifies the contents of the field to the value specified. As was
noted for the file identifier, this field is checked by the Exec each time the reel is
assigned to a run. The qualifier on the ASG statement must agree with the qualifier in
the HDR1 label unless the purge date shows the file has expired.

With the 8-bit tape labeling system, this field cannot be set by the user.

3.2.4.6. The VALUE OF PURGE-DATE Clause

The contents of the PURGE-DATE field are set to the current date at the time the file is
opened for output plus the number of days to expire specified in the @ASG statement or
system default if not specified in the @ASG statement. The VALUE OF PURGE-DATE
clause modifies the contents of the field to the value specified. The rules for the value
for PURGE-DATE are the same as for CREATION-DATE.

The contents of the PURGE DATE field represent the day on which the file may be
overwritten. The Exec verifies each reel assigned to a run by checking if the file
identifier and qualifier agree with the @ASG statement and the current date is the same
or later than the purge date in the HDR1 label.

3.2.4.7. The VALUE OF SET-ID Clause

The COBOL program may set the contents of this field without restriction.

Sequential I-O

UP-8584 Rev. 1-A3-16

3.3. Procedure Division

3.3.1. The CLOSE Statement

Format

WITH

WITH

REEL
UNIT

REEL
UNIT

NO REWIND
LOCK

NO REWIND
LOCK

...

CLOSE file-name-1

,file-name-2

Description

The CLOSE verb terminates the processing of one or more input or one or more output
files or reels and provides optional rewinding or locking. Each file-name refers to an FD
description in the Data Division. An OPEN statement must be executed prior to the
CLOSE statement.

The CLOSE file-name option, as applied to the entire file rather than to individual reels,
initiates the final closing conventions for the file and releases the data area. A file may
be closed once, but not more than once, for each time the file is opened. The UNIT or
REEL phrase has no meaning for mass storage files.

For an output file, the final closing conventions for the file are performed and the data
area is released. Furthermore, for either an input or an output tape file:

� If neither the LOCK nor NO REWIND phrase is specified, the current reel of the file
is rewound and all other reels belonging to the file are rewound. However, this rule
does not apply to those reels controlled by a prior CLOSE REEL entry.

� If the NO REWIND phrase is specified, the current reel of the file remains in
whatever position it is in at the time the CLOSE is given.

� The REEL and UNIT phrases are not allowed for RECORDING MODE SDF files.

If the LOCK phrase is specified for a tape file, all reels belonging to the file are rewound
with interlock except for those reels controlled by a prior CLOSE REEL. If the LOCK
phrase is specified for a mass storage file, the file can never be reopened in the current
execution.

The CLOSE file-name REEL option may be used for input or output files. The LOCK
option may be used and the current reel will be rewound with interlock. The necessary
processing is performed.

When a CLOSE REEL option is given, the locking or rewinding options of CLOSE REEL,
if used, take precedence for the current reel and only the current reel, regardless of the
options associated with a CLOSE of file. When a CLOSE file-name is given, its options
are executed wherever possible for all mounted reels of the file except for those reels
which may have been closed by a CLOSE REEL whose locking and rewinding options
differ from those of the CLOSE file-name.

Sequential I-O

UP-8584 Rev. 1-A 3-17

If the file has been specified as OPTIONAL and is not present, the standard end-of-file
processing is bypassed.

For multiple reel files, the opening and closing of individual reels is automatic.
However, the programmer must close the file when processing is to be terminated.

A CLOSE file-name-1 clause should be executed for each file that was opened.

3.3.1.1. Tape Files

For labeled tape files. the CLOSE REEL label procedures are the same as those
described for end-of-reel conditions on READ and WRITE, with the exception that there
is no label processing performed for the current reel of an input file.

For labeled tape files (except LION, CFH, SDF, FORM01, FORM02, and FORM03), a
CLOSE of the file causes the following label processing to occur:

� Input file, LABEL RECORDS ARE STANDARD

1. If the end-of-file condition has been reached, steps 2 through 4 are performed.
Otherwise, no label processing is done.

2. The BEFORE ENDING FILE declarative is executed.

3. The VALUE OF items are verified against the EOF1 label.

4. The AFTER ENDING FILE declarative is executed.

� Input file, LABEL RECORDS ARE data-name

1. If the end-of-file condition has been reached, steps 2 and 3 are performed.
Otherwise, no label processing is done.

2. The EOF label is verified against the VALUE OF items referencing standard label
names.

3. For each UTL label which is read from the tape the following occurs:

a. The BEFORE ENDING FILE declarative is executed.

b. The VALUE OF items referencing user label names are verified.

c. The AFTER ENDING FILE declarative is executed.

� Output file, LABEL RECORDS ARE STANDARD

1. A hardware EOF mark is written to tape.

2. An EOF1 label record is created with standard default values.

3. The BEFORE ENDING FILE declarative is executed.

4. The VALUE OF items are moved to the label record.

5. The AFTER ENDING FILE declarative is executed.

6. The EOF1 and EOF2 label records are written to tape followed by two hardware
EOF marks.

Sequential I-O

UP-8584 Rev. 1-A3-18

� Output file, LABEL RECORDS ARE data-name

1. A hardware EOF mark is written to tape.

2. An EOF1 label record is created with the standard default values.

3. The VALUE OF items referencing standard label names are moved to the label
record.

4. The EOF1 label record is written to tape followed by the EOF2 label.

5. The label record. character positions $ through 80, is cleared to spaces.

6. The BEFORE ENDING FILE declarative is executed.

7. The VALVE OF items referencing user label names are moved to the label
record.

8. The AFTER ENDING FILE declarative is executed.

9. The first three characters of the label record aye examined. If they contain the
characters UTL, the label is written to tape and the processing is repeated at
step 5. If the first three characters of the label area do not contain UTL, or the
first four characters remain unchanged after the reiteration process, the label
record is not written to tape. Finally, two hardware EOF marks are written to
tape.

For tape files using the 8-bit tape labeling system, writing a tape mark is an integral part
of writing the end-of-file labels and standard label items cannot be changed in these
steps.

For LION, CFH, FORM02, and FORM03 files, an end-of-file label block is written to tape
followed by two hardware EOF marks. For FORM01 files, two hardware EOF marks are
written.

3.3.1.2. Mass Storage Files

For labeled mass storage files (except SDF), closing through a CLOSE statement causes
the following label processing to occur:

� Input or I-O file, LABEL RECORDS ARE STANDARD

1. The EOF1 label is read.

2. The BEFORE ENDING FILE declarative is executed.

3. The VALUE OF items are verified against the EOF1 label.

4. The AFTER ENDING FILE declarative is executed.

5. If the file is I-O, the label record is rewritten.

Sequential I-O

UP-8584 Rev. 1-A 3-19

� Input or I-0 file, LABEL RECORDS ARE data-name

1. The EOF label is read and verified against the VALUE OF items referencing
standard label names.

2. If a UTL label is present, the following occurs after it is read from the mass
storage file:

a. The BEFORE ENDING FILE declarative is executed.

b. The VALUE OF items referencing user label names are verified.

c. The AFTER ENDING FILE declarative is executed.

d. If the file is I-O, the label record is rewritten.

� Output file, LABEL RECORDS ARE STANDARD

1. An EOF1 label record is created with standard default values.

2. The BEFORE ENDING FILE declarative is executed.

3. The VALUE OF items are moved to the label record.

4. The AFTER ENDING FILE declarative is executed.

5. The EOF1 label record is written.

� Output file, LABEL RECORDS ARE data-name

1. An EOF1 label record is created with the standard default values.

2. The VALUE OF items referencing standard label names are moved to the label
record.

3. The EOF 1 label record is written.

4. The label record, character positions 5 through 80, is cleared to spaces.

5. The BEFORE ENDING FILE declarative is executed.

6. The VALUE OF items referencing user label names are moved to the label
record.

7. The AFTER ENDING FILE declarative is executed.

8. The first three characters of the label record are examined. If they contain the
characters UTL, the label is written. If the first three characters of the label area
do not contain UTL, the label record is not written.

3.3.1.3. RECORDING MODE SDF Files

For RECORDING MODE is SDF files, the end-of-file labels are processed by the
Processor Common Input/Output System (PClOS). No declaratives are executed for
these files.

Sequential I-O

UP-8584 Rev. 1-A3-20

3.3.2. The OPEN Statement

Format

WITH

[WITH]

WITH

[[WITH]]

[] ...

...

...

...

OPEN

INPUT

OUTPUT
I-O

REVERSED
NO REWIND

NO REWIND

REVERSED
NO REWIND

NO REWIND

file-name-1

file-name-3
file-name-5

,file-name-2

,file-name-4

,file-name-6
Description

The OPEN statement initiates processing of the named files by checking and writing
labels and performing any other input/output operations necessary prior to accessing the
first record in a given file. However, the OPEN statement does not obtain or release the
first data record. A READ or WRITE statement must be executed.

If an input file is designated as OPTIONAL in the FILE-CONTROL paragraph, the Mass
Storage Control System interrogates for the presence of the file. If the file is not present,
the first READ statement for the file causes the imperative statement in the AT END
phrase to be executed.

The REVERSED option may not be used on a file whose recording mode is LION, CFH,
SDF, FORM01, FORM02, or FORM03 or on a file assigned to mass storage.

When using the 9-bit tape labeling system and the REVERSED option is specified, the
MSCS will interrogate the position of the tape to ensure that it is set to read the last
physical block on the reel. No label processing is performed when the file is opened
REVERSED.

Tape file sets using the 8-bit tape labeling system can check labels when opened
REVERSED and can be positioned using the MULTIPLE FILE clause.

The NO REWIND option is used to maintain position on a tape reel containing multiple
files. It may be used when a file contained on a multiple file tape is being created.
Although it is not necessary on a standard- tape input file since the MSCS will provide
automatic positioning. it does save I-O access time. When attempting to read a multifile
tape whose recording mode is LION, CFH, SDF, FORM01, FORM02, FORM03,
F(EBCDIC), V, or U(EBCDIC), this option is required since the file handler does no
automatic positioning.

Sequential I-O

UP-8584 Rev. 1-A 3-21

3.3.2.1. Tape Files

In the following description of label processing, it should be noted that REEL processing
occurs only on the first file of a multiple file tape. Tape file sets using the 8-bit tape
labeling system have reel processing at the beginning and end of each reel, although
under this system, User Volume Header labels cannot be processed.

For tape files (except LION, CFH, SDF, FORM01, FORM02, FORM03, and files with
LABELS ARE OMITTED), the following label processing occurs.

Open Output

� If the LABEL RECORDS ARE STANDARD clause is present:

1. If the file being opened is not the first file on the tape, processing begins at
step 4.

2. The BEFORE BEGINNING REEL declarative is executed.

3. The AFTER BEGINNING REEL declarative is executed.

4. The HDR1 label is created with standard values.

5. The BEFORE BEGINNING FILE declarative is executed.

6. The VALUE OF items referencing the standard label are moved to the label area.

7. The AFTER BEGINNING FILE declarative is executed.

8. The HDR1 label record is written to tape followed by the HDR2 label record
followed by one hardware EOF mark.

� If the LABEL RECORDS ARE data-name clause is present:

1. If the file being opened is not the first file on the tape, processing begins at step
7.

2. The label record, character positions 5 through 80, is cleared to spaces.

3. The BEFORE BEGINNING REEL declarative is executed.

4. VALUE of data-name items are moved to the label record.

5. The AFTER BEGINNING REEL declarative is executed.

6. The first three positions of the label area are examined as follows:

a. If they contain the characters UVL, the label record is written to tape. Then
processing is repeated starting at step 2.

b. If they do not contain the characters UVL, or the first four characters remain
unchanged after the reiterative process, the REEL processing is complete.

7. The HDR1 is created with the standard default values.

8. The VALUE OF items referencing the standard label are moved to the label area.
The HDR1 label is written followed by the HDR2 label.

9. The label record, character positions 5 through 80, is cleared to spaces.

10. The BEFORE BEGINNING FILE declarative is executed.

11. VALUE OF data-name items are moved to the label record.

Sequential I-O

UP-8584 Rev. 1-A3-22

12. The AFTER BEGINNING FILE declarative is executed.

13. The first three positions of the label area are examined as follows:

a. If they contain the characters UHL, the label record is written to tape. Then
processing is repeated starting at step 9.

b. If they do not contain the characters UHL, or the first four characters
remain unchanged after the reiterative process, FILE processing is
complete.

14. Finally, one hardware EOF mark is written to tape.

For tape file sets using the 8-bit tape labeling system, step 6 is not performed and
step 14 is performed by the system.

Open Input

� If the LABEL RECORDS ARE STANDARD clause is present:

1. If the file being opened is not the first file on the tape, processing begins at
step 4.

2. The BEFORE BEGINNING REEL declarative is executed.

3. The AFTER BEGINNING REEL declarative is executed.

4. The HDR1 label record is read (any UVL label records are bypassed).

5. The BEFORE BEGINNING FILE declarative is executed.

6. The VALUE OF items are verified.

7. The AFTER BEGINNING FILE declarative is executed.

8. The file is positioned beyond the hardware EOF mark following the label
records.

For tape file sets using the 8-bit tape labeling system, steps 4 and 5 are reversed and
step 6 is performed by the system as the HDR1 label is read.

� If the LABEL RECORDS ARE data-name clause is present:

1. If the file being opened is not the first file on the tape, processing begins at
step 3.

2. For each UVL label record preceding the HDR1, the following process occurs:

a. The BEFORE BEGINNING REEL declarative is executed.

b. The VALUE OF items referencing user label items are verified.

c. The AFTER BEGINNING REEL declarative is executed.

3. The HDR1 label is read. The VALUE OF items referencing the standard label are
verified.

4. For each UHL label record following the HDR2 the following process occurs:

a. The BEFORE BEGINNING FILE declarative is executed.

b. The VALUE OF items referencing user label items are verified.

c. The AFTER BEGINNING FILE declarative is executed.

Sequential I-O

UP-8584 Rev. 1-A 3-23

5. Label processing is complete when the hardware EOF mark following the label
records is reached.

For tape file sets using the 8-bit tape labeling system, step 2 is not performed.
However, the BEFORE BEGINNING REEL and AFTER BEGINNING REEL
declaratives will each be executed once.

3.3.2.2. Mass Storage Files

For mass storage files (except SDF files or files with LABEL RECORDS ARE OMITTED),
the following label processing occurs.

Open Output

� If the LABEL RECORDS ARE STANDARD clause is present:

1. The HDR1 label is created with standard values.

2. The BEFORE BEGINNING FILE declarative is executed.

3. The VALUE OF processing is performed.

4. The AFTER BEGINNING FILE declarative is executed.

5. The HDR1 label record is written.

� If the LABEL RECORDS ARE data-name clause is present:

1. The HDR1 label is created with standard values.

2. The VALUE OF items referencing the standard label are moved to the label area.

3. The HDR1 label is written.

4. The label area, character positions 5 through 80, is cleared to spaces.

5. The BEFORE BEGINNING FILE declarative is executed.

6. VALUE OF data-name items are moved to the label record.

7. The AFTER BEGINNING FILE declarative is executed.

8. The user label is written if the label identifier (character positions 1 through 3)
equals UHL.

Open Input or I-O

� If the LABEL RECORDS ARE STANDARD clause is present:

1. The HDR1 label record is read.

2. The BEFORE BEGINNING FILE declarative is executed.

3. The VALUE OF items are verified.

4. The AFTER BEGINNING FILE declarative is executed.

5. The EOF 1 label record is read.

6. The file is positioned at the beginning of the data blocks.

Sequential I-O

UP-8584 Rev. 1-A3-24

� If the LABEL RECORDS ARE data-name clause is present:

1. The HDR1 label is read. The VALUE OF items referencing the standard label are
verified.

2. If a UHL label is present following the HDR1 label, the following process occurs:

a. The BEFORE BEGINNING FILE declarative is executed.

b. The VALUE OF items referencing user label items are verified.

c. The AFTER BEGINNING FILE declarative is executed.

d. The UHL label is rewritten.

3. The EOF1 label record is read.

4. The file is repositioned at the beginning of the data blocks.

3.3.2.3. RECORDING MODE SDF Files

For RECORDING MODE IS SDF files, the beginning-of-file labels are processed by the
Processor Common Input/Output System (PClOS). No declaratives are executed for
these files.

3.3.3. The READ Statement

Format

READ RECORD [INTO] ;ATENDfile-name identifier imperative-statement

Description

For files designated as OPTIONAL in the FILE-CONTROL paragraph, the first execution
of a READ statement will cause the AT END imperative-statement to be executed if the
file is not assigned to the run.

For standard labeled tape files, the AT END is reached when a hardware EOF mark is
read from tape followed by the EOF label record.

For unlabeled tape files, the AT END is reached when a hardware EOF mark is read from
the last reel specified on the @ASG statement.

For LION, CFH, FORM02, and FORM03 tape files, the AT END is reached when an
end-of-file label block is read.

For SDF files, the AT END is reached when an end-of-file label record is read.

For FORM01 tape files. it is not possible to tell whether an EOF or EOR is intended
when two hardware marks are encountered. In this case, the AT END is reached when
the reel count is equal to the number of reels specified in the @ASG statement. The reel
count is checked against the number of reels specified on the @ASG statement. If they
are equal, EOF is taken.

Sequential I-O

UP-8584 Rev. 1-A 3-25

For mass storage files (except SDF), the AT END marker is reached when the current
address of the record is equal to the end-of-file address established when the file was
created, or if file limits were specified, the AT END is reached at the logical end of the
last segment of the file and an attempt is made to read that file.

When the INTO option is used, the next logical record is made available in both the data
area associated with the identifier and the input record area.

If the file is being processed in locate mode, the input record area is the location of the
logical record in the buffer area (see 3.1.2.1).

For files in move mode, the logical record is moved from the buffer area to the logical
record area. Any necessary data conversions are performed as part of the moving
operation (see 3.2.3). All mass storage files are in move mode.

When a file consists of more than one type of record, a READ delivers the next record
regardless of type; stated differently, all records of a given file share the main storage
area. Thus, if there is more than one 01 entry in a given FD, it is the programmer’s
responsibility to determine which record is present at any particular instant.

Tape Files

When an end-of-reel is reached on a labeled tape file (except LION, CFH, SDF, FORM01,
FORM02, and FORM03), the following label processing occurs:

� If the LABEL RECORDS ARE STANDARD clause is present:

1. The BEFORE ENDING REEL declarative is executed.

2. The VALUE OF items are verified.

3. The AFTER ENDING REEL declarative is executed.

4. A tape reel swap is performed.

5. The BEFORE BEGINNING REEL declarative is executed.

6. The AFTER BEGINNING REEL declarative is executed.

7. The tape is positioned beyond the hardware EOF mark and the first data block
is read.

For tape file sets using the 8-bit tape labeling system. system verification of the
HDR1 label takes place after step 6.

� If the LABEL RECORDS ARE data-name clause is present:

1. The EOF label is verified against the VALUE OF items referencing standard label
names.

2. For each UTL label following the EOF label the following occurs:

a. The BEFORE ENDING REEL declarative is executed.

b. The VALUE OF items referencing user label names are verified.

c. The AFTER ENDING REEL declarative is executed.

Sequential I-O

UP-8584 Rev. 1-A3-26

3. When the hardware EOF mark is reached following the label blocks, a tape reel
swap is performed.

4. For each UVL label record on the new reel, the following occurs:

a. The BEFORE BEGINNING REEL declarative is executed.

b. The VALUE OF items referencing user label names are verified.

c. The AFTER BEGINNING REEL declarative is executed.

5. When the HDR1 label is read. the tape is positioned beyond the hardware EOF
mark and the first data is read.

For tape file sets using the 8-bit tape labeling system, step 4 is not performed
although the BEFORE BEGINNING REEL and AFTER BEGINNING REEL
declaratives are each executed once. For 8-bit labeled tapes, system verification of
the label takes place in Step 5.

3.3.4. The REWRITE Statement

Format

REWRITE [FROM]

; INVALID KEY

record-name identifier

imperative-statement
Description

The REWRITE statement is used to replace a logical record on the file with a specified
record. It is only valid for a file opened for I-O.

The record specified must not be longer than the original record it is replacing.

The REWRITE statement, when executed, performs all of the functions of a WRITE
statement that follows a READ.

3.3.5. The USE Statement

Format 1

USE AFTER STANDARD ERROR PROCEDUREON

INPUT
OUTPUT
I-O

[]...file-name-1 ,file-name-2

Sequential I-O

UP-8584 Rev. 1-A 3-27

Format 2

USE BEFORE
AFTER

STANDARD BEGINNING
ENDING

REEL
FILE

LABEL PROCEDUREON

INPUT
OUTPUT
I-O

[]...file-name-1,file-name-2

Description

The USE statement specifies special procedures for input and output label and error
handling.

The USE statement, when present, must immediately follow a declarative section header
and be followed by a period followed by a space. The remainder of the declarative must
consist of one or more procedural paragraphs that define the procedure to be used.

The USE statement is not an executable statement; rather, it defines conditions calling
for the execution of its associated procedures.

If the key words BEGINNING or ENDING are omitted, the designated procedures are
executed for both beginning and ending labels.

If the key words FILE or REEL are omitted, the designated procedures are executed for
both conditions. FILE declaratives are only executed once for BEGINNING (if
specified) and once for ENDING (if specified) regardless of the number of reels on
which the file is contained. REEL declaratives are executed for the first and all
succeeding reels composing the file.

Declarative procedures are not executed for a file whose RECORDING MODE is LION,
CFH, SDF, FORM01, FORM02, or FORM03.

The designated procedures are executed by the COBOL file handler at the appropriate
time as follows:

� Format 1 is executed when an unrecoverable hardware error has occurred. Normal
Exec recovery techniques were performed. The object program will be abnormally
terminated after the declarative procedure has been executed.

� On tape files, Format 2 is executed on all OPEN and CLOSE statements and on
READ and WRITE statements causing a tape reel swap. On mass storage files,
Format 2 is executed on OPEN and CLOSE statements. The declarative is executed
in conjunction with a specific standard or user label.

Sequential I-O

UP-8584 Rev. 1-A3-28

3.3.5.1. Tape and Mass Storage Files

� Input or I-O file - LABEL RECORDS ARE STANDARD

1. Read label.

2. Execute BEFORE declaratives.

3. Verify label according to the VALUE OF clause.

4. Execute AFTER declaratives.

� Output file - LABEL RECORDS ARE STANDARD

1. Create skeleton label with default values.

2. Execute BEFORE declaratives.

3. Move data to label area according to VALUE OF clause.

4. Execute AFTER declaratives.

3.3.5.2. Tape Files

� Input File - LABEL RECORDS ARE data-name

1. Read a user label.

2. Execute BEFORE declarative.

3. Verify user label fields according to the VALUE OF clause.

4. Execute AFTER declarative.

5. Steps 1 through 4 are repeated until all user labels have been read.

� Output File - LABEL RECORDS ARE data-name

1. Move spaces to character positions 5 through 80 in the label record area.

2. Execute BEFORE declarative.

3. Move data to user label fields according to the VALUE OF clause.

4. Execute AFTER declarative.

5. Examine label identifier to determine the following:

a. If a proper label was created, write the label: move spaces to positions 5
through 80 of the label record area and repeat the process starting at step 2.

When the process has been repeated, if the label identifier remains
unchanged, no label is written, and label processing is complete.

b. If the label identifier is not appropriate to the condition (e.g., identifier set
to UTL1 on a beginning condition), no label is written and label processing
is complete.

Sequential I-O

UP-8584 Rev. 1-A 3-29

3.3.5.3. Mass Storage Files

� Input or I-O File - LABEL RECORDS ARE data-name

1. Read user label.

2. Execute BEFORE declaratives.

3. Verify label according to the VALUE OF clause.

4. Execute AFTER declaratives.

� Output File - LABEL RECORDS ARE data-name

1. Move spaces to label record character positions 5 through 80.

2. Execute BEFORE declarative.

3. Move data to user label fields according to the VALUE OF clause.

4. Execute AFTER declarative.

5. Examine label identifier to determine if a proper label was created, and if so,
write the label.

3.3.6. The WRITE Statement

Format

WRITE [FROM] INVALIDKEYrecord-name identifier-1 imperative-statement

3.3.6.1. Tape and Mass Storage Files

Execution of the WRITE statement releases a logical record to an output or an I-O file
and permits performance of an imperative-statement if the limits specified by the
FILE-LIMIT clause or the maximum address assigned to the file are exceeded.

An OPEN statement must be executed for a file prior to the execution of the first WRITE
statement for that file.

The logical record released by the execution of the WRITE statement is no longer
available unless the associated file is named in a SAME RECORD AREA clause. The
logical record is also available to the program as a record of other files appearing in the
same SAME RECORD AREA clause as the associated output file.

If the FROM option is specified, the data is moved from the area specified by identifier

to the output area according to the rules specified for the MOVE statement without the
CORRESPONDING option. After execution of the WRITE statement, the information in
identifier-1 is available, even though that in record-name is not.

The storage areas for record-name and identifier, respectively, must be separate areas.
Record-name must not represent a sort file record. The parameter record-name is the
name of a logical record in the File Section of the Data Division and may be qualified.

Sequential I-O

UP-8584 Rev. 1-A3-30

3.3.6.2. Mass Storage Files

When a sequential mass storage file is opened for I-O and the AT END condition has
been reached, the file may be extended by executing subsequent WRITE statements.

When the file is opened for I-O, all WRITE statements executed following a READ
execution assume the meaning of a REWRITE. When a WRITE is not preceded by a
READ, the MSCS provides positioning to the next logical record, which is then
overwritten. The next logical record in this case follows the last logical record accessed
by the object program, which is not necessarily the last record accessed by the cycle
executing the WRITE statement.

When a WRITE statement is overwriting an original record, the length of the updated
logical record can be no longer than the length of the original record.

3.3.6.3. Tape Files

When a WRITE statement causes the end of the reel to be reached on a labeled tape file
(except for LION, CFH. SDF. FORM01, FORM02. and FORM03), the following label
processing occurs:

� If the LABEL RECORDS ARE STANDARD clause is present:

1. A hardware EOF mark is written to tape.

2. An EOF1 label record is created with standard default values.

3. The BEFORE ENDING REEL declarative is executed.

4. The VALUE OF items are moved to the label record.

5. The AFTER ENDING REEL declarative is executed.

6. The EOF1 and EOF2 label records are written to tape followed by two hardware
EOF marks.

7. A tape reel swap is performed.

8. The BEFORE BEGINNING REEL declarative is executed.

9. The AFTER BEGINNING REEL declarative is executed.

10. The HDR1 label record is created with standard default values.

11. The VALUE OF items are moved to the label record.

12. The HDR1 label is written to tape followed by the HDR2 label followed by a
hardware EOF mark.

For tape file sets using the 8-bit tape labeling system, it is not possible to change the
values in the EOF1 label in step 4 or the HDR1 label in step 11. The system will use
values compatible with those used when the HDR1 label was written at the time the
file was opened.

Sequential I-O

UP-8584 Rev. 1-A 3-31

� If the LABEL RECORDS ARE data-name clause is present:

1. A hardware EOF mark is written to tape.

2. An EOF1 label record is created with the standard default values.

3. The VALUE OF items referencing the standard label names are moved to the
label record.

4. The EOF1 label record is written to tape, followed by the EOF2 label.

5. The label record, character positions 5 through 80, is cleared to spaces.

6. The BEFORE ENDING REEL declarative is executed.

7. The VALUE OF items referencing user label names are moved to the label
record.

8. The AFTER ENDING REEL declarative is executed.

9. The first three bytes of the label record are examined as follows:

a. If they contain the characters UTL, the label is written to tape and
processing is repeated starting at step 5.

b. If the first three characters of the label area do not contain UTL, or if the
first four characters remain unchanged after the reiterative process, then
ending REEL label processing is complete and processing continues at
step 10.

10. Two hardware EOF marks are written to tape, and a tape reel swap is
performed.

11. The label record, character positions 5 through 80, is cleared to spaces.

12. The BEFORE BEGINNING REEL declarative is executed.

13. The VALUE OF items referencing user label names are moved to the label
record.

14. The AFTER BEGINNING REEL declarative is executed.

15. The first three characters of the label record are examined as follows:

a. If they contain the characters UVL, the label is written to tape and
processing is repeated starting at step 11.

b. If they do not contain UVL, or if the first four characters remain unchanged
after the reiterative process, then beginning REEL label processing is
complete, and processing continues at step 16.

16. The HDR1 is created with standard default values.

17. The VALUE OF items referencing standard label names are moved to the label
record area.

18. The HDR1 label is written to tape followed by the HDR2 label, followed by a
hardware EOF mark.

Sequential I-O

UP-8584 Rev. 1-A3-32

For tape file sets using the 8-bit tape labeling system:

− Step 15 is not performed.

− It is not possible to change the values of the standard label items in the EOF1
label (step 3) or the HDR1 label (step 17). The system will use values
compatible with those used when the HDR1 label was written at the time the file
was opened.

Unlabeled tapes cause a hardware EOF mark to be written, and a tape reel swap is
performed.

On LION files, the end-of-reel label block is written to tape followed by two hardware
EOF marks. A tape reel swap is performed. A header label block (unless LABELS ARE
OMITTED) is written.

On CFH files, the end-of-reel label block is written followed by two hardware EOF
marks. A tape reel swap is performed. A header label block and a hardware EOF mark
are written.

On FORM01 files, two hardware EOF marks are written. A tape reel swap is performed.

On FORM02/FORM03 files, a hardware EOF mark is written then tie end-of-reel label
block followed by two hardware EOF marks. A tape reel swap is performed. A header
label block is written followed by a hardware EOF mark.

On SDF files, the end-of-reel labels are processed by the Processor Common
Input/Output System (PCIOS). No declaratives are executed for these files.

Sequential I-O

UP-8584 Rev. 1-A 3-33

3.4. 1968 Standard COBOL Tape Files

3.4.1. Unlabeled File Structure

Unlabeled tape files consist only of data blocks. The last data block on a tape reel is
followed by two hardware EOF marks.

Note: * represents hardware EOF mark

Sequential I-O

UP-8584 Rev. 1-A3-34

3.4.2. Labeled File Structure

American National Standard tape labels are defined in the American National Standard
documents X3.2/759, X3.2.5/128 and the revision of X3.2/513 dated July 18,1968.

Type
Identifier and

Number Created By Name
Required/
Optional

Beginning of VOL 1 System Tape Handler Volume Header Label Required
Volume

UVL1 to UVL9

UVLA to UVLZ3

User User Volume Header Label Optional2

End of Volume EOV1 System Tape Handler End-of-Volume Label Required

EOV2 System Tape Handler 2nd End-of-Volume Label Optional1

UTL1 to UTL9

UTLA to UTLZ3

User User End-of-Volume Label Optional

Beginning of File HDR1 System Tape Handler 1st File Header Label Required

HDR2 System Tape Handler 2nd File Header Label Optional1

UHL1 to UHL9

UHLA to UHLZ3

User User File Header Label Optional

End of File EOF1 System Tape Handler End-of-File Label Required

EOF2 System Tape Handler 2nd End-of-File Label Optional1

UTL1 to UTL9

UTLA to UTLZ3

User User End-of-File Label Optional

1 An HDR2, EOF2, and EOF2 label is always written to an output file. For 9-bit labeled tapes, these labels are

optional on an input file. For 8-bit labeled tapes, these labels are required on an input file.
2 Tape file sets using the 8-bit tape labeling system do not have UVL labels.
3 Tape file sets using the 8-bit tape labeling system must have a digit (1-9) in the fourth character position of

a user label identifier.

Sequential I-O

UP-8584 Rev. 1-A 3-35

3.4.2.1. Single-Reel Single-File Structure

Note: * represents hardware EOF mark.

Tape file sets using the 8-bit tape labeling system do not have UVL labels.

Sequential I-O

UP-8584 Rev. 1-A3-36

3.4.2.2. Multiple-Reel Single-File Structure

Note: * represents hardware EOF mark.

Tape file sets using the 8-bit tape labeling system do not have UVL labels.

Sequential I-O

UP-8584 Rev. 1-A 3-37

3.4.2.3. Multiple-File Single-Reel Structure

Note: * represents hardware EOF mark.

Tape file sets using the 8-bit tape labeling system do not have UVL labels.

Sequential I-O

UP-8584 Rev. 1-A3-38

3.4.2.4. Multiple-Reel Multiple-File Structure

Note: * represents hardware EOF mark.

Tape file sets using the 8-bit tape labeling system do not have UVL labels.

Sequential I-O

UP-8584 Rev. 1-A 3-39

3.4.3. Label Record Formats

All labels are 80 characters in length. Labels written with the 9-bit tape labeling system
are written in 9-bit ASCII. Labels written with the 8-bit tape labeling system are written
in 8-bit ASCII.

3.4.3.1. Volume Header Label (VOL1)

The VOL1 label exists as the first label block on every reel. It is read by the Exec to
verify that the proper reel has been mounted.

The COBOL program has no access to this label.

Character
Position

Length Standard Content Description

1-3 3 VOL Label identifier

4 1 1 Label number

5-10 6 Reel number Six alphanumeric characters identifying the
physical reel

11 1 Blank or nonblank Nonblank indicates restricted access, as the
tape is privately owned

12-37 26 Spaces Not used

38-51 14 Owner Identification Spaces

52-79 28 Spaces Not used

80 1 1 Indicates tape contains standard labels

Sequential I-O

UP-8584 Rev. 1-A3-40

3.4.3.2. First File Header Label (HDR1)

Character
Positions

Length Standard Default Values Description VALUE OF name

1-3 3 HDR Label identifier None

4 1 1 Label number None

5-21 17 External-file-name File identifier FILE-ID

22-27 6 Univac for 9-bit reel number from first
reel is set for 8-bit.

Set identifier SET-ID (9-bit only)

28-31 4 0001 File section
number

None

32-35 4 0001 File sequence
number

None

36-39 4 0001 Generation
number

None

40-41 2 00 Generation version
number

None

42-47 6 Date when file created Creation date in
Julian form
preceded by one
space

CREATION-DATE
(9-bit only)

48-53 6 Creation date plus period from ASG
statement

Purge date in
Julian form
preceded by one
space

PURGE-DATE

54 1 Space Accessibility FILE-ACCESS

55-60 6 000000 Block count None

61-73 13 File qualifier from ASG statement for
9-bit: “U1100-1” for 8-bit

File qualifier FILE-QUALIFIER
(9-bit only)

74-80 7 Spaces Unused None

As noted in the previous description, the COBOL program may set values into an HDR1
label of an output file by using the VALUE OF clause specifying the names listed in the
right-hand column. For tape file sets using the 8-bit tape labeling system, the fields
SET-ID, FILE-QUALIFIER, and CREATION-DATE cannot be set by the user.

Sequential I-O

UP-8584 Rev. 1-A 3-41

3.4.3.3. Second File Header Label (HDR2)

Character
Position

Length Standard
Default Values

Description

1-3 3 HDR Must be HDR

4 1 2 Must be 2

5 1 D Variable record format with the number of
words in the record specified in decimal

6-10 5 Block length Five digits specifying the maximum number of
characters per block

11-15 5 Record length Maximum record length including any count
fields

16-50 35 Reserved for
operating system

Reserved for operating systems use. Any
alphanumeric characters.

51-52 2 Buffer offset
(optional)

Two digits specifying the length in characters of
any additional field inserted before a data
block, for example, block length. This length is
included in the block length (characters 6-10).

53-80 28 Spaces Must be spaces

This label record is written on all output files following the HDR1 label. It may not be
modified by a COBOL program. It is included for information interchange purposes.

3.4.3.4. End-of-File Label (EOF1)

The EOF1 label has the same format as the HDR1 label. The standard default values are
the same, except for the block count field, which is set to the number of physical data
blocks since the previous HDR label group.

The VALUE OF clause causes the fields to be modified on output or verified on input in a
manner identical to that described for the HDR1. The Exec performs no verification of
this label.

For tape file sets using the 8-bit tape labeling system, fields in the end-of-file labels
cannot be modified from those of the header labels.

3.4.3.5. Second End-of-File Label (EOF2)

The EOF2 label has the same format as the HDR2 label, except for the label
identification. This label is written on all output tapes following the EOF1 label.

Sequential I-O

UP-8584 Rev. 1-A3-42

3.4.3.6. End-of-Volume Label (EOF1)

The EOF1 label has the same format as to the EOF1 label, except for the label
identification. This label is written on all output tapes which are nonfinal volumes of the
file.

3.4.3.7. Second End-of-Volume Label (EOF2)

The EOF2 label has the same format as the EOF2 label except for the label
identification. This label is written on all output tapes which are nonfinal volumes of the
file. It is written following the EOF1 label.

3.4.3.8. User Labels

In addition to the system standard labels, Standard COBOL 1968 tape files may
optionally include user labels.

In order to create user labels on an output file, the COBOL program must include the
LABELS ARE data-name clause. User labels are then created by the use of the VALUE
OF data-name clause, by the specification of one or more USE...LABEL PROCEDURE
declarative sections, or by both.

The VALUE OF processing is performed each time a user label may be created. No
distinction is made between references to data-name clauses in different label record
descriptions. The user must ensure that the VALUE OF items are meaningful at the time
a user label may be created.

A valid user label conforms to the following description:

Character
Position

Length Name Required Contents

1-3 3 Label identifier UVL for user beginning volume label (9-bit
only)

UHL for user beginning file label

UTL for user end-of-volume or end-of-file label

4 1 Label number 1 through 9 (or A through Z for 9-bit only) with
no two consecutive labels having positions
1-4 equal

5-80 76 As defined by user May be set to any ASCII number or character
string

Sequential I-O

UP-8584 Rev. 1-A 3-43

The following chart indicates the time at which it may be created or checked, and the
sequence of processing.

Label Identifier
Events Causing Label
Processing to Occur Sequence of Label Processing

UVL-User beginning
volume labels

OPEN

CLOSE REEL (after tape swap)

End of reel on READ or WRITE

1. BEFORE BEGINNING REEL declarative is executed.

2. VALUE OF processing.

3. AFTER BEGINNING REEL declarative is executed.

UHL-User file header
labels

OPEN 1. BEFORE BEGINNING FILE declarative is executed.

2. VALUE of processing.

3. AFTER BEGINNING FILE declarative is executed.

UTL-User
end-of-volume labels

End of reel on CLOSE file

CLOSE REEL on output file

End of reel on READ or WRITE

1. BEFORE ENDING REEL declarative is executed.

2. VALUE OF processing.

3. AFTER ENDING REEL declarative is executed.

UTL-User end-of-file
labels

CLOSE 1. BEFORE ENDING FILE declarative is executed.

2. VALUE OF processing.

3. AFTER ENDING FILE declarative is executed.

For tape file sets using the 8-bit tape labeling system, UVL labels do not exist, and the
label number (character position 4) of a user label must be a digit.

For output files, the user label is written after step 3 of the sequence of label processing
shown only if the label identifier is set correctly in the label record area. When a valid
label exists, it is written to tape and steps 1 through 3 are repeated. Additional user
labels can be created by adding 1 to the label number following the label identifier. If
the label identifier and label number remain unchanged after a reiteration, no label is
written and the label processing for that particular identifier is complete.

For input files, steps 1 through 3 are performed only if a label with that appropriate
identifier exists on tape. Steps 1 through 3 are performed for every label that is read
with the correct identifier.

Sequential I-O

UP-8584 Rev. 1-A3-44

3.4.4. Data Block Format

Data blocks are variable in length, with a record length word preceding each logical
record, and a 2-word block length at the beginning of a block. The length fields are
recorded in 9-bit ASCII code, representing the length in decimal word. In the case of
record length, the record length word is counted as part of the record length.

Sequential I-O

UP-8584 Rev. 1-A 3-45

3.5. CFH Files

3.5.1. Unlabeled File Structure

Note: Note: * represents hardware EOF mark.

Sequential I-O

UP-8584 Rev. 1-A3-46

3.5.2. Labeled File Structure

3.5.2.1. Single-Reel Single-File Structure

Note: * represents hardware EOF mark.

Sequential I-O

UP-8584 Rev. 1-A 3-47

3.5.2.2. Single-Reel Multiple-File Structure

Note: * represents hardware EOF mark.

Sequential I-O

UP-8584 Rev. 1-A3-48

3.5.2.3. Multiple-Reel Single-File Structure

Note: * represents hardware EOF mark.

Sequential I-O

UP-8584 Rev. 1-A 3-49

3.5.2.4. Multiple-Reel Multiple-File Structure

Note: * represents hardware EOF mark.

Sequential I-O

UP-8584 Rev. 1-A3-50

3.5.3. Label Record Formats

All CFH label blocks are 28 words in length and have the following format:

Note: Only words 0, 1, 2, and 3 are recognized and processed by ASCII COBOL. For

CFH files created by ASCII COBOL, field y is always set to 0. This prevents

Fieldata COBOL CFH from checking more than the first four words of the

label.

Sequential I-O

UP-8584 Rev. 1-A 3-51

3.5.4. Data Block Format

All CFH files have the same data formats. The first word of each contains a block record
count and block size. In addition, each record of the block has a single-word header
with the actual record size in words.

Sequential I-O

UP-8584 Rev. 1-A3-52

3.6. Compatible Files

3.6.1. Unlabeled File Structure

Unlabeled tape files consist only of data blocks. The last data block on a tape reel is
followed by two hardware EOF marks.

Note: * represents hardware EOF mark.

3.6.2. Labeled File Structure

The two types of labeled compatible file structures available are:

� FORM02 reads or writes files that contain label and trailer blocks with a hardware
mark recorded after the label block and surrounding the trailer blocks.

� FORM03 is identical to FORM02 except that the hardware mark is omitted after the
label block.

Sequential I-O

UP-8584 Rev. 1-A 3-53

3.6.2.1. Single-Reel File Structure

Note: * represents hardware EOF mark.

Sequential I-O

UP-8584 Rev. 1-A3-54

3.6.2.2. Multiple-Reel File Structure

Note: * represents hardware EOF mark.

3.6.3. Label Record Formats

Label blocks are considered 80 characters in length, but 84 characters (14 words) are
actually written to tape. The last four characters of word 14 are 046 characters.

When the LABEL RECORDS ARE STANDARD clause is used, the first four characters of
the space-filled label are one of the following:

� 1HDR for header labels

� 1EOR for end-of-reel labels

� 1EOF for end-of-file labels

These are written on output and checked on input.

3.6.4. Data Block Format

Compatible files have two formats. One is used for fixed-length records and one is used
for variable length records.

Sequential I-O

UP-8584 Rev. 1-A 3-55

3.6.4.1. Fixed-Length Format

A file is considered to contain fixed-length records when all the records described for
the file are exactly the same length (characters).

Each block contains a fixed number of records. Each record immediately follows the
previous record in the block.

The last block is padded with records of all 9s when necessary to fill the block. These
records are given to the user as valid records on input.

Fixed word length blocks are written. The last word of each block may contain one to
five Fieldata 046 characters when the actual block size is not a multiple of 6 characters.

3.6.4.2. Variable-Length Format

A file is considered to contain variable-length records when there is more than one
record described for a file, and they are not all the same length (characters).

Each variable-length record must have a Fieldata 077 character as the last character of
the record. This 077 must be inserted in the record descriptions by the user. Each
record immediately follows the previous record in the block. Records are placed in the
block until the block cannot contain the largest record described in the Fieldata COBOL
entry. The record is written in the next block, and the present block is padded with
Fieldata 046 characters.

The last block is padded with records of all 9s until one does not fit; then the block is
padded with 046 characters. The all 9s records which contain a 077 code as the last
characters are given to the user as valid records on input.

As for fixed-length records, word length blocks are written with the last word of the
block padded with 046 characters if the actual block is not an multiple of 6 characters.

3.7. LION Files
A LION tape has a header label block unless the LABELS ARE OMITTED clause is
specified. End-of-reel or end-of-file label blocks are always present following the last
data block.

Sequential I-O

UP-8584 Rev. 1-A3-56

3.7.1. Unlabeled File Structure

On LION tapes, the last data block is followed by an end-of-reel or end-of-file label block,
(in other words, LABEL RECORDS ARE OMITTED specified for a LION tape, applies
only to the labels at the beginning of the tape). Two hardware EOF marks follow the
label block.

3.7.2. Labeled File Structure

3.7.2.1. Single-Reel File Structure

Note: * represents hardware EOF mark

Sequential I-O

UP-8584 Rev. 1-A 3-57

3.7.2.2. Multiple-Reel File Structure

Note: * represents hardware EOF mark.

3.7.3. Label Record Formats

LION header label blocks are 17 words in length. End-of-reel and end-of-file label blocks
are 14 words in length. A sentinel in the first word of the block identifies it as a label
block. The first six bits of the second word identify the type of label.

3.7.3.1. Header Label Block

Word Position Description Content

0 Sentinel 7475747574758

1 S1 Label identifier 608

1 S2-S6 Block count Zeros

2 H1 Maximum data block size Computed from maximum record length
plus BLOCK CONTAINS clause

2 H2 Fixed record length Zero if file contains multiple record
descriptions of different lengths

3 H1 Number of label words 7

3 H2 Number of free words Zero

continued

Sequential I-O

UP-8584 Rev. 1-A3-58

Word ContentDescriptionPosition

4 Date of recording Spaces

5 H1 Version number 4

5 H2 Reel sequence number Reel sequence number starting with 1

6-10 Unused Spaces

11 H1 Version number 4

11 H2 Unused Zero

12-14 Unused Zero

15 S1 Label identifier 608

15 S2-S6 Unused Zero

16 Sentinel 7475747574758

3.7.3.2. End-of-Reel/File Label Block

Word Position Description Content

0 Sentinel 7475747574758

1 S1 Label identifier 00 = end of file
208 = end of reel

1 52-56 Block count Number of physical blocks on reel

2 Same as word 2 in header label

3-4 Unused Zero

5 H1 Version number 4

5 H2 Unused Zero

6-7 Unused Zero

8 H1 Version number 4

8 H2 Unused Zero

9 File record count Number of records written to file

continued

Sequential I-O

UP-8584 Rev. 1-A 3-59

Word ContentDescriptionPosition

10 Checksum Checksum for file

11-13 Same as words 2, 1, and 0

3.7.4. Data Block Formats

LION files have two formats. One is used for fixed-length records and one is used for
variable-length records.

3.7.4.1. Fixed-Length Format

The first word of the block contains the number of logical records in the block in the left
half word and the number of words in the block in the right half word.

The last two words in the block contain the block checksum followed by a word
repeating the first word of the block.

The minimum block size which can be written is 14 words. If a block is less than 14
words, padding words are used to pad the block to the minimum size. The right half of
word 12 will contain the number of padding words.

Sequential I-O

UP-8584 Rev. 1-A3-60

Sequential I-O

UP-8584 Rev. 1-A 3-61

3.7.4.2. Variable-Length Format

The first word of the block contains the number of logical records in the block in the
left half word and the number of words in the block in the right half word. One word is
inserted preceding each logical record and following the last logical record. The left
half word contains the length of the preceding record, and the right half word contains
the length of the following record. The last two words of the block are identical to the
fixed-length format, including the disregarded words condition.

Sequential I-O

UP-8584 Rev. 1-A3-62

3.8. 1968 Standard COBOL Sequential Mass
Storage Files

3.8.1. Unlabeled File Structure

3.8.2. Labeled File Structure

For mass storage files, ASCII COBOL processes a subset of the tape labels which are
defined in the American National Standard documents X3.2/759,X3.2.5/128, and the
revision of X3.2/513, dated July 18, 1968. These labels are 28 words in length, and
occupy sectors 0 through 3 of the file. The space for system labels (HDR1/EOF1) and
user labels (UHL1/UTL1) is always allocated in the file, even if LABEL RECORDS ARE
OMITTED is specified.

Sequential I-O

UP-8584 Rev. 1-A 3-63

The following table gives the types of labels, their names, their identifiers, and their
numbers. The table also shows which labels are required and which are permitted as
options.

Type
Identifier and

Number Created By Name
Required/
Optional

Beginning HDR1 System File Handler File Header Label Required
of File

UHL1 User User File Header Label Optional

End of File EOF1 System File Handler End-of-File Label Required

UTL1 User User End-of-File Label Optional

Note: When user label records are present, they always follow the system label of the

same type.

3.8.3. Label Record Formats

3.8.3.1. File Header Label (HDR1)

Character
Positions Length

Standard
Default Values Description VALUE OF name

1-3 3 HDR Label identifier None

4 1 1 Label number None

5-21 17 External-file-name File identifier FILE-ID

22-27 6 First reel number Set identifier SET-ID

28-31 4 0001 File section number None

32-35 4 0001 File sequence number None

36-39 4 0001 Generation number None

40-41 2 00 Generation version
number

None

42-47 6 Date when file was
created

Creation date in Julian
form preceded by one
space

CREATION-DATE

continued

Sequential I-O

UP-8584 Rev. 1-A3-64

Character
Positions VALUE OF nameDescription

Standard
Default ValuesLength

48-53 6 Creation date plus
period from ASG
statement

Purge date in Julian form
preceded by one space

PURGE-DATE

54 1 Space Accessibility FILE-ACCESS

55-60 6 000000 Block count None

61-73 13 File qualifier from
ASG statement

File qualifier FILE-QUALIFIER

74-80 7 Spaces Unused None

81-84 4 Mass-storage
end-of-file address

Unused None

3.8.3.2. End-of-File Label (EOF1)

The EOF1 label has the same format is the HDR1 label. The standard default values are
the same, except for the “block count field. which is set to the number of physical data
blocks contained in the file.

The EOF1 label block occupies all 28 words of sector 2 on mass storage. Words 21
through 27 (in other words, character positions 85-96) are used as needed for file
control information. Current usage is as follows:

21 FASTRAND end-of-file address (sector address whole word FC$FEA)

22 Not used = zero

23 Creation time information

H1 maximum block size in words (FC$BLK)

S6 file type (FC$TYP)

24 Label flag

S6 (FC$LBL)

25 Not used = zero

26 Blocking information

H1 blocking factor (FC$BF)

S4 FC$BCC = zero if blocking factor specifies records

Sequential I-O

UP-8584 Rev. 1-A 3-65

S4 FC$BCC = 1 if blocking factor specifies characters

27 Not used = zero

The VALUE OF clause causes the fields to be modified on output or verified on input
exactly is for the HDR1 description.

3.8.3.3. User Labels

In addition to the system standard labels, mass storage files may optionally include two
user labels: one UHL1 and one UTL1.

In order to create user labels on an output file, the COBOL program must include the
LABELS ARE data-name clause. User labels are then created by the use of the VALUE
OF data-name clause, by the specification of one or more USER LABEL PROCEDURE
declarative sections, or both.

The VALUE OF processing is performed each time a user label may be created. No
distinction is made between references to data-name clauses in different label record
descriptions. It is the user’s responsibility to ensure that the VALUE OF items are
meaningful at the time a user label may be created.

A valid user label conforms to the following description:

Character
Position

Length Name Required Contents

1-3 3 Label identifier UHL for user beginning file label.

UTL for user end-of-file label

4 1 Label number 1

5-80 76 As defined by user May be set to any ASCII number or character
string

Sequential I-O

UP-8584 Rev. 1-A3-66

The following chart indicates the time at which it may be created or checked, and the
sequence of processing.

Label Identifier Events Causing Label
Processing to Occur

Sequence of Label Processing

UHL-User file header
labels

OPEN 1. BEFORE BEGINNING FILE declarative
is executed.

2. VALUE of processing.

3. AFTER BEGINNING FILE declarative is
executed.

UTL-User end-of-file
labels

CLOSE 1. BEFORE ENDING FILE declarative is
executed.

2. VALUE OF processing.

3. AFTER ENDING FILE declarative is
executed.

For output and input/output files, the user label is written only if the label identifier is
set correctly in the label record area. When a valid label exists, it is written.

For input and input/output files, label processing is performed only if a label with that
appropriate identifier exists.

3.8.4. Data Block Format

Sequential I-O

UP-8584 Rev. 1-A 3-67

The data blocks start at sector 4 on all mass storage files. The first word of the block
contains a binary number showing the total length of the block in words.

The second word of the block and a word preceding each logical record contain a binary
number showing the original length (in words) of the logical record in H1 of this word
and the current length (in words) of the logical record in H2.

3.9. SDF Mass Storage and Tape Files
For a description of the file structure, label record format, and data block format for
RECORDING MODE IS SDF files, see the OS 2200 Processor Common Input/Output
System (PCIOS) Administration and Programming Reference Manual, 7831 0588 (current
version).

Device-Independent Files

The objective of a device-independent file is to give the user the flexibility of choosing
the device on which the file resides (MASS-STORAGE or UNISERVO) by changing the
@ASG statement in the run stream but without changing the source program,
recompiling, and recollecting. Because of the somewhat opposing hardware
characteristics of these two devices, there is a need to impose some limitations on the
ORGANIZATION of files and their attributes. It is obvious that various file access
techniques cannot be provided on both device types. Therefore, the ONLY type of file
that can be accepted by both mass storage and tape is an ORGANIZATION IS
SEQUENTIAL file.

Device independence is a characteristic of a file and an extension of the I-O facility in
the ASCII COBOL language. Therefore, it is presented here as a file type with its own
attributes and not as a subset of either tape or sequential mass storage.

It does not, however, provide for the total transportability of a sequential file from tape
to mass storage or vice versa through some readily available utility such as the FURPUR
C COPY statement.

When a file has an ASSIGN TO SEQUENTIAL-FILE clause in the FILE-CONTROL
paragraph, it becomes a device-independent file. The type of I-O to perform becomes a
run-time decision.

UP-8584 Rev. 1-A 4-1

Section 4
Direct I-O

4.1. General
A file with Direct Organization has all of the attributes of a mass storage file with
Sequential Organization, with the additional ability to access the file randomly.

Random access is possible on a Direct file, because each logical record is assigned mass
storage equal to the size of the largest record in the file.

The ACTUAL KEY for a Direct file represents the relative number of the logical record
within the file. The Mass Storage Control System (MSCS), (see the OS 1100 ASCII
COBOL Programming Reference Manual, UP-8582, (current version)) can determine the
address of a specific logical record by multiplying the record size by the contents of the
ACTUAL KEY. Therefore, it is not necessary to read or write the file by sequential
progression from the beginning to the end.

It is not necessary, however, to always access a Direct file randomly. The MSCS allows a
Direct file to be accessed sequentially. A Direct file, when sequentially accessed, is
treated by the MSCS as a mass storage file with sequential organization; however,
because the logical records are not grouped into physical blocks on mass storage, each
READ, WRITE, etc. causes an I-O access. An advantage in organizing a file on mass
storage as Direct is the use of the START statement, which allows the COBOL program
to instruct the MSCS to position the file backward or forward.

4.2. Environment Division

4.2.1. The FILE-CONTROL Paragraph

4.2.1.1. The ACTUAL KEY Clause

Format

[ACTUAL KEY IS]data-name-1

Description

When ACCESS IS SEQUENTIAL, this clause is only required if the START statement is
to be executed for the file. If the ACTUAL KEY clause is specified, the contents are
updated by the MSCS following each READ statement execution.

When ACCESS IS RANDOM, the ACTUAL KEY clause is required.

Direct I-O

UP-8584 Rev. 1-A4-2

The parameter data-name-1 may be defined as any numeric data item. The contents of
data-name-1 are moved and converted to a separate 9(10) COMP item for use by the
MSCS. The contents of data-name-1 must not cause an overflow when the conversion is
performed.

The actual key is a logical record number which represents the position of the logical
record within the file.

4.2.1.2. The ASSIGN Clause

Format

ASSIGN TO []...implementor-name-1 implementor-name-2,

Description

Implementor-name-1 may be one of the following:

MASS-STORAGE
MASS-STORAGE-28
MASS-STORAGE-56
MASS-STORAGE-112

In the form MASS-STORAGE-nnn, the integer value nnn refers to the prepping factor of
the mass storage file. These alternatives are available to allow blocking of records to be
sensitive to different physical record sizes on disk devices. The block size will be
calculated according to the BLOCK CONTAINS clause and then rounded up to the next
multiple of the specified physical record size. With the implementor-name

MASS-STORAGE, a default value of 28 words is used in rounding up block size (unless
the user changes FC$PREP to 56 or 112, then 56 or 112 is used).

If the parameter implementor-name-2 is specified, it is a 1- to 12-character name used to
link the COBOL file to Exec file control and should appear in an @ASG or @USE
statement in the run stream for executing the object program.

When the parameter implementor-name-2 is not specified, the first 12 characters of the
file-name are used to link the COBOL file to the Exec file control.

All recursions of implementor-name-1, implementor-name-2 are for documentation
only.

Direct I-O

UP-8584 Rev. 1-A 4-3

4.2.1.3. The FILE-LIMITS Clause

Format

’

, ...

FILE-LIMIT IS
FILE-LIMITS ARE

THRU
THROUGH

THRU
THROUGH

data-name-1
literal-1

data-name-2
literal-2

data-name-3
literal-3

data-name-4
literal-4

Description

The FILE-LIMITS clause specifies that logical records are retrieved or placed in the file
within these limits. Each pair of operands associated with the keyword THRU
represents a logical segment of the file. The logical beginning of the file is that address
represented by the first operand of the first or only pair of the FILE-LIMITS clause. The
logical end of the file is that address represented by the last operand of the pair of the
FILE-LIMITS clause.

The parameters data-name-1, literal-1, etc., represent the relative number of a record
within the file.

When a file is sequentially accessed, the MSCS obtains or places each logical record by
progression from one file limit segment to another.

When a file is randomly accessed, the INVALID KEY clause is executed on any statement
when the contents of the ACTUAL KEY are not within the file limits.

The FILE-LIMITS clause may not be specified for RECORDING MODE SDF files.

4.2.1.4. The PROCESSING MODE Clause

Function

The PROCESSING MODE clause specifies the order in which logical records are
processed by the COBOL program.

Format

[,PROCESSING MODE IS SEQUENTIAL]

Description

The PROCESSING MODE clause specifies the order in which logical records are
processed by the COBOL program.

When PROCESSING MODE IS SEQUENTIAL is specified, the logical records are
normally processed in the order in which they are accessed. In this case, only one area
is allocated to contain a logical record. If the COBOL program has reference to such a
file in a USE FOR RANDOM PROCESSING declarative section, appropriate lock
techniques must be used by the programmer to ensure the integrity of the logical record

Direct I-O

UP-8584 Rev. 1-A4-4

if simultaneous accesses to it are possible. If this clause is absent, SEQUENTIAL
PROCESSING is assumed.

4.2.1.5. The RESERVE Clause

Format

,RESERVE
NO

ALTERNATE AREA
AREAS

integer-2

Description

The RESERVE clause is used to specify the number of buffer storage areas to be used in
processing the file.

For sequentially accessed and synchronously processed files; in other words, those for
which PROCESSING MODE IS SEQUENTIAL (see 4.2.1.4), a maximum of two buffer
areas is allocated, regardless of the number specified by integer-2. For sequential
INPUT-OUTPUT (I-O) files that are being randomly processed (in other words, contain
the PROCESSING MODE IS RANDOM clause; see the OS 1100 ASCII COBOL
Programming Reference Manual, UP-8582, (current version)), integer-2 buffer areas are
allocated. If the RESERVE clause is not specified, two buffer areas are allocated. If NO
is specified, only one buffer area is allocated.

When ACCESS MODE IS RANDOM, the RESERVE clause is ignored since records are
read and written directly into arid out of the logical record area.

Buffer areas are not compiled as part of the object program. Instead, during execution,
the object program is dynamically extended to allow for the buffer areas when the file is
opened. The buffer areas are released when the file is closed.

The RESERVE clause may not be specified for RECORDING MODE IS SDF files.

4.2.2. The I-O-CONTROL Paragraph

Function

The I-O-CONTROL paragraph provides for the protection of record areas.

Format

I-O-CONTROL.

[; APPLY INTERLOCK ON [,]...]

[; APPLY PROTECT ON [FOR RECORDS]

[, [FOR RECORDS]]...]

file-name-1 file-name-2

file-name-3 integer-1

file-name-4 integer-2
Syntax Rules

1. The I-O-CONTROL paragraph is optional.

Direct I-O

UP-8584 Rev. 1-A 4-5

2. The APPLY INTERLOCK clause and the APPLY PROTECT clause must not specify
the same file-name.

3. The values of integer-1, integer-2... must be less than or equal to the value of the
integer specified in the PROCESSING MODE clause. See the OS 1100 ASCII COBOL
Programming Reference Manual, UP-8582, (current version).

General Rules

1. The APPLY INTERLOCK clause and the APPLY PROTECT clause may be specified
only for files which meet the following criteria:

a. Opened in the I-O mode.

b. Direct file in random or dynamic access mode.

c. The File-Control paragraph must contain the PROCESSING IS RANDOM clause.

d. The File Description does not include the RECORDING MODE IS SDF clause.

2. Whenever a keyed record is read from a file with the APPLY INTERLOCK clause,
that record is “locked out” until:

a. A record is read from that file;

b. A record is rewritten to that file;

c. The record is freed; or

d. The controlling random processing cycle is complete.

Any other program or cycle within the same COBOL run unit attempting to read a
“locked out” record will be suspended until the lock is removed.

3. For a file with the APPLY INTERLOCK clause, the number of records concurrently
locked for the file is equal to the number of concurrently active cycles accessing the
file.

4. The values integer-1, integer-2... of the APPLY PROTECT clause specify the
maximum number of records to be locked out concurrently. The number of
concurrently locked records may be less than the number of active cycles accessing
the file.

4.3. Data Division

4.3.1. The BLOCK CONTAINS Clause

Format

;BLOCK CONTAINS [TO]
RECORDS
CHARACTERSinteger-1 integer-2

Description

For RECORDING MODE IS SDF files, this clause is ignored for ORGANIZATION
DIRECT. The physical block size is calculated as follows:

Direct I-O

UP-8584 Rev. 1-A4-6

BS = (MRL/2047)+MRL+1+222

where:

MRL Maximum Record Length

BS Block Size rounded up to the next higher integer.

4.3.2. The LABEL RECORDS Clause

Format

; LABEL RECORD
RECORDS

STANDARD
OMITTEDIS

ARE [,]...data-name-1 data-name-2
Description

Label records are located on the first four sectors of mass storage allocated to the file.
This clause permits the identification of these label records. The LABEL RECORDS
clause must appear for each file description.

If the user desires only the system standard label records, then the STANDARD phrase
may be used. The OMITTED phrase specifies that the COBOL program does not require
labels for the file. The file handler will generate labels for an output file with system
default values.

The parameter data-name-1 is the name of a label record which must be the subject of a
Record Description entry associated with the file. The data-name must not appear in
the DATA RECORDS clause of the File Description. When user label records are
specified (data-name-1, data-name-2 ...), the user may define fields in the description of
data-name-1 (up to 80 characters) and have values placed in them (OUTPUT) and
checked for (INPUT and I-O) by using the VALUE clause. All fields described in label
records must have display usage. Such fields may not be referred to outside of the USE
for LABEL declarative sections in the Procedure Division.

The specification of user labels indicates the presence of these labels in addition to the
system standard labels.

The RECORDING MODE IS SDF files have their own labeling conventions which are
independent of conventional COBOL labels. Hence, the LABEL RECORDS clause is
ignored for these files.

For files without the RECORDING MODE IS SDF clause, the actual block size will be
determined by the size of the largest record plus control information rounded to the next
higher multiple of the prep factor specification.

Direct I-O

UP-8584 Rev. 1-A 4-7

4.3.3. The RECORDING MODE Clause

Format

; RECORDINGMODE IS

BLANK
COMPACT
INTERNAL
SIGN
SDF

SIGN[]

Description

The RECORDING MODE clause specifies, for mass storage files, the format of the
logical records on mass storage, which may be different from the format in main storage.
Any appropriate data conversions are performed as data records are transferred
between main storage and mass storage.

When RECORDING MODE IS INTERNAL or SDF is specified, it means that all records
are read or written exactly as they appear in main storage with no conversion taking
place. If a RECORDING MODE clause is not present, INTERNAL is assumed.

If a RECORDING MODE other than INTERNAL or SDF is specified and the file contains
multiple data record descriptions. then a record selector field within each record
description is required. See the OS 1100 ASCII COBOL Programming Reference Manual,
UP-8582, (current version) for a description of record selector fields.

When the record is read or written, the selector is tested to determine which record
conversion must be performed.

4.3.3.1. The RECORDING MODE IS BLANK Clause

When the RECORDING MODE IS BLANK clause is stated, leading blanks in numeric
DISPLAY or DISPLAY-1 fields are converted to leading zeroes as the records are read
from mass storage.

4.3.3.2. The RECORDING MODE IS BLANK SIGN Clause

The RECORDING MODE IS BLANK SIGN clause means that the conversions for both
RECORDING MODE IS BLANK and RECORDING MODE IS SIGN are to be performed
on the file.

4.3.3.3. The RECORDING MODE IS COMPACT Clause

The RECORDING MODE IS COMPACT clause means that the records on the file contain
variable length arrays. Each record on mass storage is compressed and is automatically
converted to or from expanded form in main storage. The DEPENDING option of the
OCCURS clause is used whenever a variable number of occurrences of a dimensioned
item is desired. If a DEPENDING option is used within a record description of a file

Direct I-O

UP-8584 Rev. 1-A4-8

whose RECORDING MODE IS COMPACT, the value of a data item is used to specify the
conversion required such that unused occurrences do not appear in the external media.

If a RECORDING MODE IS COMPACT file specifies the APPLY EXDEF clause and the
file contains a forward referenced OCCURS DEPENDING ON data item, the APPLY
EXDEF clause can only be used in the main program.

4.3.3.4. The RECORDING MODE IS SDF Clause

The RECORDING MODE IS SDF clause specifies that the file is in the System Data
Format (SDF) on the external media. The files are processed by the Processor Common
Input/Output System (PCIOS).

For Direct Organization files assigned to MASS-STORAGE, this file format is identical to
the file format used for Relative Organization files assigned to DISC. See the OS 1100
ASCII COBOL Programming Reference Manual, UP-8582, (current version).

4.3.3.5. The RECORDING MODE IS SIGN Clause

The RECORDING MODE IS SIGN clause indicates that every signed numeric DISPLAY
or DISPLAY-1 data item is given an overpunched sign on the low order digit as it is read
into main storage. On mass storage, the sign is carried as on explicit character
preceding the high order digit of the field.

4.3.4. The VALUE OF Clause

Format

; VALUE OF

FILE-ID
SET-ID
CREATION-DATE
PURGE-DATE
FILE-ACCESS
FILE-QUALIFIER

IS ...

data-name-1

data-name-2
literal-1

Description

The VALUE OF clause specifies the value of an item in a label record. This clause must
not be present for a file when LABEL RECORDS ARE OMITTED is specified or for
RECORDING MODE IS SDF files.

The following names are names of fields in the system standard labels and have the
implied definition of:

Direct I-O

UP-8584 Rev. 1-A 4-9

Field Name Implied Definition

02 FILE-ID PIC X(17)

02 SET-ID PIC X(6)

02 CREATION-DATE PIC 9(6)

02 PURGE-DATE PIC 9(6)

02 FILE-ACCESS PIC X(1)

02 FILE-QUALIFIER PIC X(12)

In the absence of any or all of these names in the VALUE OF clause when a file is opened
for output, the following values will be assumed:

FILE-ID

will be set to the 12-character external file name.

SET-ID

will be set to UNIVAC.

CREATION-DATE

will be set to the current date.

PURGE-DATE

will be set to the current date plus the expiration period specified on the @ASG
statement or to operating system default if no expiration period is specified.

FILE-ACCESS

will be set to a space indicating unlimited access to the file.

FILE-QUALIFIER

will be set to the file qualifier.

In addition to the preceding system standard label names, the VALUE OF data-name-1

IS data-name-2 form may be used provided LABEL RECORDS ARE data-name is also
specified. In this case, data-name-1, etc. must be defined in the record description for a
label record.

The contents of data-name-2 or literal-1 will be moved to the label field on output or
checked against the label field on input; data-name-2 must be described as USAGE
DISPLAY (ASCII).

When user label records are specified, the VALUE OF processing takes place in two
steps:

Direct I-O

UP-8584 Rev. 1-A4-10

1. When the system standard label records are being read or written, the VALUE OF
standard label names are checked or moved, respectively.

2. When user label records are being read or written, the VALUE OF data-name

clauses are checked or moved, respectively.

4.3.4.1. The VALUE OF CREATION-DATE Clause

The contents of the CREATION-DATE field are set to the current date at the time the file
is opened for output. The VALUE OF CREATION-DATE clause modifies the contents of
the field to the value specified. The value field is written in the COBOL program in the
form MMDDYY and is converted to Julian form when the HDR1 label is created. At this
time, the contents of the month, day, and year values are verified for a legal range of
numbers.

4.3.4.2. The VALUE OF data-name Clause

In the VALUE OF data-name addition to the system standard labels, mass storage files
may optionally include two user labels: one UHL1 and one UTL1.

In order to create user labels on an output file, the COBOL program must include the
LABELS ARE data-name clause. User labels are then created by the use of the VALUE
OF data-name clause, by the specification of one or more USER LABEL PROCEDURE
declarative sections, or by both.

The VALUE OF processing is performed each time a user label may be created. No
distinction is made between references to data-name clauses in different label record
descriptions. It is the user’s responsibility to ensure that the VALUE OF items are
meaningful at the time a user label may be created.

The following table indicates the time at which a user label may be created (or
processed on input) and the sequence of processing.

Label Identifier
Events Causing Label
Processing to Occur Sequence of Label Processing

UHL-User file
header labels

OPEN 1. BEFORE BEGINNING FILE declarative is
executed.

2. VALUE of processing.

3. AFTER BEGINNING FILE declarative is
executed.

UTL-User
end-of-file labels

CLOSE 1. BEFORE ENDING FILE declarative is
executed.

2. VALUE OF processing.

3. AFTER ENDING FILE declarative is executed.

Direct I-O

UP-8584 Rev. 1-A 4-11

For output files, the user label is written only if the label identifier is set correctly in the
label record area. When a valid label exists, it is written.

For input files, label processing is performed only if a label with the appropriate
identifier exists.

4.3.4.3. The VALUE OF FILE-ACCESS Clause

One space is moved to the FILE-ACCESS field when the HDR1 is created. The VALUE
OF FILE-ACCESS clause may modify the contents of the field. A space represents
unlimited access to the file.

4.3.4.4. The VALUE OF FILE-ID Clause

If specified by the VALUE OF FILE-ID clause, the file identifier is checked by the MSCS
on files opened for input or I-O and moved by the file handler on output files.

When creating a file, the external file name is moved to the skeleton label. The VALUE
OF FILE-ID clause may be used to modify that file name.

4.3.4.5. The VALUE OF FILE-QUALIFIER Clause

The contents of the FILE-QUALIFIER field are set originally to the qualifier specified in
the @ASG statement, or the qualifier specified in the currently active @QUAL statement,
or, by default, to the project field in the @RUN statement. The VALUE OF
FILE-QUALIFIER clause modifies the contents of the field to the value specified.

4.3.4.6. The VALUE OF PURGE-DATE Clause

The contents of the PURGE-DATE field are set to the current date at the time the file is
opened for output plus the number of days to expire specified in the @ASG statement.
The VALUE OF PURGE-DATE clause modifies the contents of the field to the value
specified. The rules for the value for PURGE-DATE ore the same as for
CREATION-DATE.

4.3.4.7. The VALUE OF SET-ID Clause

The COBOL program may set the contents of the SET-ID field without restriction.

Direct I-O

UP-8584 Rev. 1-A4-12

4.4. Procedure Division

4.4.1. The CLOSE Statement

Format

CLOSE [WITHLOCK]

[[WITH LOCK]]...

file-name-1

,file-name-2
Description

The CLOSE statement terminates the processing of one or more input or one or more
output files and provides optional locking. Each file-name refers to an FD description in
the Data Division. An OPEN statement must be executed prior to the CLOSE statement.

The CLOSE statement applies to the entire file rather than to individual units, initiates
the final closing conventions for the file, and releases the data area. A file may be closed
once, but not more than once, for each time the file is opened.

For an output file, the final closing conventions such as block control, etc., for the file
are performed.

If the LOCK phrase is specified, the file can never be reopened in that run unit.

If the file has been specified as OPTIONAL and is not present, the standard end-of-file
processing is bypassed.

A CLOSE file-name-1 should be executed for each file that was opened.

For labeled mass storage files (except SDF), a CLOSE of the file causes the following
label processing to occur:

� Input or I-O file, LABEL RECORDS ARE STANDARD

1. The EOF1 label is read.

2. The BEFORE ENDING FILE declarative is executed.

3. The VALUE OF items are verified against the EOF1 label.

4. The AFTER ENDING FILE declarative is executed.

5. For an I-O file, the EOF1 label record is rewritten.

� Input or I-O file, LABEL RECORDS ARE data-name

1. The EOF1 label record is read and verified against the VALUE OF items
referencing standard label names.

2. The EOF1 label record is rewritten.

3. If a UTL label is present, it is read from the mass storage file and the following
occurs:

a. The BEFORE ENDING FILE declarative is executed.

Direct I-O

UP-8584 Rev. 1-A 4-13

b. The VALUE OF items referencing user label names are verified.

c. The AFTER ENDING FILE declarative is executed.

� Output file, LABEL RECORDS ARE STANDARD

1. An EOF1 label record is created with standard default values.

2. The BEFORE ENDING FILE declarative is executed.

3. The VALUE OF items are moved to the label record.

4. The AFTER ENDING FILE declarative is executed.

5. The EOF1 label record is written.

� Output file, LABEL RECORDS ARE data-name

1. An EOF1 label record is created with the standard default values.

2. The VALUE OF items referencing standard label names are moved to the label
record.

3. The EOF1 label record is written.

4. The label record, character positions 5 through 80, is cleared to spaces.

5. The BEFORE ENDING FILE declarative is executed.

6. The VALUE OF items referencing user label names are moved to the label
record.

7. The AFTER ENDING FILE declarative is executed.

8. The first three characters of the label record are examined as follows:

a. If they contain the characters UTL, the label is written.

b. If they do not contain UTL, the label record is not written.

For RECORDING MODE IS SDF files, the end-of-file labels are processed by the
Processor Common Input/Output System (PCIOS). No declaratives are executed for
these files.

4.4.2. The FREE Statement

Function

The FREE statement releases a record for access by other activities.

Format

FREE RECORDfile-name

Syntax Rule

The FREE statement may be specified only for files which were named in the APPLY
INTERLOCK or APPLY PROTECT clause in the I-O-CONTROL paragraph (see 4.2.2).

Direct I-O

UP-8584 Rev. 1-A4-14

General Rules

1. The associated file must be open in the I-O mode at the time of the execution of this
statement (see 4.4.3).

2. When a record is read with protection, any other program or cycle attempting to
read that record is suspended until the protection lock is removed. Normally, the
protection is removed by rewriting the record or reading another record from the
file. The FREE statement is used to remove the lock prior to another access to the
file, so that any other cycle waiting to read that record can be resumed.

3. Following the execution of the last statement in a random processing declarative
section, any records which have been read with protection are released by the file
handler.

4. The value of the key associated with a direct file is not used for the FREE statement.

5. The logical record continues to be available to the COBOL program following the
execution of a FREE statement.

4.4.3. The OPEN Statement

Format

OPEN
INPUT
OUTPUT
I-O

[]...
[]...

[]...

file-name-1 ,file-name-2
file-name-3 ,file-name-4

file-name-5 ,file-name-6

...

Description

The OPEN statement initiates processing of named files by checking or writing labels
and by performing any other input/output operations necessary prior to accessing the
first record in a given file. However, the OPEN statement does not obtain or release the
first data record; a READ or WRITE statement must be executed.

If an input file is designated as OPTIONAL in the FILE-CONTROL paragraph, the MSCS
interrogates for the presence of the file. If the file is not present, the first READ
statement for the file causes the imperative statement in the AT END phrase to be
executed.

For Direct files (except SDF files or files with the LABEL RECORDS ARE OMITTED
clause), the following label processing occurs:

Open Output

� If the LABEL RECORDS ARE STANDARD clause is present:

1. The HDR1 label is created with standard values.

2. The BEFORE BEGINNING FILE declarative is executed.

3. The VALUE OF processing is performed.

4. The AFTER BEGINNING FILE declarative is executed.

5. The HDR1 label record is written.

Direct I-O

UP-8584 Rev. 1-A 4-15

� If the LABEL RECORDS ARE data-name clause is present:

1. The HDR1 label is created with standard values.

2. The VALUE OF items referencing the standard label are moved to the label area.

3. The HDR1 label is written.

4. The label area, character positions 5 through 80, is cleared to spaces.

5. The BEFORE BEGINNING FILE declarative is executed.

6. VALUE OF data-name items are moved to the label record.

7. The AFTER BEGINNING FILE declarative is executed.

8. The user label is written if the label identifier equals UHL.

Open Input or I-O

� If the LABEL RECORDS ARE STANDARD clause is present:

1. The HDR1 label record is read.

2. The BEFORE BEGINNING FILE declarative is executed.

3. The VALUE OF items are verified.

4. The AFTER BEGINNING FILE declarative is executed.

5. The EOF1 label record is read.

6. The file is then positioned at the beginning of the data blocks.

� If the LABEL RECORDS ARE data-name clause is present:

1. The HDR1 label is read. The VALUE OF items referencing the standard label are
verified.

2. If a UHL label is present following the HDR1 label, the following process occurs:

a. The BEFORE BEGINNING FILE declarative is executed.

b. The VALUE OF items referencing user label items are verified.

c. The AFTER BEGINNING FILE declarative is executed.

d. If the file is open for I-O, the UHL label is rewritten.

3. The EOF1 label record is read.

For RECORDING MODE IS SDF files, the beginning-of-file labels are processed by the
Processor Common Input/Output System (PCIOS). No declaratives are executed for
these files.

4.4.4. The READ Statement

Format 1

READ []RECORD [INTO] AT ENDfile-name identifierNEXT imperative-statement;

Direct I-O

UP-8584 Rev. 1-A4-16

Format 2

READ RECORD [INTO] [WITH [NO] PROTECT]

;INVALID KEY

file-name identifier

imperative-statement
Description

Format 1 is used for a file described as ACCESS MODE IS SEQUENTIAL in the
FILE-CONTROL paragraph. If the ACTUAL KEY clause is specified for the file, as part of
the execution of the READ, the MSCS will set the contents of the ACTUAL KEY item to
the key of the current logical record.

For files designated as OPTIONAL in the FILE-CONTROL paragraph, the first execution
of a READ statement will cause the AT END imperative-statement to be executed if no
assignment has been made for the file.

The NEXT phrase can only be used with RECORDING MODE IS SDF files that are
declared to be ACCESS DYNAMIC. This phrase allows the sequential retrieval of
records. The execution of this READ statement causes the contents of the ACTUAL
KEY data-name to be updated to contain the relative record number of the record made
available by the READ NEXT statement. The READ statement without the NEXT phrase
is for use with files that are declared to be ACCESS SEQUENTIAL. This phrase allows
the sequential retrieval of records. No key value needs to be used for this format of the
READ statement.

For sequentially accessed Direct files (except SDF), the AT END condition is reached
when the current mass storage address of the record is equal to the mass storage
end-of-file address established when the file was created, or if FILE-LIMITS were
specified, when the logical end of the last segment of the file is reached and an attempt
is made to read that file.

For sequentially accessed Direct SDF files, the AT END is reached when an end-of-file
label record is read.

When the execution of a READ follows the execution of a START statement, the logical
record associated with the contents of the ACTUAL KEY at the time of the START
execution is made available.

Format 2 is used for a file described as ACCESS MODE IS RANDOM in the
FILE-CONTROL paragraph.

The COBOL program must place the relative record number associated with the record
to be read in the contents of the ACTUAL KEY for the file. The INVALID KEY
imperative-statement is executed if the contents of the ACTUAL KEY are outside the
FILE-LIMITS.

The WITH PROTECT option has meaning only for files named in the APPLY PROTECT
clause in the I-O CONTROL paragraph. It indicates that no other cycle should be
allowed to read this same record until the cycle executing this READ has completed
processing of the record. Normally, processing is completed by rewriting the record
back into the file; however, any subsequent access to the file by the cycle frees the
record. If the cycle performing the read terminates, any record protected by that cycle is

Direct I-O

UP-8584 Rev. 1-A 4-17

freed. The FREE statement is used to release protection on a record when it is not to be
rewritten.

The WITH NO PROTECT option has meaning only for files named in the APPLY
INTERLOCK clause in the I-O CONTROL paragraph. APPLY INTERLOCK causes
automatic protection of records as described above. The WITH NO PROTECT option on
the READ is used to override the automatic protection.

4.4.5. The REWRITE Statement

Format

REWRITE [FROM identifier]

;INVALID KEY imperative-statement

record-name

Description

The REWRITE statement is used to replace a logical record on the file with a specified
record. It is only valid for a file opened for I-O.

The record specified must not be longer than the original record it is replacing.

The REWRITE statement, when executed, performs all of the functions of a WRITE
statement that follows a READ.

4.4.6. The START Statement

Format

START INVALID KEYfile-name imperative-statement

Description

The START statement allows sequential accessing of a Direct file from a specified
starting point.

The file-name must be defined as ACCESS IS SEQUENTIAL and can be opened for
INPUT or I-O.

The relative record number at which processing is to begin must be placed in the
data-name specified by the ACTUAL KEY clause before executing the START statement.

Normally, a file in the sequential access mode is accessed sequentially from the first
record to the last or until the file is closed. If accessing is to begin at other than the first
record, a START statement must be executed after the OPEN, but before the first READ
statement. Processing will then continue sequentially until a START statement or a
CLOSE statement is executed or until end-of-file is reached.

The INVALID KEY phrase is executed when the contents of the ACTUAL KEY are
outside the FILE-LIMITS for the file or are higher than the mass storage end-of-file

Direct I-O

UP-8584 Rev. 1-A4-18

address. The file is left positioned at the point prior to the execution of the START
statement.

4.4.7. The USE Statement

Format 1

USE AFTER STANDARD ERROR PROCEDURE ON

file-name-1 ,file-name-2
INPUT
OUTPUT
I-O

[] ...

Format 2

USE BEFORE
AFTER

STANDARD BEGINNING
ENDING

[FILE] LABEL PROCEDUREON

INPUT
OUTPUT
I-O

[]...file-name-1 ,file-name-2

Description

The USE statement is used to specify special procedures for input, output, and
input/output label and error handling.

The USE statement, when present. must immediately follow a declarative section header
and be followed by a period followed by a space. The remainder of the declarative must
consist of one or more procedural paragraphs that define the procedure to be used.

The USE statement is not an executable statement; rather, it defines conditions calling
for the execution of its associated procedures.

Declarative procedures are not executed for a file with a RECORDING MODE IS SDF
clause.

The designated procedures are executed by the MSCS at the appropriate time as follows:

� Format 1 is executed when an unrecoverable hardware error has occurred. Exec
recovery techniques were performed. The object program will be abnormally
terminated after the declarative procedure has been executed.

� Format 2 is executed on OPEN and CLOSE. The declarative is executed in
conjunction with a specific standard or user label.

The following general procedure is followed:

� Input or I-O file - LABEL RECORDS ARE STANDARD

1. Read label.

Direct I-O

UP-8584 Rev. 1-A 4-19

2. Execute BEFORE declaratives.

3. Verify label according to the VALUE OF clause.

4. Execute AFTER declaratives.

� Output file - LABEL RECORDS ARE STANDARD

1. Create skeleton label with default values.

2. Execute BEFORE declaratives.

3. Move data to label area according to VALUE OF clause.

4. Execute AFTER declaratives.

� Input or I-O file - LABEL RECORDS ARE data-name

1. Read a user label.

2. Execute BEFORE declarative.

3. Verify user label fields according to the VALUE OF clause.

4. Execute AFTER declarative.

� Output file - LABEL RECORDS ARE data-name

1. Move spaces to label record area.

2. Execute BEFORE declarative.

3. Move data to user label fields according to the VALUE OF clause.

4. Execute AFTER declarative.

5. Examine label identifier to determine the following:

a. If a proper label was created, then write the label.

b. When the label identifier is not appropriate to the condition (e.g., identifier
set to UTL1 on a BEGINNING condition), then no label is written, and label
processing is complete.

If the key words BEGINNING or ENDING are omitted, the designated procedures are
executed for both beginning and ending labels.

FILE declaratives are only executed once for BEGINNING (if specified), and once for
ENDING (if specified).

4.4.8. The WRITE Statement

Format

WRITE [FROM] INVALIDKEYrecord-name identifier-1 imperative-statement

Description

The WRITE statement releases a logical record to an output or I-O file.

Direct I-O

UP-8584 Rev. 1-A4-20

When ACCESS IS SEQUENTIAL, the INVALID KEY clause is executed if the relative
record number of the record being written is higher than the last FILE-LIMITS operand,
or if the maximum mass storage assigned to the file is exceeded.

When a sequentially accessed Direct file is opened for I-O and the AT END condition has
been reached, the file may be extended by executing subsequent WRITE statements.

When the file is opened for I-O, all WRITE statements executed following a READ or
START execution assume the meaning of a REWRITE. When a WRITE is not preceded
by a READ or START, the MSCS provides positioning to the next logical record, which is
then overwritten. The next logical record in this case follows the last logical record
accessed by the object program, which is not necessarily the last record accessed by the
cycle executing the WRITE statement.

When a WRITE statement is overwriting an original record, the length of the updated
logical record can be no longer than the length of the original record.

When ACCESS IS RANDOM, the COBOL program must place in the ACTUAL KEY prior
to the execution of the WRITE statement, the relative record number associated with the
logical record to be written. The INVALID KEY clause is executed if the contents of the
ACTUAL KEY are outside the FILE-LIMITS or if the maximum mass storage assigned to
the file is exceeded.

Direct I-O

UP-8584 Rev. 1-A 4-21

4.5. Direct Files

4.5.1. Unlabeled File Structure

The space for system labels (HDR1/EOF1) and user labels (UHL1/UTL 1) is always
allocated in the file, even if LABEL RECORDS ARE OMITTED is specified.

4.5.2. Labeled File Structure

For mass storage files (except SDF), ASCII COBOL processes a subset of the tape labels
which are defined in the American National Standard documents X3.2/759, X3.2.5/128,
and the revision of X3.2/513 dated July 18, 1968. These labels are 28 words in length and
occupy sectors 0 through 3 of the file.

The following table gives the types of labels with their names, identifiers, and numbers.
The table also shows which labels are required and which are optionally permitted.

Type
Identifier

and Number Created By Name
Required/
Optional

Beginning HDR1 System File Handler File Header Label Required
of File

UHL1 User User File Header Label Optional

continued

Direct I-O

UP-8584 Rev. 1-A4-22

Type
Required/
OptionalNameCreated By

Identifier
and Number

End of File EOF1 System File Handler End-of-File Label Required

UTL1 User User End-of-File Label Optional

Note: When user label records are present, they always follow the system label of the

same type.

4.5.3. Label Record Formats

4.5.3.1. File Header Label (HDR1)

Character
Positions Length Standard Default Values Description VALUE OF name

1-3 3 HDR Label identifier None

4 1 1 Label number None

5-21 17 External-file-name File identifier FILE-ID

22-27 6 UNIVAC Set identifier SET-ID

28-31 4 0001 File section number None

32-35 4 0001 File sequence number None

36-39 4 0001 Generation number None

40-41 2 00 Generation version number None

42-47 6 Date when file was created Creation date in Julian form
preceded by one space

CREATION-DATE

48-53 6 Creation date plus period
from ASG statement

Purge date in Julian form
preceded by one space

PURGE-DATE

54 1 Space Accessibility FILE-ACCESS

55-60 6 000000 Block count None

61-73 13 File qualifier from ASG
statement

File qualifier FILE-QUALIFIER

continued

Direct I-O

UP-8584 Rev. 1-A 4-23

Character
Positions VALUE OF nameDescriptionStandard Default ValuesLength

74-80 7 Spaces Unused None

81-84 4 Mass-storage end-of-file
address

Unused None

4.5.3.2. End-of-File Label (EOF1)

The EOF1 label has the same format as the HDR1 label. The standard default values are
the same except for the “block count” field, which is set to the number of physical data
blocks contained in the file.

The EOF1 label block occupies all 28 words of sector 2 on mass storage. Words 21
through 27 (in other words, character positions 85-96) are used as needed for file
control information. Current usage is as follows:

21 FASTRAND end-of-file address (sector address whole word FC$FEA)

22 Not used = zero

23 Creation time information

H1 - maximum block size in words (FC$BLK)

03 - actual key length in words (FC$KL)

Bits 27-29 - Key Shift flag for START verb

S6 - file type (FC$TYP)

24 Label flag

S6 - (FC$LBL)

25 Not used = zero

26 Not used = zero

27 Not used = zero

The VALUE OF clause causes the fields to be modified on output or verified on input
exactly as for the HDR1 description.

Direct I-O

UP-8584 Rev. 1-A4-24

4.5.3.3. User Labels

In addition to the system standard labels, mass storage files may optionally include two
user labels: one UHL1 and one UTL1.

In order to create user labels on an output file, the COBOL program must include the
LABELS ARE data-name clause. User labels are then created by the use of the VALUE
OF data-name clause or by the specification of one or more USER LABEL PROCEDURE
declarative sections or both.

The VALUE OF processing is performed each time a user label may be created. No
distinction is made between references to data-name clauses in different label record
descriptions. It is the user’s responsibility to ensure that the VALUE OF items are
meaningful at the time a user label may be created.

A valid user label conforms to the following description:

Character
Position Length Name Required Contents

1-3 3 Label identifier UHL for user beginning file label.

UTL for user end-of-file label

4 1 Label number 1

5-80 76 As defined by user May be set to any ASCII number or character
string

The following listing indicates the time at which it may be created (or processed on
input) and the sequence of processing.

Label Identifier
Events Causing Label
Processing to Occur Sequence of Label Processing

UHL-User file
header labels

OPEN 1. BEFORE BEGINNING FILE declarative is
executed.

2. VALUE of processing.

3. AFTER BEGINNING FILE declarative is
executed.

UTL-User
end-of-file labels

CLOSE 1. BEFORE ENDING FILE declarative is
executed.

2. VALUE OF processing.

3. AFTER ENDING FILE declarative is executed.

Direct I-O

UP-8584 Rev. 1-A 4-25

For output files, the user label is written only if the label identifier is set correctly in the
label record area. When a valid label exists, it is written.

For input files, label processing is performed only if a label with that appropriate
identifier exists.

4.5.4. Data Block Format

Data blocks for non-SDF Direct files start in sector 4. Each block is allocated the
number of sectors (28 words) necessary to contain the largest record in the file. In
addition, two words are appended to the beginning of each record by the MSCS.

The block size can be computed as:

BS = MRL + 29
2B

where:

BS = Block size

MRL = Number of words in largest logical record

4.6. SDF Direct Files
For a description of the file structure, label record format, and data block format for
RECORDING MODE IS SDF files, see the OS 1100 ASCII COBOL Programming
Reference Manual, UP-8582, (current version).

UP-8584 Rev. 1-A 5-1

Section 5
Indexed Sequential I-O

5.1. General
An Indexed Sequential file is a file maintained on mass storage in sequential order, but
with an index structure provided such that random access (based on the indexing data
as the key) may be used.

An Indexed Sequential file is composed of two elements: the data records themselves,
and an indexed structure. The data records (logical records) are blocked into a physical
block (called a record block) according to the BLOCK CONTAINS clause. The keys
associated with each logical record are also included in the record block along with
other necessary control information.

The index structure contains one entry per record block. This index entry contains the
key of the last record in the record block and an address of that block. As the index
structure grows to sufficient size to require multiple blocks itself, additional index levels
are constructed which point to lower-level indexes (see Figure 5-1). Construction of the
index structure is done when the file is initially created. Note, however, that the
restriction imposed as a consequence, that an Indexed Sequential file must be created as
an output Indexed Sequential file with records written in sequence prior to any other file
usage.

Figure 5-1. Index Record Construction

Indexed sequential processing provides for random or sequential input to the program
from a previously created file. It also provides for output operations of addition of new
records, modification of records already in the file, or deletion of records in the file.
Modification is accomplished on a file opened as an input/output file, with the record
first read in and modified, then written back to the file. Deletion is similar for an
input/output file; the record is read, then deleted using the DELETE verb.

Insertion of new records may be accomplished in either of two ways. Where space has
been physically reserved in the data blocks and is still available, the insertion will take

Indexed Sequential I-O

UP-8584 Rev. 1-A5-2

place in normal record sequence. Should such space not be available, then an overflow
block is created. References to records in an overflow block require first a reference to
the normal data block which then points to the overflow block; thus, each access to a
record in an overflow block is somewhat more costly in time than an access to a record
in the normal data block area.

Reorganization of a file is periodically desirable as insertions of records fill up the
reserved space, and particularly as overflow blocks see any significant usage. Such
reorganization is accomplished by reading the file sequentially and writing a new
Indexed Sequential file. The recommended technique is to read the Indexed Sequential
file and write the file to a tape (which then also provides file backup), followed by
reading of the tape and writing into the new Indexed Sequential file.

Requirements for Indexed Sequential file usage in each of the COBOL program sections
are considered in the following subsections.

5.2. Environment Division

5.2.1. The FILE-CONTROL Paragraph

5.2.1.1. The ACTUAL KEY Clause

Format

[ACTUAL KEY IS]data-name-1,

Description

The ACTUAL KEY entry must be specified. The parameter data-name-1 is limited to 256
words of any usage. The contents of data-name-1 should not contain a value of binary
zeros to be used as an actual key, since this value is reserved for use by the Indexed File
Handler. The INVALID KEY clause will be executed if there is any attempt to read, write,
or locate a key of binary zeros.

When an indexed file is OPEN for OUTPUT, the contents of data-name-1 must be set by
the COBOL program prior to the execution of a WRITE statement. Each WRITE must
supply a key which is in ascending sequence with the previous key, according to a
bit-by-bit compare.

When a file is opened for I-O in the sequential access mode, the above rule also applies if
the file is being extended beyond its end-of-file point.

The ACTUAL KEY contents must be set by the COBOL program prior to the execution of
the following statements:

1. WRITE when the file is opened for OUTPUT or is being extended.

2. All statements when ACCESS IS RANDOM.

3. START statement when ACCESS IS SEQUENTIAL.

Indexed Sequential I-O

UP-8584 Rev. 1-A 5-3

4. START, REWRITE, WRITE, and READ (not READ NEXT) statements when ACCESS
is DYNAMIC.

The ACTUAL KEY is updated by the MSCS following each READ when ACCESS IS
SEQUENTlAL and each READ NEXT when ACCESS is DYNAMIC.

5.2.1.2. The ASSIGN Clause

Format

ASSIGN TO [,]...implementor-name-1 implementor-name-2

Description

Implementor-name-1 may be one of the following:

MASS-STORAGE
MASS-STORAGE-28
MASS-STORAGE-56
MASS-STORAGE-112

In the form MASS-STORAGE-nnn, the integer value nnn refers to the prepping factor of
the mass storage file. These alternatives are available to allow blocking of records to be
sensitive to different physical record sizes on disk devices. The block size will be
calculated according to the BLOCK CONTAINS clause and then rounded up to the next
multiple of the specified physical record size. With the implementor-name
MASS-STORAGE, a default value of 28 words is used in rounding up block size (unless
the user changes FC$PREP to 56 or 112, in which case 56 or 112 is used).

If implementor-name-2 is specified, it is a 1- to 12-character name used to link the
COBOL file to Exec file-control and should appear in an @ASG or @USE statement in
the run stream for executing the object program.

When implementor-name-2 is not specified, the first 12 characters of the file-name are
used to link the COBOL file to the OS 1100 Exec file control.

All recursions of implementor-name-1, implementor-name-2..., are for documentation
only.

5.2.1.3. The PROCESSING MODE Clause

The PROCESSING MODE clause specifies the order in which logical records are
processed by the COBOL program.

Format

[, PROCESSING MODE IS SEQUENTIAL]

Indexed Sequential I-O

UP-8584 Rev. 1-A5-4

Description

The PROCESSING MODE clause specifies the order in which logical records are
processed by the COBOL program.

When PROCESSING MODE IS SEQUENTIAL is specified, the logical records are
normally processed in the order in which they are accessed. In this case, only one area
is allocated to contain a logical record. If the COBOL program has reference to such a
file in a USE FOR RANDOM PROCESSING declarative section, appropriate lock
techniques must be used by the programmer to ensure the integrity of the logical record
if simultaneous accesses to it are possible. If this clause is absent, SEQUENTIAL
PROCESSING is assumed.

5.2.1.4. The RESERVE Clause

Format

,RESERVE
NO

ALTERNATE AREA
AREAS

integer-2

Description

The RESERVE clause is used to specify the number of buffer storage areas to be used in
processing the file. When the RESERVE clause is omitted, two buffer areas are
allocated. If RESERVE NO is specified, one buffer area is allocated. RESERVE
integer-2 causes integer-2 + 1 buffer areas to be allocated. When the APPLY
CORE-INDEX clause is specified in the I-O-CONTROL paragraph, an additional buffer
area is allocated.

For creating an Indexed Sequential file, two buffer areas are sufficient for optimum
processing.

When randomly accessing an indexed file, all buffers which are allocated are used. An
attempt is made to retain as many blocks in main storage as possible, minimizing the
number of input/output accesses.

Buffer areas are not compiled as part of the object program. Instead, during execution,
the object program is dynamically extended to allow for the buffer areas when the file is
opened. The buffer areas are released when the file is closed.

5.2.2. The I-O-CONTROL Paragraph

Function

The I-O-CONTROL paragraph provides for the protection of record areas.

Indexed Sequential I-O

UP-8584 Rev. 1-A 5-5

Format

I-O-CONTROL.

[; APPLY INTERLOCK ON [,]...]

[; APPLY PROTECT ON [FOR RECORDS]

[, [FOR RECORDS]]...]

file-name-1 file-name-2

file-name-3 integer-1

file-name-4 integer-2

[;APPLY CORE-INDEX ON [,]...]file-name-6 file-name-6
Syntax Rules

1. The I-O-CONTROL paragraph is optional.

2. The APPLY INTERLOCK clause and the APPLY PROTECT clause must not specify
the same file-name.

3. The values integer-1, integer-2,... must be less than or equal to the value of the
integer specified in the PROCESSING MODE clause. See the OS 1100 ASCII COBOL
Programming Reference Manual, UP-8582 (current version).

General Rules

1. The APPLY INTERLOCK clause and the APPLY PROTECT clause may be specified
only for files which meet the following criteria:

a. Opened in the I-O mode.

b. Indexed sequential file in random or dynamic access mode.

c. The File-Control paragraph must contain the PROCESSING IS RANDOM clause.

2. Whenever a keyed record is read from a file with the APPLY INTERLOCK clause,
that record is locked out until,

a. A record is read from that file;

b. A record is written to that file;

c. The record is freed; or

d. The controlling random processing cycle is complete.

Any other program or cycle within the same COBOL run unit attempting to read a
“locked out” record will be suspended until the lock is removed.

3. For a file with the APPLY INTERLOCK clause, the number of records concurrently
locked for the file is equal to the number of concurrently active cycles accessing the
file.

4. The parameters integer-1, integer-2,... of the APPLY PROTECT clause specify the
maximum number of records to be locked out concurrently. The number of
concurrently locked records may be less than the number of active cycles accessing
the file.

5. The APPLY CORE-INDEX is used to specify that an extra buffer storage area be
allocated to retain the file’s highest-level index block in main storage.

Indexed Sequential I-O

UP-8584 Rev. 1-A5-6

5.3. Data Division

5.3.1. The BLOCK CONTAINS Clause

Format

;BLOCK CONTAINS [TO]
RECORDS
CHARACTERSinteger-1 integer-2

Description

The BLOCK CONTAINS clause specifies the size of the physical record or block. The
physical grouping in no way affects the logic of the program; however, it may affect the
amount of mass storage needed to store data in an indexed file. With this in mind, the
programmer should attempt to establish the most efficient correlation between the
physical and logical record. There must be at least one record per block. Blocks may
not contain partial records (in other words, records may not overlap blocks).

When this clause is used, the following rules apply:

1. The parameters integer-1 and integer-2 must be unsigned numeric literals.

2. If only integer-2 is used, it represents the exact size of the physical record. If both
integer-1 and integer-2 are used, they indicate the minimum (integer-1) and
maximum (integer-2) size of the physical record. The compiler will specify blocking
such that the maximum size will be used.

3. When the CHARACTERS phrase is used, the compiler will determine the word size
of the block from the number of characters specified. It will also ensure that the
number of characters specified is large enough to contain one logical record of the
maximum size, plus the actual key and the required control information. When
specified, integer-1 is used to determine the maximum number of words to be
placed in the block when the file is created.

4. When the RECORDS phrase is used, the compiler will determine the block size
which can contain integer-2 logical records of maximum size plus key size, plus
additional space for required control words. When specified, integer-1 is multiplied
by the maximum logical record size to determine the maximum number of words to
be placed in the block when the file is created.

When the clause is omitted, the block size will be computed to contain one logical
record of maximum size plus one key and additional control information.

5.3.2. The LABEL RECORDS Clause

Format

; LABEL RECORD
RECORDS

STANDARD
OMITTEDIS

ARE [,]...data-name-1 data-name-2

Indexed Sequential I-O

UP-8584 Rev. 1-A 5-7

Description

Label records are located on the first four sectors of mass storage allocated to the file.
The LABEL RECORDS clause permits the identification of these label records. The
LABEL clause must appear for each file description.

If the user desires only the system standard label records, then the STANDARD option
may be used. The OMITTED phrase specifies that the COBOL program does not require
labels for the file.

The parameter data-name-1 is the name of the label record which must be the subject of
a Record Description entry associated with the file. The data-name must not appear in
the DATA RECORDS clause of the File Description.

When user label records are specified (data-name-1, data-name-2...), the user may
define fields in the description of data-name-1 (up to 80 characters) and have values
placed in them (OUTPUT) and checked for (INPUT and I-O) by using the VALUE clause.
All fields described in label records must have DISPLAY usage. Such fields may not be
referred to outside of the USE for LABEL declarative sections in the Procedure Division.

5.3.3. The RECORDING MODE Clause

Format

; RECORDINGMODE IS

BLANK
COMPACT
INTERNAL
SIGN

SIGN[]

Description

The RECORDING MODE clause specifies for mass storage files the format of the logical
records on mass storage which may be different from the format in main storage. Any
appropriate data conversions are performed as data records are transferred between
main storage and mass storage.

When RECORDING MODE IS INTERNAL is specified, it means that all records are read
or written exactly as they appear in main storage with no conversion taking place. If a
RECORDING MODE clause is not present, INTERNAL is assumed.

If a RECORDING MODE other than INTERNAL is specified and the file contains
multiple data record descriptions, a record selector field within each record description
is required. See the OS 1100 ASCII COBOL Programming Reference Manual, UP-8582
(current version) for a description of record selector fields.

When the record is read or written, the selector is tested to determine which record
conversion must be performed.

Indexed Sequential I-O

UP-8584 Rev. 1-A5-8

5.3.3.1. The RECORDING MODE IS BLANK Clause

When the RECORDING MODE IS BLANK clause is stated, leading blanks in numeric
DISPLAY or DISPLAY-1 fields are converted to leading zeroes as the records are read
from mass storage.

5.3.3.2. The RECORDING MODE IS BLANK SIGN Clause.

The RECORDING MODE IS BLANK SIGN clause means that the conversions for both
RECORDING MODE IS BLANK and RECORDING MODE IS SIGN are to be performed
on the file.

5.3.3.3. The RECORDING MODE IS COMPACT Clause

The RECORDING MODE IS COMPACT clause means that the records on the file contain
variable length arrays. Each record on mass storage is compressed and is automatically
converted to or from expanded form in main storage. The DEPENDING phrase of the
OCCURS clause is used whenever a variable number of occurrences of a dimensioned
item is desired. If a DEPENDING phrase is used within a record description of a file
whose RECORDING MODE IS COMPACT, the value of a data item is used to specify the
conversion required such that unused occurrences do not appear in the external media.

If a RECORDING MODE IS COMPACT file specifies the APPLY EXDEF clause and the
file contains a forward referenced OCCURS DEPENDING ON data item, the APPLY
EXDEF clause can only be used in the main program.

5.3.3.4. The RECORDING MODE IS SIGN Clause

The RECORDING MODE IS SIGN clause indicates that every signed numeric DISPLAY
or DISPLAY-1 data item is given an overpunched sign on the low-order digit as it is read
into main storage. On mass storage, the sign is carried as an explicit character
preceding the high-order digit of the field.

5.3.4. The VALUE OF Clause

Format

; VALUE OF

FILE-ID
SET-ID
CREATION-DATE
PURGE-DATE
FILE-ACCESS
FILE-QUALIFIER

IS ...

data-name-1

data-name-2
literal-1

Indexed Sequential I-O

UP-8584 Rev. 1-A 5-9

Description

The VALUE OF clause specifies the value of an item in a label record. This clause should
not be present for a file when LABEL RECORDS ARE OMITTED is specified.

The following names are names of fields in the system standard labels and have the
implied definition of:

Field Name Implied Definition

02 FILE-ID PIC X(17)

02 SET-ID PIC X(6)

02 CREATION-DATE PIC 9(6)

02 PURGE-DATE PIC 9(6)

02 FILE-ACCESS PIC X(1)

02 FILE-QUALIFIER PIC X(12)

In the absence of any or all of the above names in the VALUE OF clause when a file is
opened for output, the following values will be assumed:

FILE-ID

Will be set to the 12-character external file name.

SET-ID

Will be set to UNIVAC.

CREATION-DATE

Will be set to the current date.

PURGE-DATE

Will be set to the current date plus the expiration period specified on the @ASG
statement or system default if no expiration period is specified.

FILE-ACCESS

Will be set to a space indicating unlimited access to the file.

FILE-QUALIFIER

Will be set to the file qualifier.

In addition to the above system standard label names, the VALUE OF data-name-1 form
may be used provided LABEL RECORDS ARE data-name is also specified. In this case,
data-name-1, etc., must be defined in the record description for a label record.

Indexed Sequential I-O

UP-8584 Rev. 1-A5-10

The contents of data-name-2 or literal-1 will be moved to the label field on output or
checked against the label field on input. The parameter data-name-2 must be described
as USAGE DISPLAY (ASCII).

When user label records are specified. the VALUE OF processing takes place in two
steps:

1. When the system standard label records are being read or written, the VALUE OF
standard label names are checked or moved, respectively.

2. When user label records are being read or written, the VALUE OF data-name

clauses are checked or moved, respectively.

5.3.4.1. The VALUE OF CREATION-DATE Clause

The contents of this field are set to the current date at the time the file is opened for
output. This clause modifies the contents of the field to the value specified. The value
field is written in the COBOL program in the form MMDDYY and is converted to Julian
form when the HDR1 label is created. At this time, the contents of the month, day, and
year values are verified for a proper range of numbers.

5.3.4.2. The VALUE OF data-name Clause

In addition to the system standard labels, mass storage files may optionally include two
user labels: one UHL1 and one UTL1.

In order to create user labels on an output file, the COBOL program must include the
LABELS ARE data-name clause. User labels are then created by the use of the VALUE
OF data-name clause, by the specification of one or more USER LABEL PROCEDURE
declarative sections, or both.

The VALUE OF processing is performed each time a user label may be created. No
distinction is made between references to data-name clauses in different label record
descriptions. It is the user’s responsibility to ensure that the VALUE OF items are
meaningful at the time a user label may be created.

The following chart indicates the time at which a user label may be created (or
processed on input) and the sequence of processing.

Indexed Sequential I-O

UP-8584 Rev. 1-A 5-11

Label Identifier Events Causing Label
Processing to Occur

Sequence of Label Processing

UHL-User file header
labels

OPEN 1. BEFORE BEGINNING FILE declarative
is executed.

2. VALUE of processing.

3. AFTER BEGINNING FILE declarative is
executed.

UTL-User end-of-file
labels

CLOSE 1. BEFORE ENDING FILE declarative is
executed.

2. VALUE OF processing.

3. AFTER ENDING FILE declarative is
executed.

For output files, the user label is written only if the label identifier is set correctly in the
label record area. When a valid label exists, it is written.

For input files, label processing is performed only if a label with that appropriate
identifier exists.

5.3.4.3. The VALUE OF FILE-ACCESS Clause

One space is moved to the FILE-ACCESS field when the HDR1 is created. The VALUE
OF FILE-ACCESS clause may modify the contents of the field. A space represents
unlimited access to the file.

5.3.4.4. The VALUE OF FILE-ID Clause

If specified by the VALUE OF FILE-ID clause, the file identifier is checked by the MSCS
on files opened for input or I-O and moved by the file handler on output files.

When creating a file, the external file-name is moved to the skeleton label. The VALUE
OF FILE-ID clause may be used to modify that file name.

5.3.4.5. The VALUE OF FILE-QUALIFIER Clause

The contents of the FILE-QUALIFIER field are set originally to the qualifier specified in
the @ASG statement, or the qualifier specified in the currently active @QUAL statement,
or by default to the project field in the @RUN statement. The VALUE OF
FILE-QUALIFIER clause modifies the contents of the field to the value specified.

Indexed Sequential I-O

UP-8584 Rev. 1-A5-12

5.3.4.6. The VALUE OF PURGE-DATE Clause

The contents of the PURGE-DATE field are set to the current date at the time the file is
opened for output plus the number of days to expire specified in the @ASG statement or
system default. The VALUE OF PURGE-DATE clause modifies the contents of the field
to the value specified. The rules for the value for PURGE-DATE are the same as for
CREATION-DATE.

The PURGE-DATE field represents the day on which the file may be overwritten.

5.3.4.7. The VALUE OF SET-ID Clause

The COBOL program may set the contents of this field without restriction.

5.4. Procedure Division

5.4.1. The CLOSE Statement

Format

CLOSE [WITHLOCK][[WITH LOCK]]...file-name-1 file-name-2

Description

The CLOSE statement terminates processing of one or more files. The CLOSE statement
causes end-of-file label processing to be performed and the buffer areas to be released.

For a file opened for OUTPUT, the CLOSE statement causes the final index block to be
written. The initial overflow block is allocated at this time.

If a file has been specified as OPTIONAL and is not present, the standard end-of-file
processing is bypassed.

When the WITH LOCK phrase is used, this file may not be reopened subsequently in the
same execution.

For files described as LABELS ARE OMITTED, the MSCS creates a standard EOF1 label
containing system default values. File control information is inserted after the EOF1
label in the I-O buffer. The 28-word I-O buffer containing the EOF1 label is then written.

For labeled files. the following label processing occurs:

� Input or I-O file, LABEL RECORDS ARE STANDARD

1. The BEFORE ENDING FILE declarative is executed.

2. The EOF1 label is read.

3. The VALUE OF items are verified.

4. The AFTER ENDING FILE declarative is executed.

Indexed Sequential I-O

UP-8584 Rev. 1-A 5-13

5. For files opened for I-O, the EOF1 label record is rewritten.

� Input or I-O file, LABEL RECORDS ARE data-name

1. The EOF1 label is read.

2. The VALUE OF items referencing the standard label names are verified.

3. For files opened for I-O the EOF1 label record is rewritten.

4. The user ending label is read. If the label identifier contains UTL, the following
occurs:

a. The BEFORE ENDING FILE declarative is executed.

b. The VALUE OF items referencing user label names are verified.

c. The AFTER ENDING FILE declarative is executed.

d. For files opened for I-O, the EOF1 label record is rewritten.

� Output file, LABEL RECORDS ARE STANDARD

1. An EOF1 label record is created with standard default values.

2. The BEFORE ENDING FILE declarative is executed.

3. The VALUE OF items are moved to the label record.

4. The AFTER ENDING FILE declarative is executed.

5. File control information is inserted after the EOF1 label record in the I-O buffer.

6. The 28-word I-O buffer containing the EOF1 label record is written.

� Output file, LABEL RECORDS ARE data-name

1. An EOF1 label record is created with the standard default value.

2. The VALUE OF items referencing standard label names are moved to the label
record.

3. File control information is inserted after the EOF1 label record in the I-O buffer.

4. The 28-word I-O buffer containing the EOF1 label record is written.

5. The label record area, character positions 5 through 80, is cleared to spaces.

6. The BEFORE ENDING FILE declarative is executed.

7. The VALUE OF items referencing user label names are moved to the label
record.

8. The AFTER ENDING FILE declarative is executed.

9. The user ending label record is written.

5.4.2. The DELETE Statement

Format

DELETE ; INVALIDKEY imperative-statementrecord-name

Indexed Sequential I-O

UP-8584 Rev. 1-A5-14

Description

The DELETE statement causes a logical record to be removed from the file.

The DELETE statement is valid only for files which are opened for I-O.

When the file is described as ACCESS is RANDOM or ACCESS is DYNAMIC. the key
value associated with the logical record to be deleted must be placed in the data-name

referenced by the ACTUAL KEY clause prior to the execution of the DELETE statement.
If the MSCS can locate no record on the file with a matching key, the INVALID KEY
imperative-statement is executed.

When a file is described as ACCESS IS SEQUENTIAL, the MSCS determines the logical
record to be deleted based on the previous statement executed for the file. When a
DELETE follows a READ, the record which was read is deleted. When a DELETE
follows a START, the record associated with the key value supplied in the ACTUAL KEY
for the START statement is deleted. A DELETE following the execution of a WRITE,
REWRITE, or another DELETE causes the file handler to position to the next sequential
logical record, which is then marked as deleted. When a DELETE statement is executed
and the file is positioned beyond its end-of-file, the INVALID KEY imperative-statement

is executed.

When a logical record is deleted, the value of the current locator for the record is set to
binary zeros. The logical record itself is removed from the file, making spare in the
record block available for subsequent inserts.

5.4.3. The FREE Statement

The FREE statement releases a record for access by other activities.

Format

FREE RECORDfile-name

Syntax Rule

The FREE statement may be specified only for files which were named in the APPLY
INTERLOCK or APPLY PROTECT clause in the I-O-CONTROL paragraph (see 5.2.2).

General Rules

1. The associated file must be open in the I-O mode at the time of the execution of this
statement (see 5.4.4).

2. When a record is read with protection, any other program or cycle attempting to
read that record is suspended until the protection lock is removed. Normally, the
protection is removed by rewriting the record or reading another record from the
file. The FREE statement is used to remove the lock prior to another access to the
file, so that any other cycle waiting to read that record can be resumed.

Indexed Sequential I-O

UP-8584 Rev. 1-A 5-15

3. Following the execution of the last statement in a random processing declarative
section, any records which have been read with protection are released by the file
handler.

4. The value of the key associated with an indexed sequential file is not used for the
FREE statement.

5. The logical record continues to be available to the COBOL program following the
execution of a FREE statement.

5.4.4. The OPEN Statement

Format

OPEN
INPUT
OUTPUT
I-O

[]...
[]...

[]...

file-name-1 ,file-name-2
file-name-3 ,file-name-4

file-name-5 ,file-name-6

...

Description

The OPEN statement initiates processing of the named files by checking or writing
labels and performing any other input/output operations necessary prior to accessing the
first record in a given file. However, the OPEN statement does not obtain or release the
first data record; a READ or WRITE statement must be executed.

If an input file is designated as OPTIONAL and ACCESS IS SEQUENTIAL in the
FILE-CONTROL paragraph, the MSCS interrogates for the presence of the file. If the file
is not present, the first READ statement for the file causes the imperative statement in
the AT END phrase to be executed.

The following label processing occurs when an indexed file is opened:

Open Output

� If the LABEL RECORDS ARE STANDARD clause is present:

1. The HDR1 label is created with standard values.

2. The BEFORE BEGINNING FILE declarative is executed.

3. The VALUE OF processing is performed.

4. The AFTER BEGINNING FILE declarative is executed.

5. The HDR1 label record is written.

� If the LABEL RECORDS ARE data-name clause is present:

1. The HDR1 label is created with standard values.

2. The VALUE OF items referencing the standard label are moved to the label area.

3. The HDR1 label is written.

4. The label area, character positions 5 through 80, is cleared to spaces.

5. The BEFORE BEGINNING FILE declarative is executed.

6. VALUE OF data-name items are moved to the label record.

Indexed Sequential I-O

UP-8584 Rev. 1-A5-16

7. The AFTER BEGINNING FILE declarative is executed.

8. The user label is written if the label identifier equals UHL.

Open Input or I-O

� If the LABEL RECORDS ARE STANDARD clause is present:

1. The HDR1 label record is read.

2. The BEFORE BEGINNING FILE declarative is executed.

3. The VALUE OF items are verified.

4. The AFTER BEGINNING FILE declarative is executed.

5. The EOF1 label record is read.

6. The input or I-O file’s maximum block size and actual key length are verified by
comparing them to the corresponding fields in EOF1.

� If the LABEL RECORDS ARE data-name clause is present:

1. The HDR1 label record is read.

2. The VALUE OF item referencing the standard label is verified.

3. The UHL1 label record is read.

4. If the label identifier equals UHL:

a. The BEFORE BEGINNING FILE declarative is executed.

b. The VALUE OF items referencing user label items are verified.

c. The AFTER BEGINNING FILE declarative is executed.

d. If the file is opened for I-O, the UHL label is rewritten.

5. The EOF1 label record is read.

6. The input or I-O file’s maximum block size and actual key length are verified by
comparing them to the corresponding fields in EOF1.

5.4.5. The READ Statement

Format 1

READ []RECORD [INTO] AT ENDfile-name identifierNEXT imperative-statement;

; AT END imperative-statement
Format 2

READ RECORD [INTO] [WITH [NO] PROTECT]

;INVALID KEY

file-name identifier

imperative-statement
Description

Format 1 is used for a file described as ACCESS MODE IS SEQUENTIAL or ACCESS
MODE IS DYNAMIC in the FILE-CONTROL paragraph. The NEXT phrase may only be

Indexed Sequential I-O

UP-8584 Rev. 1-A 5-17

used if ACCESS MODE is DYNAMIC has been stated. As part of the execution of the
READ, the MSCS will set the contents of the ACTUAL KEY item to the key of the current
logical record.

For files designated as OPTIONAL in the FILE-CONTROL paragraph, the first execution
of a READ statement will cause the AT END imperative-statement to be executed if no
assignment has been made for the file.

If the NEXT phrase of the READ statement is used for a file which has been described as
ACCESS MODE IS DYNAMIC, the result will be the same as a READ of an ACCESS
MODE IS SEQUENTIAL file.

The READ which contains the NEXT phrase must be preceded logically by one of the
following:

READ
READ NEXT
OPEN INPUT
OPEN I-O
START

Upon successful completion of one of the preceding instructions, a READ NEXT
statement will retrieve the next logical record of the file, or take the AT END path.
Intervening WRITE or REWRITE statements do not affect the file positioning.

If the INVALID KEY or AT END conditions exist, one of the following sequences must be
successfully executed before issuing a READ NEXT statement:

CLOSE/OPEN
READ INVALID KEY
START

Format 2 is used for a file described as ACCESS MODE IS RANDOM or ACCESS MODE
IS DYNAMIC in the FILE-CONTROL paragraph.

The COBOL program must place the value of the key associated with the record to be
read in the contents of the ACTUAL KEY for the file. The INVALID KEY
imperative-statement is executed if no record exists on the file with a matching key.

The WITH PROTECT phrase has meaning only for file-name phrases in the APPLY
PROTECT clause in the I-O-CONTROL paragraph (see 5.2.2). It indicates that no other
cycle should be allowed to read this same record until the cycle executing this READ
has completed processing of the record. Normally, processing is completed by rewriting
the record back into the file; however, any subsequent access to the file by the cycle
“frees” the record. If the cycle performing the read terminates, any record protected by
that cycle is freed. The FREE verb is used to release protection on a record when it is
not to be rewritten.

The WITH NO PROTECT option has meaning only for files named in the APPLY
INTERLOCK clause in the I-O-CONTROL paragraph. APPLY INTERLOCK causes
automatic protection of records as described previously. The WITH NO PROTECT
option on the READ is used to override the automatic protection.

Indexed Sequential I-O

UP-8584 Rev. 1-A5-18

Format 2 of the READ statement causes the index blocks to be searched for the record
block containing the specified key. The record block is then read and searched for the
proper record associated with the key. This might cause an overflow block to be read if
the record was inserted following the original creation of the file.

5.4.6. The REWRITE Statement

Format

REWRITE [FROM identifier]

;INVALID KEY imperative-statement

record-name

Description

The REWRITE statement is used to replace a logical record on the file with a specified
record. It is only valid for a file opened for I-O.

The record specified must not be longer than the original record it is replacing.

The REWRITE statement is executed in the same manner as a WRITE statement
following a READ.

5.4.7. The START Statement

Format

START KEY

IS EQUALTO
iS =
IS GREATER THAN
IS >
ISNOT LESSTHAN
IS NOT <

data-namefile-name

Description

The START statement provides a basis for logical positioning within an indexed file for
subsequent sequential retrieval of records.

The file must be described as ACCESS IS SEQUENTIAL or ACCESS is DYNAMIC and be
opened for INPUT or I-O.

If the KEY phrase is specified, data-name may reference a data item specified as the
ACTUAL KEY associated with file-name, or it may reference any data item of category
alphanumeric subordinate to the data-name of a data item specified as the ACTUAL
KEY associated with file-name whose leftmost character position corresponds to the
leftmost character position of the ACTUAL KEY data item.

If the KEY phrase is not specified, the relational operator “IS EQUAL TO” is implied and
the ACTUAL KEY field is the implied data-name.

Indexed Sequential I-O

UP-8584 Rev. 1-A 5-19

The type of comparison specified by the relational operator in the KEY phrase occurs
between the key associated with a record in the file and data-name. The comparison is
binary proceeding from the leftmost position and comparing as though the key
associated with the file were truncated to the size of data-name.

5.4.8. The USE Statement

Format 1

USE AFTER STANDARD ERROR PROCEDURE ON

file-name-1 ,file-name-2
INPUT
OUTPUT
I-O

[] ...

Format 2

USE BEFORE
AFTER

STANDARD BEGINNING
ENDING

[FILE] LABEL PROCEDUREON

INPUT
OUTPUT
I-O

[]...file-name-1 ,file-name-2

Description

The USE statement is used to specify special procedures for input, output, and
input/output label and error handling.

The USE statement, when present, must immediately follow a declarative section header
and be followed by a period followed by a space. The remainder of the declarative must
consist of one or more procedural paragraphs that define the procedure to be used.

The USE statement is not an executable statement; rather, it defines conditions calling
for the execution of its associated procedures.

The designated procedures are executed by the COBOL MSCS at the appropriate time as
follows:

� Format 1 is executed when an unrecoverable hardware error has occurred. Exec
system recovery techniques were performed. The object program will be
abnormally terminated after the declarative procedure has been executed.

� Format 2 is executed on OPEN and CLOSE. The declarative is executed in
conjunction with a specific standard or user label.

The following general procedure is followed:

� Input or I-O file - LABEL RECORDS ARE STANDARD

1. Read label.

Indexed Sequential I-O

UP-8584 Rev. 1-A5-20

2. Execute BEFORE declaratives.

3. Verify label according to the VALUE OF clause.

4. Execute AFTER declaratives.

� Output file - LABEL RECORDS ARE STANDARD

1. Create skeleton label with default values.

2. Execute BEFORE declaratives.

3. Move data to label area according to VALUE OF clause.

4. Execute AFTER declaratives.

5. Write the label.

� Input or I-O file - LABEL RECORDS ARE data-name

1. Read a user label.

2. Execute BEFORE declarative.

3. Verify user label fields according to the VALUE OF clause.

4. Execute AFTER declarative.

� Output file - LABEL RECORDS ARE data-name

1. Move spaces to label record area.

2. Execute BEFORE declarative.

3. Move data to user label fields according to the VALUE OF clause.

4. Execute AFTER declarative.

5. Examine label identifier to determine the following:

a. If a proper label was created, then write the label.

b. When the label identifier is not appropriate to the condition (e.g., identifier
set to UTL1 on a BEGINNING condition), then no label is written, and label
processing is complete.

If the key words BEGINNING or ENDING are omitted, the designated procedures are
executed for both beginning and ending labels.

FILE declaratives are only executed once for BEGINNING (if specified), and once for
ENDING (if specified).

5.4.9. The WRITE Statement

Format

WRITE [FROM] INVALIDKEYrecord-name identifier-1 imperative-statement:

Description

The WRITE statement releases a logical record to an output or I-O file.

Indexed Sequential I-O

UP-8584 Rev. 1-A 5-21

When the file is opened for OUTPUT, the contents of data-name referenced by the
ACTUAL KEY clause must be set by the COBOL program to the value associated with
the logical record. Each WRITE which is executed must supply a key which is higher in
binary value than the preceding key. When a key is less than or equal to the preceding
key, the INVALID KEY imperative-statement is executed.

If the maximum mass storage area allocated on the @ASG statement is exhausted and
another write is attempted, an error diagnostic will be issued and the job aborted.

The index blocks are created by the MSCS as the record blocks become filled with
logical records. The index blocks are never modified once the file has been created.

When a sequential access file is opened for I-O, the MSCS provides the ACTUAL KEY for
each record which is read. When the WRITE statement is executed following a READ
and implies a REWRITE, the contents of the ACTUAL KEY should not be modified by the
COBOL program.

When a sequential access file is opened for I-O and the AT END condition has been
reached, the file may be extended by executing subsequent WRITE statements. In this
case, the rules for files opened for OUTPUT must be followed.

When a sequential access file is opened for I-O, all WRITE statements executed
following a READ execution assume the meaning of a REWRITE. When a WRITE is
preceded by a WRITE, REWRITE, or DELETE, the MSCS provides positioning to the
next logical record, which is then overwritten. The next logical record in this case
follows the last logical record accessed by the object program, not necessarily the last
record accessed by the cycle executing the WRITE statement. A WRITE preceded by an
OPEN or START is an INVALID KEY condition.

A REWRITE in a random processing declarative for a sequentially accessed file always
causes the rewriting of the record last read by that cycle, even though subsequent reads
by other cycles have caused the file to be positioned beyond the record to be rewritten.

When a randomly accessed file is open for I-O, the COBOL program must supply the
value of the key in the contents of the ACTUAL KEY. The MSCS uses the index blocks to
locate the key. If a record is found with a matching key, the logical record is overwritten
with the current record.

If a matching key is not found, the record is an insertion. An attempt is made to move
the insert record into the record block for which it is in order. If no room is available,
the logical record is moved into an overflow block, which is then chained into the record
block which contains the next lower key.

In all cases above, when a WRITE statement is overwriting an original record, the length
of the updated logical record can be no longer than the length of the original record.

Indexed Sequential I-O

UP-8584 Rev. 1-A5-22

5.5. Indexed Sequential Files

5.5.1. Unlabeled File Structure

Note: Data blocks, index blocks, and overflow blocks are all the some size.

The space for system labels (HDR1/EOF1) and user labels (UHL1/UTL1) is always
allocated in the file, even if LABEL RECORDS ARE OMITTED is specified.

As for all mass storage files, sectors 0 through 3 are reserved for label blocks, sector 4
contains the first lowest level index block, followed by the first record block. The rest
of the file consists of interspersed index and record blocks.

When a file is originally created, one overflow block is allocated. As the file is expanded
in later processing, further overflow blocks are allocated as necessary.

5.5.2. Labeled File Structure

For mass storage files, ASCII COBOL processes a subset of the tape labels which are
defined in the American National Standard documents X3.2/759, X3.2.5/128, and the
revision of X3.2/513, dated July 18, 1968. These labels are 28 words in length and occupy
sectors 0 through 3 of the file.

The following table gives the types of labels with their names, identifiers, and numbers.
The table also shows which labels are required and which are permitted as options.

Indexed Sequential I-O

UP-8584 Rev. 1-A 5-23

Type Identifier and
Number

Created By Name Required/
Optional

Beginning HDR1 System File Handler File Header Label Required
of File

UHL1 User User File Header Label Optional

End of File EOF1 System File Handler End-of-File Label Required

UTL1 User User End-of-File Label Optional

Note: When user label records are present, they always follow the system label of the

same type.

5.5.3. Label Record Formats

5.5.3.1. File Header Label (HDR1)

Character
Positions

Length Standard Default Values Description VALUE OF name

1-3 3 HDR Label identifier None

4 1 1 Label number None

5-21 17 External-file-name File identifier FILE-ID

22-27 6 UNIVAC Set identifier SET-ID

28-31 4 0001 File section number None

32-35 4 0001 File sequence number None

36-39 4 0001 Generation number None

40-41 2 00 Generation version number None

42-47 6 Date when file was created Creation date in Julian form
preceded by one space

CREATION-DATE

48-53 6 Creation date plus period
from ASG statement

Purge date in Julian form
preceded by one space

PURGE-DATE

54 1 Space Accessibility FILE-ACCESS

55-60 6 000000 Block count None

61-73 13 File qualifier from ASG
statement

File qualifier FILE-QUALIFIER

continued

Indexed Sequential I-O

UP-8584 Rev. 1-A5-24

Character
Positions

VALUE OF nameDescriptionStandard Default ValuesLength

74-80 7 Spaces Unused None

81-84 4 Mass-storage end-of-file
address

Unused None

5.5.3.2. End-of-File Label (EOF1)

The EOF1 label has the same format as the HDR1 label. The standard default values are
the same except for the “block count” field, which is set to the number of physical data
blocks contained in the file.

The EOF1 label block occupies all 28 words of sector 2 on mass storage. See the OS
2200 Processor Common Input/Output System (PCIOS) Administration and
Programming Reference Manual, 7831 0588 (current version) for a more complete
description of the EOF1 label.

5.5.3.3. User Labels

In addition to the system standard labels, mass storage files may optionally include two
user labels; one UHL1 and one UTL1.

To create user labels on an output file, the COBOL program must include the LABEL
RECORDS ARE data-name clause. User labels are then created by the use of the
VALUE OF data-name clause, by the specification of one or more USE...LABEL
PROCEDURE declarative sections, or both.

The VALUE OF processing is performed each time a user label may be created. No
distinction is made between references to data-name clauses in different label record
descriptions. It is the user’s responsibility to ensure that the VALUE OF items are
meaningful at the time a user label may be created.

A valid user label conforms to the following description:

Character
Position

Length Name Required Contents

1-3 3 Label identifier UHL for user beginning file label.

UTL for user end-of-file label

4 1 Label number 1

5-80 76 As defined by user May be set to any ASCII number or character
string

Indexed Sequential I-O

UP-8584 Rev. 1-A 5-25

The following chart indicates the time at which it may be created (or processed on
input) and the sequence of processing.

Label Identifier Events Causing Label
Processing to Occur

Sequence of Label Processing

UHL-User file
header labels

OPEN 1. BEFORE BEGINNING FILE declarative is
executed.

2. VALUE of processing.

3. AFTER BEGINNING FILE declarative is
executed.

UTL-User
end-of-file labels

CLOSE 1. BEFORE ENDING FILE declarative is
executed.

2. VALUE OF processing.

3. AFTER ENDING FILE declarative is executed.

For output files, the user label is written only if the label identifier is set correctly in the
label record area, when a valid label exists, it is written.

For input files, label processing is performed only if a label with that appropriate
identifier exists.

5.5.4. Data Block, Overflow Block, and Index Block Format

For a description of data block, overflow block, and index block formats, see the OS
1100 Processor Common Input/Output System (PCIOS) Administration and
Programming Reference Manual, 7831 0588 (current version).

5.5.5. File Size Considerations

For a description of file size considerations, see the OS 1100 Processor Common
Input/Output System (PCIOS) Administration and Programming Reference Manual, 7831
0588 (current version).

5.6. ACTUAL KEY Updating
The following chart indicates the MSCS’s usage of the ACTUAL KEY data item
associated with the file:

Indexed Sequential I-O

UP-8584 Rev. 1-A5-26

Verb ACCESS SEQUENTIAL ACCESS RANDOM ACCESS DYNAMIC

READ File handler updates the ACTUAL
KEY contents with the key
associated with the next sequential
logical record.

COBOL program must
set the ACTUAL KEY
contents prior to the
execution of the READ
statement.

COBOL program must set the
ACTUAL KEY contents prior
to the execution of the READ
statement.

READ
NEXT

READ NEXT is invalid for sequential
access.

READ NEXT is invalid for
random access.

File handler updates the
ACTUAL KEY contents with
the key associated with the
next sequential logical record.

WRITE or
REWRITE

1. OPEN for OUTPUT: the COBOL
program must set the ACTUAL
KEY contents prior to the
execution of the WRITE
statement. Keys must be in
ascending order.

2. OPEN for I-O: if file is being
extended beyond its end-of-file,
rules under A apply; otherwise
the MSCS determines the

logical record to be overwritten.

COBOL program must
set the ACTUAL KEY
contents prior to the
execution of the
statement. If the file is
OPEN for OUTPUT, the
keys must be in
ascending order.

COBOL program must set the
ACTUAL KEY contents prior
to the execution of the
statement. If the file is OPEN
for OUTPUT, the keys must
be in ascending order.

START The COBOL program must set the
ACTUAL KEY contents prior to the
execution of the START statement.

START is invalid for
random access.

The COBOL program must
set the ACTUAL KEY contents
prior to the execution of the
START statement.

START
with KEY
Phrase
Specified

The COBOL program must set the
contents of the data-name
specified prior to execution of the
START statement.

START is invalid for
random access.

The COBOL program must
set the contents of the
data-name specified prior to
execution of the START
statement.

DELETE The MSCS determines the logical
record to be deleted based on the
position in the file. The contents of
the ACTUAL KEY are not used.

The COBOL program
must set the contents of
the ACTUAL KEY prior
to execution of the
DELETE statement.

The COBOL program must
set the contents of the
ACTUAL KEY prior to
execution of the DELETE
statement.

FREE FREE is invalid for sequential
access.

The contents of the
ACTUAL KEY are not
used by the MSCS for
the FREE statement.

The contents of the ACTUAL
KEY are not used by the
MSCS for the FREE
statement.

UP-8584 Rev.1-A 6-1

Section 6
Report Writer

6.1. The Special-Names Paragraph in the
Environment Division
Format

[.2-character-alphanumeric-literalIS mnemonic-name]

Description

Mnemonic-name is used in the CODE clause in the Report Description when a
2-character literal is desired as the code.

6.2. The Report Description Entry in the Data
Division
Function

The CODE clause specifies a 2-character literal that identifies each print line as
belonging to a specific report.

Format

[; CODE]mnemonic-name

Syntax Rules

1. Mnemonic-name must be associated with two identifying characters in the
SPECIAL-NAMES paragraph of the Environment Division.

2. If the CODE clause is specified for any report in a file, then it must be specified for
all reports in the same file.

General Rules

1. When the CODE clause is specified, the two characters associated with the
mnemonic-name are placed in the first two character positions of each Report
Writer logical record.

2. The positions occupied by the two characters associated with the mnemonic-name

are not included in the description of the print line but are included in the logical
record size.

3. The clause is ignored if the report file is assigned to the printer.

UP-8584 Rev.1-A 7-1

Section 7
Library

7.1. The COPY Statement
Function

The COBOL library contains text available to the source program at compilation time
through the use of the COPY statement. The effect of the compilation of library entries
is the same as if the text were actually written as part of the source program.

When the E option is present in the Extra Options field of the @ACOB processor call
statement, the COBOL library may contain three types of entries as follows:

� Entries for the Environment Division consisting of equipment-oriented information.

� Entries for the Data Division consisting of information pertaining to file,
communication, and data description entries.

� Entries for the Procedure Division consisting of sequences of procedure paragraphs
and sections.

Format

COPY

REPLACING BY

BY ...

word-1
word-2
identifier-1
literal-1

,word-3
word-4
identifier-2
literal-2

Description

The COPY statements permit the incorporation of existing library text entries into the
Environment, Data, and Procedure Divisions. A library text entry is a segment of
COBOL source language. By specifying the appropriate text-name within an appropriate
format, the programmer can cause an entry to be copied from the library during
compilation. and the result is the same as if the entry had been written as part of the
source program.

Text-name must be in the form of an Exec procedure name. Up to 30 characters can be
used.

Library

UP-8584 Rev.1-A7-2

In this format, word represents any of the following:

� data-name

� procedure-name

� condition-name

� mnemonic-name

� file-name

� saved area-name

� communication description-name

� report-name

No other statement or clause may appear in the same entry as the COPY statement. The
library text to be copied must not contain any COPY statements and must contain
COBOL source language that is syntactically correct. The copying process is terminated
automatically when the END statement of the procedure is reached.

If the REPLACING option is used, each of the library words or identifiers specified in the
format is replaced by the stipulated word or identifier with which it is associated in the
format. On the source listing, all copied material will be realigned to allow for word or
identifier replacement of greater length. This replacement does not alter the material as
it exists in the library, and the entry may be called again in the same program with
different replacements. Words specified in the REPLACING option may be any COBOL
word. The replacement by an identifier includes the replacement of all associated
qualifiers, subscripts, and indexes.

The word replacement within the Procedure Division will replace procedure-names as
well as data-names, file-names, etc.

7.2. Library Entries for the Environment Division
There are five types of entries in the library that may be associated with the
Environment Division: entries for the SPECIAL-NAMES, SOURCE-COMPUTER,
OBJECT-COMPUTER, FILE-CONTROL, and I-O-CONTROL paragraphs.

To use an entry contained in the COBOL library, the COPY clause must follow the
appropriate paragraph-name and indicate the procedure-name of the entry to be copied
from the library. The formats are as follows:

SOURCE-COMPUTER

OBJECT-COMPUTER.

SPECIAL-NAMES.

FILE-CONTROL.

I-O-CONTROL.

copy-statement.

copy-statement.

copy-statement.

copy-statement.

copy-statement.

Library

UP-8584 Rev.1-A 7-3

Environment Division library text may begin with:

1. An Environment Division paragraph-name.

2. A comment statement.

3. Syntactically valid entries associated with the paragraph being copied.

In the first case, the paragraph-name in the copied text must be identical to the
paragraph-name in the data image containing the COPY statement. If the two names are
identical, compilation continues with the first entry in the copied paragraph. If they are
not identical, a diagnostic is issued and the library text is not incorporated in the
compilation.

If the copied text begins with an Area B entry or if the Environment Division
paragraph-name and its associated COPY statement are not contained on the same
source statement, the redundancy checking described in the preceding paragraph is not
performed. Rather, the entire library text is included in the compiled source. Note that
this may result in duplicate Environment Division paragraph headers.

If the copied text begins with a comment, this image is included in the compiled source
but the following image is used to check for the blank or nonblank Area A.

7.3. Library Entries For the Data Division
The entries in the library associated with the Data Division are of two types:

� Entries relating to the File, Report, or Communication Description portion of the
Data Division. These are retrieved by the use of the COPY statement in an entry
carrying an FD, SA, CD, RD, or SD level indicator. Record Descriptions may or may
not be included with the FD, SA, CD, RD, or SD File description.

� Entries relating to the Record Description, Common-Storage, Working-Storage, or
Linkage Sections of the Data Division. These are retrieved through the use of the
COPY statement at the 01 level in the source program Record Descriptions.

Regardless of whether a Data Division COPY statement is invoked at a level indicator or
an 01 level Record Description, a redundancy check is made between the source and the
library text.

If the library text begins with a nonblank Area A and is not a comment, the level
indicator or level number in the library text is compared to the level indicator or number
in the data image containing the COPY statement. If the level indicators or numbers are
identical, and the level indicator or number and the data-name in the library are
terminated by a period, the source line will be assumed to be terminated by a period. If
the level indicators or numbers are not identical, the COPY is terminated and a
diagnostic is printed.

If the library text begins with an image which has a blank Area A or if the Data Division
level indicator or number and its associated COPY statement are not contained on the
same image, the redundancy check is not done and the entire library text is included in
the compilation. Note that if it is the user’s intent to initiate copying with data items

Library

UP-8584 Rev.1-A7-4

subordinate to an 01 level Record Description, it is essential that the first such item have
its level number wholly in Area B. Also note that a copied Report Group Description
which has text in Area A of its first line must contain both a level number and a
data-name even though report group syntax allows the latter to be omitted.

If the library text begins with a comment, this image is included in the compiled source
but the following image is used to check for the blank or nonblank Area A.

7.4. Library Entries for the Procedure Division
Each routine in the COBOL Library is composed of either one paragraph, identified by a
paragraph-name, or one section, identified by a section-name. For purposes of copying
this routine from the library, the paragraph-name or section-name is called a
procedure-name.

Routines are retrieved from the library and copied into the source program through the
use of the COPY statement in the Procedure Division. Then, at compile time the
procedure-name that identifies the COPY statement replaces the library
procedure-name that identifies the library routine. The format of a COPY clause written
in the Procedure Division is as follows:

procedure-name copy-statement.

A COPY statement following a SECTION header must reference library text which
begins with a section-name and a paragraph-name. The section-name in the library text
will be skipped and the name of the section will be the source section-name which
initiated the COPY.

If a COPY statement appears following a paragraph header and the copied text begins
with a paragraph header, the paragraph-name in the library text will be skipped.

For either a section or paragraph COPY statement, library text following the skipped
procedure-name (if any) will be incorporated in the compilation.

UP-8584 Rev.1-A 8-1

Section 8
Interprogram Communications

8.1. The ENTER Statement
Function

The ENTER statement transfers control from one object program to another within the
same run unit.

Format 1

ENTER literal-1

Format 2

ENTER FORTRAN
FD [ASM]

[USING [,]...[]]

literal-1

argument-1 argument-2 argument-31
Description

The literal must be a 1-to 12-character alphanumeric which is the name of the
program-id or entry point of the program which is called.

When the G option is present in the Extra Options field of the @ACOB statement,
parameters will be generated in the I-bank.

Numeric literal arguments are assumed to be fixed-point binary, right-justified in single
or double precision as necessary. Floating-point literals are assumed to be double
precision floating point. Nonnumeric literals are assumed to be DISPLAY (ASCII) unless
the T option is set on the @ACOB processor call statement, in which case the
nonnumeric literal will be DISPLAY-1 (Fieldata).

Arguments which are modified by a called program should not be specified as literals in
the ENTER statement argument list. Not only would the modified value be
unaddressable by the calling program upon return from the subroutine, but subsequent
execution of calling statements which make use of literals might be incorrect.

Procedure-name arguments must not be used if a called program is written in COBOL.
When numeric literals are used as arguments, procedure-names in the program should
contain at least one alphabetic character to avoid a conflict between numeric literal and
numeric procedure-name. If there is a conflict, COBOL will assume the argument is
referring to the procedure-name.

Interprogram Communications

UP-8584 Rev.1-A8-2

If a calling program is itself called, it may pass, as an argument, data which was passed
to it. That is, Linkage and Common-Storage Section identifiers may be included in the
argument list of on ENTER statement.

Upon execution of an ENTER statement, control is transferred to the object code which
corresponds to either the first nondeclarative statement in a program if a
program-id-name is specified, or to the first statement of the named section or paragraph
if that section-name or paragraph-name is listed as an entry point name for the called
program.

Regardless of the name specified (program-id-name or entry-point-name), erroneous
processing will occur if an ENTER in a nonrandom processing section or in a particular
execution cycle of a random processing section causes either the calling or called
program to be entered recursivelyù That is, only one ENTER for the same subprogram
may be active until an EXIT PROGRAM corresponding to the first ENTER is executed.

8.2. COBOL Calling FORTRAN
A FORTRAN subprogram may be invoked by an ENTER statement in COBOL programs.
Correct processing, however, is possible only if the arguments passed to the FORTRAN
are processable by FORTRAN object code. In addition. variables and constants passed
between COBOL and FORTRAN programs must be in internal formats acceptable to
both processors. For example. FORTRAN complex variables have no direct counterpart
in COBOL and COBOL ASCII (DISPLAY) items have no exact counterpart in FORTRAN.

The subroutine calling sequences in COBOL and FORTRAN ore slightly different:

Calling Sequences

COBOL FORTRAN

IBJ$ X11, subprogram-name
+ C$B subprog. number of arguments
+AC1
+AC2
.
.
.
+ACr

LMJ X11,subprogram-name
+ AF1
+ AF2
.
.
.
+ AFr
Walkback word

where:

1. IBJ$ is a collector XREF which maps into an LMJ or LIJ depending on the BDI of
subprogram name.

2. C$B subprog is an entry point of the named subprogram’s D-bank.

3. The number of arguments is an 18-bit binary number indicating the number of
parameters which follow.

Interprogram Communications

UP-8584 Rev.1-A 8-3

4. AC1 is a COBOL argument address in the form:

0 Index 0 0 u

0 11 12 17 1
8

1
9

20 35

5. AF1 is a FORTRAN argument address in the form:

0 Index 0 1 u

0 11 12 17 1
8

1
9

20 35

6. The walkback word is a word which is nonzero in S2 (FORTRAN uses this word to
produce a diagnostic trace back to the main program through each subroutine used).

Thus, if a COBOL-generated calling sequence is used to invoke a FORTRAN subprogram:

1. The FORTRAN subprogram must have its first argument as a dummy parameter
which cannot be used.

2. COBOL parameter addresses must not have an index for arguments AC1 through
ACr-1 . The COBOL compiler will generate acceptable argument addresses if the
parameter is a 01-or 77-level data item in the Working-Storage or Common-Storage
Section or if the parameter is a literal.

3. The last argument, ACr, must be allocated but is not used unless an error occurs in
the FORTRAN subprogram, in which case a guard mode will occur in attempting
reference to the walkback word.

FORTRAN is not reentrant; therefore, be careful of asynchronous calling.

8.3. Downward Compatible Subprogramming
When format 2 of the ENTER statement is specified, parameters will be generated
differently depending upon the phrase.

If the FD phrase is specified, the calling sequence will be as follows:

LMJ X11,C$M701
LMJ X11, subroutine
+ parameter-1
 .
 .
 .
+ parameter-n
LMJ X11,C$M702

where parameter-1 is as follows:

Interprogram Communications

UP-8584 Rev.1-A8-4

Number of
Parameters

Index Register Address of Parameter

0 5 6 11 12 17 18 35

Note that ASCII COBOL will generate more than nine parameters but will issue a
warning since Fieldata COBOL will not allow more than nine parameters. This in case a
user wishes to pass this type of parameter sequence to a subroutine other than a
Fieldata COBOL subroutine.

All other parameters will be the same as parameter-1 omitting the number of parameters
in S2.

For Fieldata COBOL, the ASCII COBOL RTL routine (C$M701) will be entered prior to
transferring control to the subroutine and immediately after control is returned
(C$M702). The purpose of such a routine will be to do PSR toggles to and from
third-word mode and to save X6(KREG), X7(CREG), X9(SREG), R4-R7, R14-R15. This
routine will also set up R-registers needed by Fieldata COBOL.

Since the Fieldata COBOL routines may not be reentrant, C$M701, C$M702 synchronize
entry to the subroutines via a test and set (TS) instruction.

If the FORTRAN phrase is specified, the calling sequence will be:

LMJ X11, subroutine
+ parameter-1
 .
 .
 .
+ parameter-n
NOP S

where S is the line number of the COBOL source statement that caused generation of the
calling sequence.

The parameter words are of the following form:

Index Register Address of Parameter

0 11 12 17 18 35

Interprogram Communications

UP-8584 Rev.1-A 8-5

If the FD ASM phrase is specified, the calling sequence will be as follows:

LMJ X11,C$M703
LMJ X11, subroutine
 .
 .
 .
 ASM type parameters
 .
 .
 .
next instruction

The routine C$M703 will examine the parameters to the subroutine and create
parameters that are compatible to those Fieldata COBOL does when calling an
assembler subroutine using an ENTER SUBROUTINE REFERENCING statement. This
routine will also toggle the PSR to and from third-word mode, synchronize calls to
subroutines via a test and set (TS) instruction. and save X6(KREG), X7(CREG),
X9(SREG), R4-R7, and R14-R15.

If the Common-Storage Section is used to share the main storage area between Fieldata
COBOL and ASCII COBOL, it is necessary to insert a FILLER described as PIC X(6)
USAGE IS DISPLAY-1 at the beginning of the ASCII COBOL Common-Storage Section to
allow for the data allocation method used by Fieldata COBOL.

UP-8584 Rev.1-A 9-1

Section 9
Asynchronous Processing

9.1. The Saved-Area Description in the Data
Division
Format

[,RECORD CONTAINS[TO] CHARACTERS]integer-1 integer-2

Description

The RECORD CONTAINS clause is ignored and serves as documentation only.

9.2. Procedure Division

9.2.1. The PROCESS Statement

Function

The PROCESS statement initiates a set of USE procedures under the control of an
Asynchronous Control System (ACS).

Format

PROCESS [[FROM] USING]section-name identifier record-name

Syntax Rules

1. The parameter section-name specified in the PROCESS statement must be the name
of a USE procedure defined in the Declarative Section with a USE FOR RANDOM
PROCESSING clause in its header section. It identifies the Random Processing
Section to be executed.

2. The USING phrase is required for programs containing more than one Saved-Area
Description.

3. The parameter record-name must be the name of a level 01 Record Description
entry which is subordinate to a Saved-Area description entry (SA) defined in the File
Section.

Asynchronous Processing

UP-8584 Rev.1-A9-2

General Rules

1. The PROCESS statement causes the named Random Processing Section to be
executed as an asynchronous USE cycle. Actual commencement of execution for
the initiated cycle is a function of the Asynchronous Control System. Control for the
initiating cycle is returned to the next statement following the PROCESS statement.

2. The cycle which contains the PROCESS statement will be suspended until another
execution of the named Random Processing Section is completed if activation of
this cycle would exceed the maximum number of cycles stated in the FOR integer-2

CYCLES clause of the named Random Processing Section. See the OS 1100 ASCII
COBOL Programming Reference Manual, UP-8582 (current version).

3. When the optional phrase FROM is used, moving an identifier to the copy of the
Saved-Area allocated for the cycle initiated by the PROCESS statement takes place
in accordance with the rules specified for the MOVE statement without the
CORRESPONDING option.

4. The PROCESS statement causes the allocation of one copy of the named Saved-Area
and one copy of each PROCESSING MODE IS RANDOM or PROCESSING MODE IS
RANDOM CD stated in the USING clause of the USE FOR RANDOM PROCESSING
clause for the named Random Processing section to be dedicated to the exclusive
use of the cycle initiated at execution of the PROCESS statement. Saved-Area
copies are released for reassignment upon completion of the cycle to which they
were dedicated. If no copies of the SA or if a record area of a PROCESSING MODE
IS RANDOM file are available, the cycle which has the PROCESS statement is
suspended until a copy of the record-area or SA is made available by completion of
another cycle.

5. Exclusive use of shared data items can be assured only through explicit embedding
of appropriate LOCK and UNLOCK statements throughout the source language
programs. Data items which occupy portions of a word in conjunction with a shared
data item must also be treated as an extension of the shared data item. It is
therefore advisable that shared data items be either implicitly or explicitly word
synchronized.

9.2.2. The SET Statement

Function

The SET RANK statement dynamically changes the value of the RANK associated with a
Random-Processing Section or Saved-Area description.

Format

SET RANKFOR
UP BY
DOWN BY
TO

area-name-1
section-name-1

identifier-1
literal-1

,area-name-2
,section-name-2

[]...
[]...

Asynchronous Processing

UP-8584 Rev.1-A 9-3

Description

All section-name clauses must be names of an out-of-line procedure in the declarative
section which contains a USE FOR RANDOM PROCESSING statement.

Area-name clauses must be names of Saved-Area description entry (SA) defined in the
File Section of the Data Division.

All identifiers and literals must be positive integers.

The RANK of each RP-section and Saved-Area is changed according to the SET RANK
statement. Each cycle priority for all active cycles is then recalculated as the sum of the
RANK of the RP-Section and RANK of the Saved-Area for the cycle. The Asynchronous
Control System locks out any other access to ACS until the recalculation of all cycles is
done.

UP-8584 Rev.1-A 10-1

Section 10
Processor Call Statement

For a complete description of the @ACOB Processor Call statement, see the OS 1100
ASCII COBOL Programming Reference Manual, UP-8582 (current version). The
following options are not described in that manual:

Table 10-1. @ACOB Processor Call Options

Option Description

M Ignore MONITOR statements.

T Reverse DISPLAY and DISPLAY-1; implicit and DISPLAY usage mean Fieldata. Reverse
COMPUTATIONAL and COMPUTATIONAL-4. This option does not affect data items
described with a PICTURE clause containing 1’s (exact binary). This option does not
affect the special registers.

Table 10-2. @ACOB Processor Call Extra Options

Extra
Option Description

E Process American National Standard 1968 COPY statements and library text only.
American National Standard 1974 COPY statements and library text cannot be
processed with this option.

G Generate the parameter list for the CALL statement in I-bank. When the parameters
are generated in the I-bank, the called program cannot be banked.

O Process American National Standard 1968 CODE clause, which implies fixed-length
images. American National Standard 1974 CODE clause, which implies
variable-length images, will not be processed.

	Contents
	Section 1. Introduction
	Section 2. Nucleus
	2.1. Inline Section in the Control Division
	2.2. The REMARKS Paragraph in the Identification Division
	2.3. Data Division
	2.3.1. Data Division Structure
	2.3.2. Reserved Data-Names
	2.3.3. The POINT LOCATION Clause
	2.3.4. The USAGE Clause

	2.4. Procedure Division
	2.4.1. The ACCEPT Statement
	2.4.2. The DISPLAY Statement
	2.4.3. The EXAMINE Statement
	2.4.4. The EXHIBIT Statement
	2.4.5. The INSPECT Statement
	2.4.6. The MONITOR Statement
	2.4.7. The NOTE Statement
	2.4.8. The ON Statement
	2.4.9. The TRANSFORM Statement

	Section 3. Sequential I-O
	3.1. Environment Division
	3.1.1. The FILE-CONTROL Paragraph
	3.1.2. The I-O-CONTROL Paragraph

	3.2. Data Division
	3.2.1. The BLOCK CONTAINS Clause
	3.2.2. The LABEL RECORDS Clause
	3.2.3. The RECORDING MODE Clause
	3.2.4. The VALUE OF Clause

	3.3. Procedure Division
	3.3.1. The CLOSE Statement
	3.3.2. The OPEN Statement
	3.3.3. The READ Statement
	3.3.4. The REWRITE Statement
	3.3.5. The USE Statement
	3.3.6. The WRITE Statement

	3.4. 1968 Standard COBOL Tape Files
	3.4.1. Unlabeled File Structure
	3.4.2. Labeled File Structure
	3.4.3. Label Record Formats
	3.4.4. Data Block Format

	3.5. CFH Files
	3.5.1. Unlabeled File Structure
	3.5.2. Labeled File Structure
	3.5.3. Label Record Formats
	3.5.4. Data Block Format

	3.6. Compatible Files
	3.6.1. Unlabeled File Structure
	3.6.2. Labeled File Structure
	3.6.3. Label Record Formats
	3.6.4. Data Block Format

	3.7. LION Files
	3.7.1. Unlabeled File Structure
	3.7.2. Labeled File Structure
	3.7.3. Label Record Formats
	3.7.4. Data Block Formats

	3.8. 1968 Standard COBOL Sequential Mass Storage Files
	3.8.1. Unlabeled File Structure
	3.8.2. Labeled File Structure
	3.8.3. Label Record Formats
	3.8.4. Data Block Format

	3.9. SDF Mass Storage and Tape Files

	Section 4. Direct I-O
	4.1. General
	4.2. Environment Division
	4.2.1. The FILE-CONTROL Paragraph
	4.2.2. The I-O-CONTROL Paragraph

	4.3. Data Division
	4.3.1. The BLOCK CONTAINS Clause
	4.3.2. The LABEL RECORDS Clause
	4.3.3. The RECORDING MODE Clause
	4.3.4. The VALUE OF Clause

	4.4. Procedure Division
	4.4.1. The CLOSE Statement
	4.4.2. The FREE Statement
	4.4.3. The OPEN Statement
	4.4.4. The READ Statement
	4.4.5. The REWRITE Statement
	4.4.6. The START Statement
	4.4.7. The USE Statement
	4.4.8. The WRITE Statement

	4.5. Direct Files
	4.5.1. Unlabeled File Structure
	4.5.2. Labeled File Structure
	4.5.3. Label Record Formats
	4.5.4. Data Block Format

	4.6. SDF Direct Files

	Section 5. Indexed Sequential I-O
	5.1. General
	5.2. Environment Division
	5.2.1. The FILE-CONTROL Paragraph
	5.2.2. The I-O-CONTROL Paragraph

	5.3. Data Division
	5.3.1. The BLOCK CONTAINS Clause
	5.3.2. The LABEL RECORDS Clause
	5.3.3. The RECORDING MODE Clause
	5.3.4. The VALUE OF Clause

	5.4. Procedure Division
	5.4.1. The CLOSE Statement
	5.4.2. The DELETE Statement
	5.4.3. The FREE Statement
	5.4.4. The OPEN Statement
	5.4.5. The READ Statement
	5.4.6. The REWRITE Statement
	5.4.7. The START Statement
	5.4.8. The USE Statement
	5.4.9. The WRITE Statement

	5.5. Indexed Sequential Files
	5.5.1. Unlabeled File Structure
	5.5.2. Labeled File Structure
	5.5.3. Label Record Formats
	5.5.4. Data Block, Overflow Block, and Index Block Format
	5.5.5. File Size Considerations

	5.6. ACTUAL KEY Updating

	Section 6. Report Writer
	6.1. The Special-Names Paragraph in the Environment Division
	6.2. The Report Description Entry in the Data Division

	Section 7. Library
	7.1. The COPY Statement
	7.2. Library Entries for the Environment Division
	7.3. Library Entries For the Data Division
	7.4. Library Entries for the Procedure Division

	Section 8. Interprogram Communications
	8.1. The ENTER Statement
	8.2. COBOL Calling FORTRAN
	8.3. Downward Compatible Subprogramming

	Section 9. Asynchronous Processing
	9.1. The Saved-Area Description in the Data Division
	9.2. Procedure Division
	9.2.1. The PROCESS Statement
	9.2.2. The SET Statement

	Section 10. Processor Call Statement

