Thorne, Kip. The Science of Interstellar. New York: W. W. Norton, 2014. ISBN 978-0-393-35137-8.
Christopher Nolan's 2014 film Interstellar was eagerly awaited by science fiction enthusiasts who, having been sorely disappointed so many times by movies that crossed the line into fantasy by making up entirely implausible things to move the plot along, hoped that this effort would live up to its promise of getting the science (mostly) right and employing scientifically plausible speculation where our present knowledge is incomplete.

The author of the present book is one of the most eminent physicists working in the field of general relativity (Einstein's theory of gravitation) and a pioneer in exploring the exotic strong field regime of the theory, including black holes, wormholes, and gravitational radiation. Prof. Thorne was involved in the project which became Interstellar from its inception, and worked closely with the screenwriters, director, and visual effects team to get the science right. Some of the scenes in the movie, such as the visual appearance of orbiting a rotating black hole, have never been rendered accurately before, and are based upon original work by Thorne in computing light paths through spacetime in its vicinity which will be published as professional papers.

Here, the author recounts the often bumpy story of the movie's genesis and progress over the years from his own, Hollywood-outsider, perspective, how the development of the story presented him, as technical advisor (he is credited as an executive producer), with problem after problem in finding a physically plausible solution, sometimes requiring him to do new physics. Then, Thorne provides a popular account of the exotic physics on which the story is based, including gravitational time dilation, black holes, wormholes, and speculative extra dimensions and “brane” scenarios stemming from string theory. Then he “interprets” the events and visual images in the film, explaining (where possible) how they could be produced by known, plausible, or speculative physics. Of course, this isn't always possible—in some cases the needs of story-telling or the requirement not to completely baffle a non-specialist with bewilderingly complicated and obscure images had to take priority over scientific authenticity, and when this is the case Thorne is forthright in admitting so.

Sections are labelled with icons identifying them as “truth”: generally accepted by those working in the field and often with experimental evidence, “educated guess”: a plausible inference from accepted physics, but without experimental evidence and assuming existing laws of physics remain valid in circumstances under which we've never tested them, and “speculation”: wild and wooly stuff (for example quantum gravity or the interior structure of a black hole) which violates no known law of physics, but for which we have no complete and consistent theory and no evidence whatsoever.

This is a clearly written and gorgeously illustrated book which, for those who enjoyed the movie but weren't entirely clear whence some of the stunning images they saw came, will explain the science behind them. The cover of the book has a “SPOILER ALERT” warning potential readers that the ending and major plot details are given away in the text. I will refrain from discussing them here so as not to make this a spoiler in itself. I have not yet seen the movie, and I expect when I do I will enjoy it more for having read the book, since I'll know what to look for in some of the visuals and be less likely to dismiss some of the apparently outrageous occurrences by knowing that there is a physically plausible (albeit extremely speculative and improbable) explanation for them.

For the animations and blackboard images mentioned in the text, the book directs you to a Web site which is so poorly designed and difficult to navigate it took me ten minutes to find them on the first visit. Here is a direct link. In the Kindle edition the index cites page numbers in the print edition which are useless since the electronic edition does not contain real page numbers. There are a few typographical errors and one factual howler: Io is not “Saturn's closest moon”, and Cassini was captured in Saturn orbit by a propulsion burn, not a gravitational slingshot (this does not affect the movie in any way: it's in background material).

December 2014 Permalink