
• l'JAm •

UNIVAC

1108 EXECUTIVE

USERS GUIDE

UNIVAC 110B EXECUTIVE

USERS GUIDE

prepared by

ROBERT W. MOORE

Ut-UVAC®is a Regi stered Trademark of the Sperry Rand Corporation

Publ ished by
Univac: Marketing Education
UE - 637

C 1970. SPERRY RAND CORPORATION

PRINTED IN U.S.A.

SUBJECT

General Description

Definitions

TABLE OF CONTENTS

Components of the Executive System

File Control Fundamentals

General

Master Directory

Mass Storage Allocation

Rollout of Files

Exclusive Use of Files

File Names

Program File Fundamental

Program File Elements

Notation for Program File Elements

Fundamental Use of the Control Stream

Purpose

Control Stream Format

General Content

@RUN Statement

@FIN Statement

@ASG Statement

SEC. PAGE

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

REFERENCE

1 • 1

1 .2

1.3

1.4

1 .4.1

1 .4.2

1 .4.3

1.4.4

1.4.5

1.4.6

1 .5

1 .5.1

1.5.2

2

2.1

2.2

2.3

2.6

2.7

2.8

SUBJECT

Fastrand ASG

Magnetic Tape ASG

@FREE Statement

@USE Statement

@Processor Call Statements

Format of Correction Lines

@XQT Statement

@MAP Statement

@EOF Statement

@PMD Statement

@MSG Statement

@HOO Statement

Example Deck Setups

Compile Only

Compile and Execute

Compile and Exe~cute MElin Program and Two
Subroutines

Compile and Catalog Original Program

Update Existing Program and Execute

Execute Existing Program Using Catalogued
Files

SEC. PAGE

2

2

2

2

2

2

3

REFERENCE

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

3

3.1

3.2

3.3

3.4

3.5

3.6

.§UBJECT SEC. PAGE REFERENCE

File Utility Routines 4 4

Statement Format and Rules 4.1

@COPY Statement 4.2

@COPOUT Statement 4.3

@COPIN Statement 4.4

@DELETE Statement 4.5

@CHG Statement 4.6

@PRT Statement 4 4.7

@PACK Statement 4.8

@PREP Statement 4.9

@PCH Statement 4.10

@ERS Statement 4.11

@CYCLE Statement 4.12

@FIND Statement 4.13

@MOVE Statement 4.14

@REWIND Statement 4.15

@MARK Statement 4.16

@CLOSE Statement 4.17

The Collector 5 5

G~9neral 5 5.1

Inputs to the Collector 5.1 • 1

SUBJECT

The Collection Process

The @MAP Statement

Collector Control Statements

IN

NOT

LIB

SEG

Segment Loading

SEC. PAGE REFERENCE

5.1 .2

5.2

5.3

5.3.1

5.3.2

5.3.3

5.3.4

5.3.4.10

To the User:

The attached UNIVAC 1108 User's Guide is intended to

provide a general description of the basic functions

performed by the UNIVAC 1108 Executive, and the means

by which the worker may utilize such functions to attain

his desired end.

Since the 1108 Executive is designed to provide a simple

control mechanism for simple applications and yet include

the ability to express a complex environment where necessary,

the accompanying explanations have been held to a relatively

simple level of use.

The User is referred to the UNIVAC 1108 Operating System

Executive Programmer's Reference Manual for a more detailed

explanation of the working and control of the Executive.

1 INTRODUCTION

1.1 GENERAL DESCRIPTION

The 1108 Executive System controls the operating environment of

all activities performed within the 1108 hardware configuration.

It produces optimum utilization of the 1108 Central Processors

and all other hardware components and, .at the same time, is

sensitive to the particular requirements of individual users.

Some of the major features of the 1108 Executive System are as

follows:

1. Optimize machine facili·ties usage, and at the same time

optimize interaction for all users by means of multi­

programming/multi-processing techniques.

2. Make available to remote users the complete facilities

of the 1108 System.

3. Provide an executive control language whose structure will

allow simple programs to have a simple means of expressing

their requirements.

4. Provide the flexibility to express a complex environment

for complex programs.

5. Provide a broad and easily-used spectrum of program con-

struction, manipulation, and checkout aids, including

SEC PAGE
'1 2

the permanent storage of program elements on random-

access deviees.

6. Provide for tasks to be executed in either batch, demand,

or Real-Tim(3 mode.

7. Provide a simple and flexible means of complete software

system generation and maintenance at the individual

installation.

8. Provide system invulnerability to programming error, and,

as far as is reasonable, hardware errors.

9. Provide the simplest possible operational characteristics

consistent 'wi th full utilization of the capabilities of

the system.

The UNIVAC 1108 Executive System is designed to provide effec-

tive and efficient utilization of the mass storage devices

available with the 1108. Thus giving an unprecendented ability

to relieve operators and programmers of responsibilities in

maintaining and physically handling cards, magnetic tapes, etc.

At the same time, the overall efficiency of operation is

considerably improved.

Provision is made for the maintenance of permanent data files

and program files on the mass storage devices, with full

facilities for modification and mani~llation of these files.

Security measures are invoked by the Executive System to in-

sure that files are not subjected to unauthorized use. As

unused mass storage space approaches exhaustion, provision is

also made for automatic relocation of files of low usage-

frequency to magnetic tape. When the use of files relocated

in such a manner is requested, they are retrieved and restored,

under control of the Executive System, with no inconvenience to

the user. For the most part, dynamic assignment of mass storage

space is available to the user via the Executive System. To

facilitate efficient utilization of available facilities, the

user is also able to return portions of mass storage to general

use as he finishes with them.

The multi-programming capabilities of the Executive System

imply that many unrelated programs may be residing in main

storage at the same time. Such programs may be Real-Time runs,

classified runs, or simple debugging runs. Infringement of

privacy in such a mixture is highly probable, especially in

cases where debugging runs are executing.

To combat this invasion, intentional or unintentional, the

Executive System has unique features that automatically guaran-

tee absolute protection for each program. The protection guards

against two forms of invasion, direct and indirect.

Direct protection safeguards all programs in main storage from

an active program that may attempt to read, write, or Jump

into another program area. This safe guard is effected by

"locking out" any area of main storage that is not assigned to

the presently active program., or in effect, "locking in" the

active program. Any attempt to perform any of the above

functions is immediately reported to the Executive System.

Indirect protection is realized by reserving certain control

functions for the exclusive use of the Executive System. These

functions are of the type that could cause a system malfunction

and, in turn, a program malfunction if erroneously used.

In both forms of protection, the Executive System is, in

reality, guarant~ing its own safety and that of other llser

programs from abuses by the active program that may prove

catastrophic ..

1.2 DEFINITIONS

Certain terms are referred to in this section with the assump-

tion that the rE~ader is acquainted with their meaning. The

following definitions are for the convenience of the reader:

Activity - A division of a program which may be executed

independ.ent of other portions of the program.

Activity Registration - The act of registering with the Executive

System an activity which can be executed asynchronously with

other parts of a program.

Batch Processing - A mode of operation where several runs are

grouped prior to processing. Transition from run to run is

effected by the Executive System.

Breakpoint - The division of symbiont defined files. Allows

those portions of the file to be queued independent of run

completion. Maximum use of available printers and punches is

achieved in this manner.

Central Site - The 1108 Computer and its attached peripheral

equipment.

Collection - The process by which elements of a program are

brought together by satisfying the external symbols of the

initial element and all referenced elements. The resulting

structure defines a program to be allocated and executed.

Communication Device - An input or output device which operates

in a Real-Time mode. The central pro~essing unit must be pre-

pared to receive input at any time or the information may be

lost.

SEC PAGE
1 -6-

Demand Processing - The manner of processing in which the

Executive System or a processor spontaneously reacts to the

inputs from a remote inquiry terminal which is sending messages

as required. This is essentially a demand and response type

of activity.

Element - The basic component of a program file usually defined

and manipulated as a unit. The form of an element is dependent

upon the pro grant using it.

Executive Control Language - Specifically formatted input

information which is used to direct the activity of the

Executive System.

Facilities - The peripheral units) main storage, tape drives,

drum storage, etc. of the Central Site.

File - An organized collection of data stored in such a manner

so as to facilitate the retrieval of each individual datum.

Granule - The incremental size in which a mass storage unit is

assignable.

Mult.i-programmirl,g - The concurrent execution of several programs which
occupy main storage. This is accomplished by sharing the attention of
the central processor.

Processor Call Statements - Specifically formatted input information
which is used to direct the activity of a system processor. A subset
of the Executi ve~ Control Language.

Program File - A file in which the data are the constituents of

a program or of several programs. This data may consist of pro-

gram elements in a symbolic, relocatable binary, or absolute

binary form. Special information in the program file is used to

aid the system in the manipulation of the program constituents.

Real-Time Processing - An operating environment in which the

response to an external stimuli is sufficiently fast to achieve

a desired objective. Depending upon the application, the res-

ponse time may vary from seconds to microseconds. Generally,

Real-Time processing is under the influence of asynchronous

inputs from one or more communications devices.

Re-Entrant Coding - A set of instructions coded in such a

manner that they may logically perform the same task on

different data sets simultaneously.

Remote Site - A communications terminal which is capable of

sending information to and/or receiving information from the

Central Processor via some common carrier or transmission

scheme.

Run - A run is the standard unit in which work is entered into the
operating system. This consists of a run command followed by one
or more control commands which cause the ordered execution of
processors and/or user programs.

Swapping - The process of storing low priority or suspended programs
on secondary storage in order to allow space to retrieve another
program into primary storage for execution.

Task - A logical step in the processing of a run. For example,
execution of a system processor or a user program.

SEC PAGE
1 8

1 .3 COMPONENTS OF THE EXECUTIVE SYSTEM

The UNIVAC 1108 Executive System is composed of many different

routines, each of which performs specific functions. These

routines are organized into several separate groups. For

introductory purposes, a brief description of each component

group follows:

Supervisor - The supervisor controls the sequencing, setup, and

execution of all runs. Among those routines included ·within

the supervisor are the scheduling routines, interrupt process-

ing routines, timing r:)utines, and accounting routines.

F~ecutive Requests - Executive Requests are entrances into the

Executive System which provide functions for a user program.

Depending on the function, it may be performed asynchronously,

synchronously, or immediately. If it is not an immediate re-

quest, a queue is maintained.

Symbionts - Symbionts provide the interface between the primary

unit record equipment and the user program. These routines are

referenced by using executive requests for input and output.

Input and output data are buffered on the mass storage devices.

Input - Output Device Handlers - The input/output handlers are

responsible for controlling the activities of all I/O channels

SEC PAGE
1 9

and peripheral equipment attached to the UNIVAC 1108. These

device handlers provide the user with a full capability of

peripheral device operations.

Operator Communications - The Communications Section of the

Executive System handles all communications between the operator

and the operating programs. This communication takes place via

the computer keyboard and on-line printer on the console channel.

Neither the keyboard nor the console printer can be assigned

exclusively to operating programs.

File Control System - The File Supervisor controls the creation

and maintenance of all program and data files. It also main-

tains an up-to-date master directory of all files catalogued

in the system and the availability of all mass storage and

magnetic tapes.

Data Handling - The Data Handling routines are designed to

process a wide variety of file formats using a general techni-

que. Few restrictions are placed on the formats acceptable to

the system.

Files may be processed at the item or block levels with general

disregard for the physical characteristics of the I/O device

assigned. Data is presented or accepted, randomly or sequen-

tially, on request of the user thereby providing complete

operational flexibility for efficient file manipUlation.

SEC PAGE
·'1 10

File Utility Routines/Program Utility Routines (FllRflUR) - To

aid the user in the manipulation of program and data files, 8

set of file utility routines is provided by the Executive System.

These routines perform 5. variety of functions for system and

user data file maintenance.

Auxiliary Processors - A set of auxiliary processors is in-

clud3d in the :Eix.ecutive System. These processors compl.ement

the source language processors such as FORTRAN. This set ;)f

processors includes the collector for linking relocatable sub-

programs, and the procedure definition processor for inserting

and modifying assembler, COBOL, or F'ORTRAN procedure definitions

in a program-file.

Processor Interface Routines - The processor interface routines

provide a simple, standard interface for all processors "\Nitbin

the system. Complete facilities are provided for the input of

source-language statements and the output of' the resulting 1'e-

locatable binary code.

The Diagnostic System - A comprehensive diagnostic system is

available within the 1108 Executive t.o aid the checkout of

user programs. Commands are available which can trigger snap-

shot dumps at the time of compilation or collection of a user

routine. Post-mortem dumps are also available through an

Executive Control Statement.

SEC PAGE
1 11

System Setup - The system generation routine provides the means

of generating and maintaining a system tailored to the parti-

cular needs of each installation.

Utility Routines - Included within the utilities section of the

Executive System are diagnostic routines, file conversion routines,

and other programming aids.

-\ .4 FILE CONTROL FUNDAMENTALS

-\ .4.1 GENERAL

The file control routines exercise centralized control over

operations on all files within the system. The primary functions

performed by the file supervisor consist of:

1. Maintaining a directory of both catalogued permanent files

and temporary files. (A permanent file is one which exists

prior to and/or after the termina.tion of a run which refer-

ences it. A temporary file is one which is created during

the course of a run and is not retained after the run

termi na tes).

2. Control allocation of mass storage space as new files are

assigned and existing files are expanded.

3. Provide an interface between the worker program and the

mass storage device handlers to maintain the absolute

SEC PAGE
1 12

addresses of the various granules of each file.

4. Control the sharing of files.

1 .. 4.2 MASTER DIRECTORY~

For each file known to the system, other than temporary files,

an entry containing the identification and characteristics of

the f i 1 e is m9.i n tai ned by the sys tern in 'a mas ter di rec tory of

files. The proeess of entering a file into the master directory

is referred to as cataloguing and is effected by control state-

m,ents. By use of the master directory the system rem9.ins cogni-

zant of the usage of m~ss storage and magnetic tape reel numbers.

An entry exists in the master directory corresponding to each

catalogued file. The information contained in each entry in-

eludes the following:

1. External name of the file, including qualifier.

2. Project identity from the run control statement.

3. Account number from the run control statement.

4. Date on which the file was catalogued.

5. Activity of the file (including date of last reference).

6. Usage authorization (read and write keys).

7. Recording mode, if tape.

8. Granularity and number of granules assigned if mass storage.

SEC PAGE
"1 13

9. Number of reels of tape and tape reel numbers if a tape file.

10. Linkage to the various granules if a mass storage fi1e.

11. F-cycle - absolute and relative.

The activity of the file is maintained to determine which files

to rollout to magnetic tape if mass storage is nearing the over-

flo"W state.

The master directory shows the recording mode in effect at the

time a magnetic tape is assigned. This includes density, parity,

and noise constant. If magnetic tape files are cata1ogued, which

were created outside of the system or which had been written and

catalogued in separate runs, the recording mode must be entered

as parameters at the time of cataloguing if other than the system

standard. When a catalogued magnetic tape file is assigned to a

run, the recording modes are set to c~he conditions saved in the

directory.

The tape reel numbers are obtained from the operator response to

the mount messages for the run which originally catalogued the

file and are inserted into subsequent mount messages when cata-

logued files are assigned.

1 .4.3 MASS STORAGE ALLOCATION

The term "Mass Storage" is taken to mean all types of magnetic

.SEC PAGE
1 14,

drum (FH 432, FH 1782, and FASTRAND). Mass storage is allocated

by the 1108 Exec in three basic types:

1. A fixed-length area for the system's residence.

2. A contiguous FH 432 or FH 1782 area for programs.

3. FASTRAND format for both worker programs and the system usage.

The fixed length area of mass storage used by the Executive

System is allocated at system generation time and remains fixed

in size and location during operation. This area is loaded with

a copy of the Executive routines, an area for storing executive

tables, and a copy of the processors.

Statements can be used at system generation time to specify one

or more areas of FH 432 and. FH 1782 magnetic drum which are to

be assigned to runs as fixed-length contiguous areas. These

areas are intended for the special cases where worker programs

need direct usage of high speed mass storage as a scratch pad.,

and as such, are expected to be a small percentage of the avail-

able area. This area is strictly scratching area and may not

be catalogued in the master directory.

After satisfying the two requirements discussed above, the re-

mainder of mass storage is treated as FASTRAND format and is

allocated in granules of "tracks" and "positions". A track

is defined as 1792 words of storage. A position is 64 tracks

SEC PAGE
1 15

or 114,688 words. As an extension to the master directory,

the Executive maintains a table locating the various granules

which are allocated to a given file name. This table is used

by the device handlers to convert the relative locations to

absolute hardware locations.

When a mass storage file is initially assigned, only the number

of granules requested by the @ASG control statement are allocated.

The file supervision routines automatically affect the assign-

ment of additional increments of mass storage space as required

to satisfy the needs of the worker programs. The space avail-

ability function also handles release of granules to the avail-

able status.

1.4.4 ROLLOUT OF FILES

Depending upon the amount of available FASTRAND format mass

storage, the degree of usage given to cataloguing files on

mass storage, and the manner in which FASTRAND files are assign-

ed, there may be occurrences during normal operation when it

is necessary to obtain additional space on FASTRAND by rolling

out catalogued files to magnetic tape.. This feature is pro-

vided automatically by the Executive.

The rollout routine utilizes the file activity and date of

cataloguing to determine which files may be rolled out at a

SEC PAGE
1 16

given time. For this determination, all file activity with a

frequency of less than one reference per 48 hours are eonsidered

eligible. File selection is started at the highest priority

FASTRAND format units with the oldest files rolled out first.

The magnetic tape is left extended between reference~ to allow

future transfers. Each rolled out file is marked in the direct-

ory as to the ta.pe number and file position on the tape. The

magnetic tape unit remains assigned to the Executive until all

rolled out files are returned to ma.ss storage.

A request to assign a rolled out FASTRAND file causes the Exec

to request mounting of the proper magnetic tape, unless already

mounted, and automatically retrieve the file back to FASTRAND.

1 .4,.5 EXCLUSIVE USE OF FILES

The File Control Routines allow assignment of mass storage files

to any number of runs at one time, providing exclusive use is

not requested ill an assignment. Such a request causes a delay

in assignment of a file until no other run has the file assigned,

and insures that other runs are delayed until a run releases

any needed exclusively assigned files.

All magnetic tape files are always exclusively assigned.

SEC PAGE
17

1 .4.6 FILE NAMES

In the format description of the various control statements,

the "EXTERNAL" file name is indicated by "FILENAME" or simply

by "NAME". It should be noted that although some of the control

statements just specify the "EXTERNAL" file name specification

field, the "READ" and "WRITE" keys sub-fields are always implied.

(The keys are not part of the file name but are always associat-

ed with it). Normally, when a file is referenced in the control

stream, it is the "EXTERNAL" name that is intended, although it

can always be an internal name.

An "EXTERNAL" file name has the format:

QUALIFIER*FILE(F-CYCLE)

Where the "QUALIFIER", the "*,, and the "F(-CYCLE)" are all

optional and both the "QUALIFIER" and the "FILEt' are limi ted

to 12 characters each from the set A ••• Z, 0 ••• 9, -, and $. -
The omi.ssion of the "QUALIFIER" wi th the "*,, present causes

the last preceeding @QUAL statement to supply the qualifier used.

If the @QUAL statement has not occured, the project field from

the run statement is used as the qualifier. The omission of both the

"QUALIFIER" and the "*,, also causes the project field from the

run statement to be used as the qualifier (provided the "FILE"

is not an "ATTACHED" name which pOints to a particular external

SEC PAGE
1 18

name). The purpose of the qualifier is to allow an additional 12

character uniqueness in the catalogue directory - but more im-

portant - for an.y project. it insures the ability to catalogue the

file without name conflict with other projects, as long as the

user insures tha,t the "FILE" designators are unique within his

project. It should be emphasized that explicit definition of a

'QUALIFIER' for a Filename i.s the exception rather than the rule.

This is due to the implici t qualification by "PROJECT'. The only time

a user should ever need to explicitly provide a qualifi.er is

when he is referencing a catalogued file created by another

project.

The "F-CYCLE" number serves to maintain successive versions of

the same file (same "QUALIFIER" and "FILE"). Omission of the

"F-CYCLE" implies that the most recently constructed file is

intended. A file with a particular F-CYCLE number can be

referenced by the absolute F-CYCLE number or by a relative

F-CYCLE number. With the relative number, the last file to be

produced and catalogued is referenced by "+0" or a blank, the

one being produced and to be catalogued by a "+1"; and the

backup files by "-1", "-2", etc. As an example, if thEl last

file to be catalogued had an absolute F-CYCLE number of' 28, it

could be referenced by 28, +0, or a blank with the new file to

be catalogued called 29 or +1. Prior to the cataloguing of 29,

if a backup exists for 28, it is necessarily called 27 or -1 .

SEC PAGE
1 19

When the new file (29) is catalogued, it becomes "+0" with 28

moved to -1 and 27 moved to -2. A plus or minus sign is illegal

when the intention is for absolute notation. Absolute F-CYCLE

numbers begin with 1 and continue to 999 at which point numbering

begins with 1 again. The relative F-CYCLE number allows the

user to access a particular relative backup, for example, two

cycles prior to the last, with a "-2" at all times. Where ..

as with the absolute F-CYCLE the num~er changes with successive

runs.

The F-CYCLE number for the new file must be specified as +1, or

as the next higher absolute number. This is necessary so that

the file can be detected as the one to be placed at the head of

a cycle when it is catalogued. If cataloguing is called for at

some backup level, such as -2 or the equivalent absolute, all

newer files are deleted from the directory and the one being

catalogued represents the highest absolute number (or "+0") and

the next lower absolute number becomes "-1". If a file is de-

leted from the directory (other than being replaced as just

described), all older files within the F-CYCLE set are also

deleted. If a file is being renamed ~o something outside the

set, all older files are given an F-CYCLE number greater than

the old. The "OIDNAME" file is treated as though it were being

moved outside the set (all older deleted), but when placed back

SEC PAGE
1 20

in the same set with the "NEWNAME" , actually a different F-CYCLE,

it is treated as a catalogue action (replacement where all newer

are deleted).

The number of F-·CYCLES maintained for a particular file is

determined ei thE~r as the system standard for all files, or as

the number specified by the user via the file utility routine

for this file. Automatic deletion of the directory entry for

the oldest file occurs when the maximum number to maintain is

exceeded. If the file itself is on FASTRAND, it too is deleted.

If the file is on magnetic tape, the operator is notified of the

directory deletion.

Within each run, the "EXTERNAL" names of the files assigned

must be unique. In maintaining uniqueness, any two of the files

are unique in one of three ways:

1. Unique by both "QUALIFIER" and "FILE".

2. Unique by either "QUALIFIER" or "FILE".

3. Unique by the F-CYCLE number only.

If one of these conditions is not met, the assignment is re-

jected by the system and the run is terminated in the error

mode~ Catalogued files are necessarily unique within themselves;

however, the user may define additional files that cause a con-

flict. In the normal case, the user must guard only against a

SEC PAGE
1 21

conflict among the "FILE" specifications within his given

qualifier (project). Two cases arise, however, where there is

a conflict among the "FILE" portions of external names. This

occurs when the cycling feature is being used and when the

names are unique only by qualifier because the user must use a

file outside of his project but with the same "FILE" portion as

one of his own files.

The "INTERNAL" file name is used by the worker program on an I/O

reference to the Executive and specifies the file to be used for

the I/O operation. It is limited to a maximum of 12 characters

from the set A ••• Z, 0 ••• 9, and $. (No-). The "INTERNAL" name

must point to some "EXTERNAL" name before the I/O reference can

be honored. This connection is automatic by having the "INTERNAL"

name the same as the "FILE" portion of the "EXTERNAL" name (also

12 characters). As an example, if the "EXTERNAL" name on a control

statement is J71107*AA001, then an "INTERNAL" name of "AA001" will

point to the file.

The "INTERNAL" name need not be the same as the "FILE" portion

of the "EXTERNAL" name. For example, an "INTERNAL" name of "AB"

can be made to point to the file "J71107*AA001" by the @USE

control statement:

@USE AB,J71107*AA001

This statement causes the name AB to be "ATTACHED" to the

SEC PAGE
1 22

"EXTERNAL" name. This feature allows "INTERNAL" names to be

fixed and subsequently connected to any "EXTERNAL" file, de-

pending on the particular run.

In the two cases mentioned above where the "FILE" portlons of

"EXTERNAL" names are not unique, a @USE statement is required

in order to connect an "INTERNAL" name to a particular file

involved in the conflict. When an assignment is made, if the

"FILE" portion of the "EXTERNAL" name is the same as that of a

previous assignrrlent, the file being assigned is marked as not

available for I/O reference except via an "ATTACHED" name

supplied by a @USE statement to resolve the conflict. In

other words, of' all files that have the same "FILE" portion

on an I/O reference, all others must have "ATTACHED" names.

As stated earliE!r, this situation arises only when the F-CYCLE

feature is being used and when the "FILE" portions are not

unique because of the necessity to use files from different

projects but wit.h the same "FILE" identifiers.

An "ATTACHED" name may be used from within the control stream

if specified by a @USE statement. The "EXTERNAL" name (where

the proj ect or qualifier is used) will always suffice, ho'wever,

it may be desira.ble to use a shorter name or to use an "ATTACHED"

name that had to be specified for some other reason. The system

treats file specifications in the control stream as follows:

SEC PAGE
1 23

If any part of the "EXTERNAL" name other than the "FILE" portion

is given, the name is always treated as "EXTERNAL". If only

the "FILE" portion is specified and the "FILE" cannot be found

in the "ATTACHED" list, the "EXTERNAL" list is searched for

the "PROJECT*FILE". If a match is not found, it is then assumed

that the file is a catalogued FASTRAND file yet to be assigned.

If an "ATTACHED" name is not intended, but such an "ATTACHED"

name exists, the "*" must be specified, even if the "QUALIFIER"

is actually the project number. This is the abnormal case and

occurs only when there is a conflict between "ATTACHED" names

and the "FILE" portion of an "EXTERNAL" name.

1.5 PROGRAM FILE FUNDAMENTALS

The concept of a program file is fundamental to an understanding

of the 1108 software system. A program file is essentially a

named set of elements. The file name is the prime identifier

for the set of elements. To identify and locate the elements

within a program file, a table of contents is created, and

maintained within the program file by the system.

1 .5. 1 PROGRAM FILE ELEMENTS

Within the table of contents, each element within the program

file is uniquely identified by the following four parameters:

SEC PAGE
1 24.

1. Element type

2. Element name

3. Element version

4. Element cycle

Also included are various other parameters such as the date of

element creation and the current relative location of the

element on mass storage. These parameters are provided and

maintained by the system.

The elemen~s contained ~ithin a PE9gram fi~ are of the follow­

ing three types:

1. Source language

2. Relocatable binary

3. Absolute binary

Typical source-language elements are the following:

1. FORTRAN source language

2. COBOL source program

3. ASSEMBLER source program

Any of these elements may be introduced into a program file or

manipulated within a file by the use of the appropriate pro-

cessor (FORTRAN, COBOL, etc), or by certain utility routines

(See Section 4).

SEC PAGE
1 25

The following elements may be thought of as being special-case

source language elements:

1. ASSEMBLER procedure elements

2. COBOL procedure elements

3. FORTRAN procedure elements

Such elements are placed into a program file by the Procedure

Definition Processor (PDP).

These elements are available to the language processors essen-

tially as source-language library elements. Special elements

are required by the system to facilitate the retrieval of

source language library elements at compilation or assembly

time. However, these elements are created and maintained by

the system and require no concern on the part of the user.

In addition to the above source elements, sets of executive

control statements may be entered as source elements. These

elements may be called by the @START or @ADD statements.

Relocatable elements are the binary output of the processors

such as FORTRAN, COBOL, and the ASSEMBLER. Absolute ~lements

are placed in a program file by the COLLECTOR.

1 .5.2 NOTATION FOR PROGRAM FILE ELEMENTS

A consistent notation is used throughout the system to reference

SEC PAGE
1 26

elements of a program file. A reference to an element has the

form:

FILENAME.ELEMENT/VERSION(CYCLE)

The notation for the "FILENAME" subfield is identical to that

described in Section 1 .4.6, including F-CYCLE and read·-wri te

key specification. If the "FILE" subfield is omitted, then

the run temporar7 program file is intended. The subfield

"ELEMENT" must always be present when referring to an element.

The "VERSION" subfield is required only in the case that more

than one version of a particular element exists within the pro-

gram file as is common when a program is in checkout.

On the various eontrol statements which can specify either a

"FILE" or an "EJ~EMENT" name a method is established which

distinguishes between them. A period following the "NAME"

will sreci fy a I!'FILE", and no period will specify an "ELEMENT".

The cycle number serves to differentiate successive updates of

a symbolic elem1ent. Omission of the cycle number when referring

to a symbolic element implies that the most recently constructed

copy is intended. A compacting method, as described later, is

employed to prevent the retention of several cycles of a sym-

bolic element from appropriating an excessive amount of space

on whatever storage medium is employed. Some examples will

help make all this a bit clearer:

SEC PAGE
1 27

PROG.EDIT The element edit in the file PROG.

EDIT The element edit in the run temporary

program file.

Element Name and Version

Each element within a program file is given a name specified

by the user. This name is referred to simply as the element

name. To distinguish between elements of the same name and

type, a user may specify a subname for an element, and this

sub name is called the element version.

Both an element name and an element version may be from one to

twelve characters in length, and these two parameters together

must uniquely identify one element among all elements of any

particular type. Elements of different types (e.g., source

language vs. relocatable binary) may, however, have the same

name and version. An element name is required for all elements

within a program file. (A name is supplied automatically by

the Exec in many cases); however, the specification of an

element version is not required.

"Cycle Parameter"

For differentiation among symbolic elements, an integer para-

meter called "CYCLE" is associated with each element. This

allows several "copies" of the same version of an

SEC PAGE
1 28

element to be rf~tained wi thin a program file. Each item in a

symbolic element has a cycle number indicating to which cycle

it belongs, and, if deleted, a delete-cycle number to indicate

in which cycle this item was deleted. When a symbolic element

is updated, the update items are inserted where they belong in

the element and given a cycle number one greater than the last

cycle of the element. Any previous cycle items that have been

deleted by this update are marked so. The user may make refer-

ences by cycle number. This gives the same effect as though

several different copies of the element were maintained. The

user may set the number of update cycles to be retainE~d at any

level he desires; however, he need set that number only if he

desires to change it from the standard system assumption.

In specifying a. symbolic element for compilation or assembly,

the user may reference a specific update from a sequence of

retained updates by specifying the proper cycle number as part

of the Executive Control Statement calling for the compilation

or assembly. In compilation, the update entry will be combined

with the element in its complete state, thereby creating a com-

plete element as of that cycle.

As soon as the number of updates retained for an element exceeds

the specified maximum, the update of the lowest cycle number

(the original, complete element) is combined with the update

SEC PAGE
1 29

next lowest in cycle number; in effect, the oldest entry is

discarded, and the next-oldest, in its completed form, becomes

the oldest to make room for the latest cycle entry_ These

corrections thus become incorporated permanently into the basic

elements and can only be removed by entering new correction

statements.

This technique of handling symbolic elements offers two dis-

tinct advantages:

1. The user is allowed to keep many differing copies of the

same element in a program file while requiring little

additional storage over that needed for a single copy.

2. The user is able to refer easily to earlier copies of a

specific element without having to prepare corrections de-

leting previously input corrections. However, if a set of

corrections is applied to any cycle except the latest and

the updated cycle is to be retained, all cycles that pre-

viously followed the cycle to be updated will be deleted.

The new cycle number will be the updated cycle number

plus one.

SEC PAGE
2 1

~~ • FUNDAMENTAL USE OF THE CONTROL STREAM

~~. 1 PURPOSE

Control of the operating environment on the UNIVAC 1108 is

accomplished through a set of control statements. These state-

ments direct the executive in scheduling, facility assignment,

and in the disposition of program and data files. The control

language is designed to provide ease of use for a wide range

of applications from the simple to the complex.

2.2 CONTROL STREAM FORMAT

The basic format of the Executive Control Statements is quite

simple and is amenable to a large number of input devices,

however, since punched card input is the most common type,

some of the explanations in the following sections employ

card oriented phrasing for purposes of clarity.

2.3 GENERAL CONTENT

2.3.1

@COMMAND, OPTIONS Specl, Spec2,----,Specn Comment

MASTER SPACE

@ or V represents a "Master Space". It must appear in column one of

the image. i.e. 7-8 multiple punch for punched cards or its equi­

valent for other types of input devices. (# pound-sign for TTY 35).

2.3.2 COMMAND FIELD

The command field must appear in the specific form required

for the desired basic operation. The command field is termin-

ated by one or more blank characters. For certain control

statements, an options field is appended in which case the

command field is terminated by a comma followed immediately by

the option/so

2 .. 3.3 OPTIONS FIELD

The options field allows the user to control the performance

and results of the operation by means of unsequenced alpha-

betic characters. The effect of any such character is deter-

mined by the particular operation. In some control statements

the options field may be broken into subfields which are

separated by a slash (/). The options field is terminated by

one or more blan~ characters.

2.3.4 SPECIFICATIONS FIELDS

The specifications fields are separated by commas and are

specified by the user as dictated by his requirements. The con-

tent, purpose and number of fields and whether each is required

or optional varies with the command selected. Each specifi-

cation field in turn may contain optional sub-fields which are

separated by a sla~h (/).

2,.3.5

2:.3.6

SEC PAGE
2 3

BLANKS

Blanks, other than those required, are allowed following the

master space (9), the field separator (,), and subfield

separator (/). A blank in any other position is taken to

mean the end of a command, options or specifications field.

COMMENT S FIELD

The optional comments field must be preceded by at least one

space. The comments field itself may contain any character

except the semicolon (;) which is the continuation character.

If any trailing specification fields are omitted the comments

field must be preceded by a period and a space (.~). To avoid

possible error, a space,period,space (6 .~) sequence is

recommended in all cases where comments are used.

2~ .4 CONTINUATION RULES

In certain situations, a statement may require more than one

card or line. In such cases, coding of a semicolon (;) in-

dicates continuation on the next card or line. A statement may

be split at any point, after the options field, where a leading

space is allowable or within the comment field. The semicolon

is treated logically as a space. The next card or line may be-

gin in any column but a master space character may not be placed

in column one.

2.5 SUMMARY OF EXECUTIVE CONTROL STATEMENTS

2.6 THE RUN STATEMENT

The @RUN stateml:nt must be the first statement of a run. It

identifies the run to the system and supplies accounting infor-

m,'l,tion as well as certain optional parameters for use by the

scheduler in the system.

Form:lt: (Underlined fields are required)

@RUN, priority/run-options RUN-ID,Aactg,Project,

run-time/dead1ine,pages/cards,start time

2.6 .. 1 PRIORITY SUB-FIhLDS

Contains one alphabetic character from the set A - Z. A repre-

sents the highest priority, B the next highest, etc.

2.6.1.1 At system generation time, (SYSGEN) there can be specified:

a. The highest priority allowable for each account number

b. The priority to be used if sub-field is omitted

SEC PAGE
2 5

2.,6.1.2 A priority higher than that allowed for the account number is

adjusted to the allowed maximum.

2,,6.2 RUN OPTIONS SUB-FIELD

The run options sub-field may be used to put certain constraints

on the run.

2,,6.2.1 Permissible options are as follows:

T - Terminate the run if estimated run time is exceeded
(See Section 2.6.6)

P - Terminate the run if estimated number of pages is exceeded
(See Section 2.6.7)

C - Terminate the run if estimated number of output cards is
exceeded (See Section 2.6.8)

S - This run is to be processed in sequence with the preceding

run on the same input device. The priority, deadline and

start time of this run will not be considered until the

previous run has terminated.

B - This is a batch run being submitted from a terminal which

is normally in demand mode, i.e. TTY35 etc.

D - This is a demand run being submitted from a terminal which

is normally in the batch mode.

Note: The normal mode of a terminal (demand or batch) is

established at SYSGEN.

Note: The priority and run options sub-fields, if used, may be

coded in any of the following forms:

1. @RUN,P/O

2. @RUN,P

3. @RUN, /0

4. @RUN,/O

(p & a represent any allowable priority or option)

2.6.3 RUN-ID FIELD

The RUN-ID field can contain up to 6 characters

from the set A-Z, 0-9. It uniquely identifies

the run to the system.

2.6.3.1 If the RUN-ID duplicates that of a run that is currently in the

run queue, the executive will alter the new RUN-ID to render it

unique for this run time. The operator is advised of the

change, however, the alteration has no effect on this or any

subsequent execution.

2.6.4 ACCOUNTING FIELD

The accounting fj.e1d can contain up to 12 characters

from the set A-Z~ 0-9 •• (period) , or -(hyphen). It is

used by the system accounting routines to specify

computer usage.

SEC PAGE
2 7

2.6.4.1 Those account numbers which are to be acceptable to the system,

can be supplied at SYSGEN.

2.6.4.2 If an unknown account number is specified, the operator is

advised of the RUN-ID and the account number. The operator can:

a. Abort the run.

b. Accept the new account number for this time only.

c. Accept the new account for this time and add it to

the list of acceptable numbers.

d. Change the number to one which is acceptable.

2.6.5 PROJECT FIELD

The optional project field can contain up to 12 characters from

the set A-Z, 0-9, -(hyphen), and $. It is used as an implied

qualifier for filenames (see section 1.4.6) and for certain

entries in the master log maintained by the systemo

2.6.5.1 If omitted, the field is treated as 12 fieldata space characters.

2.6.6 RUNNING TIME/DEADLINE FIELDS

The running time field is optional and contains an estimate,

in minutes, of Central Processor Unit (CPU) time required for

the run.

2.6.6.1 If the field is omitted, the standard supplied at SYSGEN is

used.

2.6.6.2 If the time is exceeded, the operator is notified and he can

terminate the run or continue as required by the installation.

2.6.6.3 A SYSGEN parameter can be supplied to automatically terminate

the run.

2.6.6.4 Deadline sub-field - specifies the time of day or the elapsed

time from run submission by which the run must be completed.

2.6.6.5 Maximum deadline time is 24 hours. The time is written as

hhmm. A 'Dr prefix specifies time of day.

i.e. 345 = 3 hours and 45 minutes after run submission

D1430 = 2:30 P.M.

2.6.6.6 A SYSGEN parameter can be given to allow use of deadline only

on specific account numbers.

2.6.7 PAGES SUB-FIELD

The pages sub-field specifies the programmer's estimate of

the number of pa.ges of print output to be produced by the run.

2.6.7.1 If omitted the system standard specified at SYSGEN is used.

2.6.7.2 If the pages estimate is exceeded the operator is notified and

he can abort the run or continue as required by the installation.

2.6.7.3 A SYSGEN parameter can be supplied to automatically terminate

the run.

2,.6.8 CHID SUB-FIELD

The use of the card sub-field is identical to the pages sub-

field (see section 2.6.7) except that it pertains to the

number of output cards.

2,,6.9 START-TIME FIELD

The start-time field is used to delay the consideration of the

run for execution.

2.6.9.1 Start time is specified in the same manner as time in the deadline

field (see section 2.6.6.4/5/6), except that the prefix S replaces

the letter D to indicate time of day.

2.,6.9.2 If a deadline field is also given, the deadline is not

interpreted until the start time has been reached.

2.7 THE @FIN STATEMENT

The @FIN statement is used to signal that the end-of-run has

been reached. It is required with all runs and must appear as

the last statement. This statement cannot be continued on a

second card or line.

The @FIN Statement's format is:

@FIN

When the @FIN statement is encountered by the Executive System,

SEC PAGE
2 10

the accounting routines are entered and all remaining facilities,

temporary files, and core space are released.

2.8 THE @ASG STATEMENT

The ~ (Assign) Control Statement is used to name an external ------_.
file, state its I/O Facility requirements, and cause their

assignment to the requesting run, under the given external file

name. If the file is catalogued, the facility requirernents are

known and need not be specified in assigning the file as input.

The general form, of the FASTRAND @ASG Statement is:

@ASG,OPTIONS NAME/KEY1/KEY2,TYPE/RESERVE/GRANULE/~\XlMUM

The fields of the statement are explained in succeeding para-

graphs and in the order of appearance on the statement.

2.8.1 OPTIONS

The options sub-·field is used to cause a file to be catalogued

(or decatalogued.) and to place or remove constraints on the

use of the file.

Cataloguing opti.ons are as follows:

C -Specifies that the file is to be catalogued if the run

terminates normally.

U -Same as 'C' option except that the file is to be catalogued

at run termi.nation regardless of the manner of termination.

SEC PAGE
2 11

R -Specifies that the file is to be placed in the 'Read-Only'

state when it is catalogued. A file catalogued with the 'R'

option present cannot be over-written. The file can only be

read or decatalogued. Any activity attempting to write on

the file will be placed in the error mode.

P -Specifies that the file is to be catalogued as a 'PUBLIC'

file rather than a 'PRIVATE' file. The distinction between

them is that only runs which have the same project as the

run which created the file, or which specify the proper

Qualifier, can access a 'PRIVATE' file, while any run can

access a 'PUBLIC' file.

W -Specifies that the file is to be catalogued as a write-

only file. The file can only be written into, and in the

process extended.

The above options are for use only with files that are not pre-

sently catalogued. If neither of the cataloguing options ('e'

or lUI) appear, the file is treated as temporar,y and relAased

at run termination. It will be released prior to run termination

if @FREE is encountered. In the absence of a 'PI option a file

is always catalogued as 'PRIVATE'.

SEC PAGE
2 12

Options to be used when the @ASG Statement names a file that

is presently catalogued are as follows:

D -Specifies that the catalogued file is to be deleted from

the directory (de-catalogued) if the run tenninates

normally.

K -Same as 'D' option except that the file is to be deleted

at run termination regardless of the manner of termination.

X -Specifies that this run is to have 'EXCLUSIVE USE' of the

file until the run has terminated or the file is released

via the @FREE command. (If the file is not currently cata-

logued, the 'X' option is not needed because the run

necessarily.has 'EXCLUSIVE USE').

A -Specifies that the file is currently catalogued and insures

that the Executive will terminate the run if the name can-

not be found in the directory.

The above options are to be used only with files that are

currently catalogued. If either the 'D' or 'K' option appears

and the file has either or both keys!1 the key(s) (see section

2.8.3) must be specified. Failure to do so causes the run to

be placed in the error mode.

SEC PAGE
2 13

An option to be used for a temporary file (not catalogued and

not to be catalogued) is:

T -Specifies that the file is temporary and allows it to

have a name the same as that of a catalogued file. No

thought need be given as to whether a file by this name

is currently catalogued. If this option is not present

for temporary files, the system will attempt to find the

file in the directory. If a find is made, the assigr~ent

will be made from the directory.

2.8.2

The field 'NAME' on the @ASG statement is used to specify the

'EXTERNAL' name of the File. The name must be present.

If the file has been created and catalogued by a project

number different from that of this run, or with an explicit

qualifier, the project or qualifier under which the file was

created must be stated with the file name:

QUALIFIER*FILE

2.8.3 KEY1 AND KEY2 SUB-FIELDS

When cataloguing, the sub-fields 'KEY1' and 'KEY2' lock a

file against indiscriminate reading and writing, respectively,

by other users. They may contain up to six characters and all

SEC ~
2 14

characters are legal except the blank, the slash (/), the

comma (,), and the semicolon (;). A file is catalogued with

'READ' and/or 1 WRITE' lock by specifying the KEY1 and/or KEY2,

sub-fields along with the 'e' or 'U' option~ To gain read

and/or write aecess to such a file, the appropriate key(s)

must be specified at any future assign time or the request(s)

will not be honored. If the keyes) are known, a fLOCKED' file

can be partially or completely 'UNI~CKED1 or have its keyes)

changed by using the File Utility Routine Statement created

for this purpose.

A combination of the two keys is used for cataloguing. The

following table shows the action allowed according to the key(s)

given at cataloguing time and the keyes) given at assign or

change time. 'When 'MESSAGE' appears as an action, a message

will be printed. indicating that the key is not present and,

therefore, not needed:

SEC PAGE
2 15

K ey(s) Key(s) Specified at Assign
Specified or Change Time
a t Catalogu-
ing Time Read Write Both Neither

Read Write Read Write
Read Write Message Write

Message

Write Read Read Read Read
Message Write Write

Message

Both Read Write Read Abort
Write

Neither Read Read Read Read
Write Write Write Write
Message Message

NOTE: The following 'TYPE', 'RESERVE', 'GRANULE', and 'MAXIMUM'

fields are generally not required when a previously cata-

logued file is to be read.

2.8.4

The sub-field 'TYPE', specifies that the statement applies to

FASTRAND format and, in addition, points out the type of equip-

ment to be used. It is ignored if given for catalogued files.

The allowable types for the FASTRAND @ASG Statement format are:

F4 FASTRAND simulated on FH 432

F8 FASTRAND simulated on FH 880

SEC PAGE
2 ~

F17 FASTRAND simulated on FlI 1782

F2 FASTRAND Model II

FE FASTBAND

F FASTRAND, Type Independent

A file placed on drum simulated FASTRAND (F4, F8, F17) has all

the characteristics of a FASTRAND file except for sector Zero Fill

on write functions.

2.8.5 RESERVE/GRANULE

The sub-field 'HESERVE' is used to specify the approximate

number of granules to be used by the file. The sub-field

'GRANULE' is used to specify the granule size. In certain

cases, either or both sub-fields may be omitted. If the granule

sub-field is sp'9cified it must contain either 'TRK' or 'POS'.

TRK Specifies a granule of one track (1792 words)

POS Specifies a granule of one position (114,688 words)

If the granule sub-field is omitted, it is assumed to be 'TRK'.

The granule subo-field is ignored if the file is currently

catalogued.

The reserve sub·-field is ignored and need not be specified when

the file is catalogued and is to be read only. If the file is

to be created or updated, the reserve may contain an integer

SEC fMlli
2 17

specifying the number of granules to reserve for the file (on

an update the reserve specification includes that portion of

the file that already exists). If the reserve specification

is omitted, no granules (or additional granules) are initially

assigned, they are assigned dynamically as needed. When the

reserve is supplied but exceeded, additional granules are also

assigned dynamically as needed.

Note: When creating a file, the reserve sub-field should contain

a reasonable estimate of the number of granules needed. If

a file can be contained within the limits of the reserve,

the run is assured of being able to create the file with-

out delay (with dynamic expansion the requesting program

may be removed from core while FASTRAND is being made avail-

able). In addition, the specification of a reserve aids

the Executive in allocating FASTRAND area efficiently (if

a reserve is used the track or positions will be adjacent,

if possible).

For most efficient use of mass storage, all files that are

to be program files should be allocated under track granules

('TRK'). A specification of 'POS' creates unused space in

the program file in that 64 contiguous tracks will be

assigned.

§.EC PAGE
2 18

If the file takes fewer granules than reserved, the empty

granules are returned to the available status when the file is

catalogued. Furthermore, if 'POSt is specified in the granule

sub-field and complete tracks in the highest referenced granule

have not been referenced, this non-referenced space is put

back into the available pool at run termination. The reserve

value is placed in the directory and will be used on future

updates unless a new reserve is supplied on the update @ASG

Statement, in which case it replaces the previous value in

the directory.

2.8.6 MAXIMUM

The sub-field 'M[xIMUM' is used to indicate that the run is to

be terminated if the length of the file being created or updated

exceeds the number of granules specified. It may also be used

to override the 'SYSTEM-MAXIMUM' for all files, as specified by

the particular installation at SYSGEN.

If a maximum was supplied when the file was catalogued, its

value is retained and used when an update occurs. If a maxi-

mum is supplied on the updating @ASG Statement, it is placed

in the directory, thereby replacing the previous maxim-LUll.

Consider the following examples of @ASG Statements for

FASTRAND:

SEC PAGE
2 19

@ASG,CR FILEX,F/5

FILEX is to be catalogued in the permanent 'READ-ONLY'

mode if the run terminates normally, five tracks are

assigned initially and a maximum length is not specified.

@ASG,D FILEX/A2294B

FILEX is currently catalogued and is to be de-catalogued

if the run terminates normally, the key A2294B is required

to read the file.

@ASG,T FILEX, F/4/POS/5

FILEX is a temporary file requiring 4 FASTRAND positions

to be reserved initially; termination is to occur if more

than 5 positions are required.

@ASG,X FILEX /6//8

FILEX is currently catalogued and this run is to have

'F~CLUSIVE USE' of the file for updating; a reserve of 6

tracks is specified and the run is to be terminated if

more than 8 tracks are used.

2.9 THE MAGNETIC TAPE @ASG STATEMENT

For Magnetic Tape the format of the @ASG Statement is:

@ASG,OPTIONS NAME/KEY1/KEY2,TYPE/UNITS/LOG/NOISE,;

REEL1/REEL2/ ••• REELN

SEC PAGE
2 20

The NAME field and the 'KEY1' and 'KEY2' sub-fields are the

same as for the FASTRAND @ASG Statement. The name must always

appear.

Options to be used for cataloguing are:

C Same as for FASTRAND

U Same as for FASTRAND

P Sam.e as for FASTRAND

R Same as for FASTRAND

Options to be used when the file is presently catalogued are:

D Same as for FASTRAND

K Same as for FASTRAND

A Same as for FASTRAND

The option to specify a file as temporary is:

T Sam.e as for FASTRAND

The following options, called the 'MODE OPTIONS', are used to

override the modes established at SYSGEN.

L Low Density (200 FPI)

M Medium Density (556 FPI)

H High Density (800 FPI)

SEC PAGE

E Even Parity

B Binary (No Translate)

I Decimal (Translate FIELDATA to BCD on WRITE, BCD to

FIELDATA on READ). If hardware translate

option is available the E option must also

be specified.

2 21

If the equipment' TYPE' is nine-channel per frame (see below),

the density is fixed at high, the parity is fixed at odd, and

any attempt to change these settings is illegal. Hardware trans-

lation is not available on nine-channel per frame units.

When a file is to be catalogued, the options placed in the

directory are those which were in effect at the time of first

I/O reference by a program within the run (other than the

'SET MODE' Reference).

NOTE: The field 'TYPE/UNITS/LOG/NOISE' is called the 'FACILITIES'

field and normally does not have to be specified if the

file is currently catalogued.

2.9.1 TYPE

The sub-field 'TYPE' is used to show that the @ASG Statement

is for Magnetic Tape and contains a symbol denoting the type

of tape unit required.

SEC PAGE
2 22

2.9.1.1 The sub-field is required if the file is not presently cata-

logued, but is ignored if already catalogued.

Allowable types are:

T Tape, type independent

C UNISERVOS VIII C, VI C, OR IV C

U UNISERVOS VIlIC, OR VI C

8C UNISERVOS VIII C

6C UNISERVOS VI C

4C UNISERVOS IV C

3A UNISERVOS III A

2A UNISERVOS II A

The use of C or 1~ is recommended to allow the system more free-

dom in efficient allocation of units.

2.9.1~2 If the hardware translate option is not available on all units

it may be specified by a "B" following the type, i.e. 8GB. =

UNISERVO VIII C v.dth hardware translate.

2.9.1~3 If the installati.on has a mixture of 7 track and 9 track units,

a "9" following the type will select a 9 track unit, i.e. 6C9 =

UNISERVO VI C 9 t.rack.

2.9.2

The sub-field units is used to specify the number of magnetic

SEC PAGE
2 23

tape units to be assigned to this file. The integers "1 or 2"

may be used. If omitted a "1" is assumed. On subsequent

assignments of the file the units as indicated in the master

directory are used unless changed by the current @ASG.

The log sub-field may contain a single letter. The system

will, if possible, assign all files with the same log letter

to the same physical channel. The log letter is not placed

in the directory entry.

NOISE

The noise sub-field may be used to override the system standard

noise constant.

NOTE: CAUTION - Changing of the noise constant should be used

only in extreme cases and then with great care.

The reel sub-field may be used to list the specific tape reels

to be used. Each sub-field (ReeI1/ReeI2/ etc.) contains a

reel identifier hereafter called reel number.

2,.9. 5. 1 Each reel number can be 1-6 alphanumeric characters. (A-Z,

0-9) •

SEC ~
2 24

2.9.5.2 Files Being Catalogued

2.9.5.2.1 Reel numbers omitted cau~ Executive to request loading of

blank reels and operator supplies reel numbers for the directory

entry.

2.9.5.2.2 Reel numbers spE~cified are placed in the directory whether or

not all reels are used. Mounting is requested in the sequence

of the numbers as they appear on the @ASG Statement. ·When all

numbers are used the system will request blanks for any addi-

tional reels and will enter their numbers in the directory.

2.9.5.3 Files Currently Catalogued

2 .. 9.5.3.1 Field is normally blank indicating reels are to be used in the

sequence in whieh they were created.

2~9.5.3.2 If reel numbers are supplied they must be of the set listed in

the directory but may be only part of the set and/or in any

sequence.

NOTE: In either of the above cases, when the lmown reels are

exhausted, blank reels will be requested and their numbers

added to the directory.

2 .. 9 .. 5.4 Temporary Files

SEC PAGE
2 25

2.9.5.4.1 If reel numbers are supplied they will be requested in

sequence.

2.9.5.4.2 When specified reels are exhausted, or if field is omitted,

blank reels are requested but their numbers are not required of

the operator.

2 .. 9.6 EXAMPLES OF MAGNETIC TAPE ASG STATEMENTS

@ASG FILEA

FILEA is catalogued and all necessary options, facility

requirements and reel numbers are taken from the directory.

@ASG,TEL FILEB,8C/2,N432

FILEB is a temporary file to be recorded with even parity,

at low density. It requires two UNISERVO VIII C's and

reel number N432 will be requested first.

@ASG,U FILEC/492671/RA1234,8C/2,707/708/709/710

FILEC is to be catalogued regardless of type of run

termination, two units are required for reels 707 through

710 and the 'READ' and 'WRITE' keys will be required in

future assignments.

2.,1 0 THE @FREE STATEMENT

The @FREE Control Statement makes provision for the de-assigning

SEC PAGE
2 26

of a file and the release of i ts input/output facili ti~3s. In

the absence of a @FREE Stat.ement, the file and its fac:ili ties

are held until end-run. Files should be de-assigned as soon

as they are no longer needed so as to allow facilities, reels,

and 'EXCLUSIVE USE' areas to be assigned to other runs. The

format of the @]~EE Statement is:

@FREE,OPTIONS NAME1,NAME2, ••• ,NAMEN

where 'NAME1', 'NAME2', etc., are the 'EXTERNAL' names of

flIes to be de-assigned. All 'EXTERNAL' names must have

been previously assigned.

A file that is named on a @FREE Statement can no longer be

referenced by the run; it can, of course, be re-established by

an @ASG StEi,tement, provided its facility requirements ean be

met.

OPTIONS

s. Will cause the physical assignment for the file to

be held for subsequent use by the same run through

another @ASG Statement.

The actions takelfl by the system when a file is named on a

@FREE Statement are discussed below.

2.'10,,2 FOR A TEMPORARY FILE (NO'!' CATALOGUED OR TO BE CATALOGUED):

SEC PAGE
2 27

FASTRAND - The FASTRAND area is made avail&ble as file

space for other runs.

DRUM -- Same as FASTRAND. Always temporary.

TAPE - Units are released for use by other runs. The

operator is notified that the reels are to be

removed and that the file was not catalogued.

OTHER EQUIPMENT - The device is released for use by other runs.

Always (Comm's.Gear,etc.) temporary.

2.10.3 FOR A FILE BEING CATALOGUED (C OR U OPTION ON @ASG):

FASTRAND Catalogue entry is made in the Master Directory

and FASTRAND area containing the file is held.

The file can now be referenced by other runs.

TAPE Catalogue entry containing reel numbers is made,

units are released for other runs. The operator

is told to remove the file (REELS) and that the

file was catalogued.

2 .. 10.4 FOR A FILE BEING DE-CATALOGUED (D OR K OPTION ON @ASG):

FASTRAND - Same as for a temporary file except that the file

area is not released until all runs currently using

the file have also finished. It is no longer avail-

able for assignment.

SEC ~
2 28

TAPE Same as for a temporary file.

2.10.5 A typical @FREE Statement is shown in the following example of

a partial control stream:

@ASG,C

@ASG,T

@FREE

FlLEX,F/3

FlLEY,8C

FlLEX, FlLEY

FILEX is a lrASTRAND file to be catalogued and requires 3

tracks initially.

FILEY is a temporary tape file requiring 1 VIIIC unit.

When the @miEE Statement is encountered, FILEX is cata-

logued with the file area held for future reference~ For

FILEY, the tape unit is made available to other runs and

the operator is notified to remove the reels and follow

the user's :lnstructions as to their disposal.

2. 11 THE @USE STATEMENT

Th~ @USE Control Statement provides the ability to refer to a

file by two or :more names. The need for this ability arises

from three principal conditions:

a. To simplify' file referencing by equating a short internal

name to a long or complex external name.

SEC PAGE
2 29

b. to resolve duplications of external names.

c. To allow constant internal names to reference different

external names in different environments.

2.11.1 FORMAT

@USE A INTERNAL, EXTERNAL

2 .. 11 • 1 • 1 OPTIONS

No options are allowed in the @USE Statement.

2 .'11 • 1 • 2 INTERNAL

The internal name can be 1-12 characters from the set A-Z,

0-9, -, and $. It represents the name by which a file is

referenced within the run.

2. '11.1.3 EXTERNAL

The external name is the name of the file as specified in the

@ASG Statement. The external name is of the form:

QUALIFIER*FILENAME(F-CYCLE)/KEY1/KEY2

2. '11 .2 NOTES

1. More than one internal name may be attached to one

external name.

SEC ~
2 30

2. All internal names are maintained as applicable to an

external file.

2.12 PROCESSOR CALL STATEMENTS

The system proeessors will process a source language element

to produce a relocatable binary element. The processor call

statement calls the appropriate processor into main memory

and starts execution.

2.12.1 FORMAT

@PROCESSOR,OPTIONS EL1,EL2,EL3

2.12.2 PROCESSOR FIELQ

The processor field contains the specified acronym applicable

to the desired processor (if available within the particular

system)

a. COB = COBOL

b. FOR ; FORTRAN V

c. ASM = ASSEMBLER

etc.

~~.12.3 OPTIONS

The options field may contain any number of the following letters

to specify the desired actions.

SEC PAGE
2 31

A Accept the results of the processor even if

errors are detected.

X Abort the run, if errors are detected.

NOTE: If neither X nor A are given the run will continue but

execution of the processed program in error will be inhibited.

U - Update (correction runs only). Produce a new

cycle of the source element named in Field 1.

I - Insert an element into the Program File named in Field 1.

L - Produce a complete listing (source and object code).

N - Suppress all printing of processor output (overrides

any other print option).

S - Produce a partial listing.

W - List correction lines in a separate listing

(Used with lUI option).

NOTE: Absence of all print options will suppress all printing.

ELEMENT 1

The element 1 field names the source language element to be

used by the processor.

SEC PAGE
2 32

2.12.4.1 It may be omitted if there is no 'I' option present and the

source languagEl statements immediately follow the proeessor

call. If so, only the RB output is placed in the run tempor~ry

program file (~~PF) under a system generated element name_

2.12.4.2 If the 'I' is present ELEMENT 1 must appear and the source

language statements must follow the processor call. If so,

both source language and RB output are placed in the TPF with

the same element name.

2.12.4.3 If the 'U' option is present, ELEMENT 1 must appear to identify

the element which is to be updated, and the correction cards

must follow th{~ processor call.

2.12.5 ELEMENT 2

The element 2 field is optional and is used to provide a specific

element name for the RB element produced by the processor.

2 .• 12.6 ELEMENT 3

The element 3 field is optional and is used to privide a specific

element name for an updated source element. If element 3 1s used,

the 'U' and "P' options m9.Y not be present.

~~.13 FORMAT OF CORRECTION LINE~

Each processor provides a list of all source language statements

SEC PAGE
2 33

submitted to it and places successive integral numbers by each

statement. These numbers are used to indicate where corrections

are to be applied.

2.13.1 Correction lines are identified by a minus sign in column one,

followed by one or two integral numbers separated by a comma.

2.13.2 DELETIONS

The form -76,81 indicates that lines 76 through 81 inclusive

of the element are to be deleted. No source language statements

may follow this card. (See replacements). The form -53,53 will

delete line 53 only.

2.13.3 REPLACEMENTS

The form -107,132 followed by any number of source statements

will replace lines 107 through 132 inclusive, with the source

statements which follow. The number of old and new lines have

no interrelation, i.e. replace one old with ten new or ten old

with one new.

2.13.4 INSERTIONS

The form -432 followed by source statements will insert the

new statements following line 432. Any number of statements

may be inserted.

SEC PAGE
2 34

2.14 THE XQT STATEMENI

The XQT (Execute) Statement is used to initiate execution of

an absolute program prepared by the collector (See Section 2.15).

In the absence of an absolute element, the relocatable elements

in the file will be collected and executed.

The general form of the XQT statement is as follows:

@XQT,Options ELEMENT

2.14.1 OPTIONS

The options field may be used to contain options for use by

the program by means of the ER OPT$ function.

Option letters glsnerate a 26 bit mask with bit position 25 set

to a 1 bit for an A option letter, bit 24 for a B, etc.

2 .. 14.2 ELEMENT

The element field (FILE.ELT/VER) names the specific element

(absolute element only) to be executed.

2" 1 5 THE MAP STATEMEN~t

The casual user of the 1108 System does not need to prepare a

@MAP control statement unless his run embodies one of the

following condit:ions:

SEC PAGE
2 35

1. All of the relocatable elements to be allocated (other

than system library routines) are not contained within a

single file.

2. The program requires overlays (segments).

3. The program file contains structural ambiguities such as

duplicate entry points, multiple starting addresses, etc.

vi 4. The absolute element is to be retained so that re-

allocation will not be required for subsequent executions.

It should be noted here that the @MAP control statement is in

reality a processor call statement for the Collector. The

Collector must be executed to combine a set of relocatable

elements into a single absolute element before the program

may be executed. Only absolute elements promlced by the

Collector can be executed.

If the user does not provide a @MAP control statement, the

syste~ simulates the statement and calls the Collector on the

occurrence of an @XQT control statement.

For performing the collection of complex programs which require

relocatable input from many sources, construction of overlay

segments, or the use of multiple libraries, the user must pre-

pare a set of source language control statements. These

SEC PAGE
2 36

statements immediately follow the @MAP executive control state-

mente

Use of the system relocatable library to satisfy external

references is automatically implied; the use of user libraries

is under control of a source language control statement to the

Collector. Any specified user libraries are always searched

before the system relocatable library.

The outputs of the Collector are as follows:

1. An absolute or relocatable element.

2. A source language control element as discussed aboye.

3. Listing information.

The primary output of the Collector is the relocatable or

absolute element which results from the collecting and linking

of the various relocatable elements. This element is given a

name and placed within a program file for subsequent use. Both

the element name and the file in which the element is placed may

be dictated by the user.

For any error condition encountered, the Collector produces an

error message which is placed in the user's listing output file.

If a storage allocation map is required, the listing of such is

also placed in t.he user's listing output file.

SEC PAGE
2 37

The general form of the @MAP Statement is as follows:

@MAP,Options NAME1,NAME2,NAME3

NOTE: Names of the form FILE.ELT/VER(CYCLE) as applicable.

~~.15.1 OPTIONS

I = Introduce source language element into program file from

the control stream. The first field identifies the element.

The third field never appears.

U = Produce a new cycle of the source language element.

L = Produce a complete listing containing a summary of the

core space used by the program, the space allocated to each

element, and the absolute definition of all external defini-

tions.

N = Produce no listing. Diagnostic messages are always printed.

If neither L nor N are coded, only summary information will

be printed.

A = Accept the results of the collection so long as an absolute

element is produced.

x = Do not execute the remainder of the run if errors are de-

tected. If neither A or X is coded, the occurrence of an

error will inhibit execution of the program but will allow

continuation of the run.

SEC PAGE
2 38

Z = Inhibit genBration of the diagnostic information normally

provided to the diagnostic system.

R = Produce a relocatable element rather than an absolute

element.

2.15.2

The field "Name1" normally identifies the source input element

and the file in which it is located. Whenever the I option is

used, this field instead identifies the source output element

and the field "Name3" does not appear.

2.15.3

The field "Name2" is used to specify the output file, and the

element identification, for the resulting absolute or re-

locatable element.

The field "Name3" is used to specify the output file and the

element identification, for a source language output element.

Some typical examples involving this form of the @MAP State-

ment are as follows:

@MAP

(Source language follows this card and the absolute output

is to the temporary file).

SEC PAGE
2 39

@MAP,I FILEA.JOE

(The statements following the @MAP statement are used to

direct the collection and are output to FILEA as element

JOE, CYCLE1; the absolute output is to a temporary file).

@MAP,U FILEA.JOE (6)

(CYCLE 7 of JOE is produced using corrections following the

@MAP statement with both outputs to a temporary file).

@MAP JOE/XYZ,FILEA.JOE

(Element JOE, VERSION XYZ, latest cycle, from a temporary

file is used to direct the collection of the absolute

element JOE written into FILEA).

@MAP,R JOE,XX

(Element JOE in a temporary file is used to direct the pro­

duction of a relocatable element output to a temporary file).

A description of the Collector Control Language is contained in

a following part of this manual entitled "The Collector".

2: • 16 THE EOF STATEMENT

The @EOF Statement is used as a file divider or file terminator

for punched card files input to a worker program.

The format of the @EOF Statement is as follows:

®EOF 's'

SEC PAGE
2 40

Where IS' is a one character sentinel which is transmitted to

the worker program when the @EOF statement is found in the input

data stream in response to the workers ER READ$ instruction.

An example of the use of the @EOF statement follows:

@XQT PROGCR

DATA

@EOF A

DATA

@EOF B
@FIN

2 e,17 THE @PMD STATEMENT

The @PMD Statement may be used to dU1llp core memory after

execution of a task. DU1Ilps may include all or part of the

user's core as long as they are currently in core at the time

the task terminates.

The @PMD Statement may be used in two formats as follows:

1. @PMD,Options NAME1,NAME2, •••• ,NAMEN

2. @PMD,Options NAME, START, LENGTH, FORMAT

2,.17.1 OPTIONS

2,.17. 1 • 1 The options available for both form 1 and 2 are:

SEC PAGE
2 41

E = The @PMD Statement will be honored only if the previous

task terminated in error.

C = Only those words which were changed during execution of

the task will be dumped.

B = Dump all of blank common storage after the rest of the

@PMD has been honored. If used with the 'C' option the

'C' is ignored for blank common storage.

2.17.1.2 Options available only for form 1 are:

A = Dump all of memory from elements named in the specification

field.

D = Dump only the D bank for the named elements.

I = Dump only the I bank for the named elements.

2.17.1.3 Options to be used only with the A, I or D options are:

x = Dump all active (in core) elements except those named in

the specification field.

L = Dump all active elements from the system library.

P = Dump the user's PCT (Program Complex Table).

2.17.2 SPECIFICATIONS

SEC PAGE
2 42

2.17.2.1 The specification sub-fields for form 1 constitute a list of

element or segment names. If a segment name is given, the

segment must be in core at termination in order to be dumped.

2.17~2.2 The specificati.on sub-fields for form 2 are as follows:

Name· = The required name of an element.

Start = The St.art sub-field is of the form N/M. Where M is

the locat.ion counter of the element to be dumped and

N is a.n address, relative to the beginning of M, at

which tlJe dump is to start. If either value is

omitted, ¢ (zero) is assumed.

Length = The number of words to be dumped. If omitted, all

words for the location counter will be dumped.

Format = The user specified format (using FORTRAN specifications)

in which the dump will be taken.

User defined formats are not allowed for changed

word dumps (C option). If a special option (see

2.17.1.2) is used or if the format is omitted, octal

format is assumed.

2,.18 THE @MSG STATEMENT

The @MSG Statement is used to type a message on the central

site console and/or place the same message in the run print file.

SEC PAGE
2 43

The format of the @MSG Statement is as follows:

@MSG,Options Message

2.18.1 OPTIONS

W = Type the message on the console typewriter followed by

'RUN-ID WAIT'. This option is used when the message in-

dicates that some operator action is required. The

execution of the run is suspended until the operator

answers 'GO'. If the W option is not present the run

continues without requiring an answer.

N = Suppress typing on the console. The message is placed

in the run print file only.

2" 18.2 SPECIFICATIONS

The message may be a maximum of 122 characters starting with

the first non-blank character after the COMMAND,Options field

and ending with the end-of-line, comment field or the 132

character maximum.

The semicolon ; and the space-period-space sequence may not

be included as part of the message.

A carriage return character may be included within the

message and will cause a line feed and carriage return.

SEC PAGE
2 44

2. "19 THE @HDG STATEME:NT

The @HDG Statement allows the user a means of automatieally

printing a headi.ng on each succeeding page of the print f11e.

The format of the @HDG Statement is as follows:

@HDG,Options Heading Text

2.19.1 OPTIONS

P = Begin page number with 1. If omitted, and a previous

@HDG statem(~nt has appeared in the run, the page numbers

for this heading will be in sequence with those of the

previous heading.

x = Do not print date or page count.

N = Terminate printing of heading.

2.19.2 HEADING TEXT

The heading field may contain a maximum of 96 characters

starting with second position of the statement after the

@HDG,Options. The date and page number will appear at the

right of the heading unless suppressed by the 'X' option.

3 " EXAMPLE DECK SEI'UPS

The following sections will cover some of the most common

examples of program deck setups. It should be noted that

these examples are general in nature and do not cover all

possible variations.

3 .. 1 COMPILE ONLY

@RUN NIMBLE,J711040,$HOPE

@COB

COBOL Source Language

@FIN

In this example the COBOL source language program is compiled

and the resulting relocatable element put into the run-temporary

file. The specifications on the RUN statement refer to the RUN-ID,

ACCOUNTING field PROJECT, respectively, reading from left to right.

3.,2 COMPILE AND EXECUTE

@RUN TEST,J71104,ZEUS

@FOR,I SQRT

FORTRAN Source Language

@XQT

@FIN

In the above ex.ample the FORTRAN source language is compiled

and the resultant relocatable element SQRT, is executed. The

same results 'Would be attained, in this example, if "SQRT"

'were deleted from the @FOR card.

3.3 COMPILE AND EXgCUTE MAIN PROGRAM WITH TWO SUBROUTINES

@RUN TEST,J71104,ZEUS

@FOR,I MAN

FORTRAN Source Language

END

@FOR,I SUBR

Subroutine SQRT

FORTRAN Source Language

END

@ASM, I DIVIDE

SEC PAGE
3 3

ASSEMBLER Source Language

END

@XQT

@FIN

The above example illustrates the compilation of a main program

and two subroutines, which will be allocated together and

executed.

3.4 COMPILE AND CATALOG ORIGINAL PROGRAM

@RUN TEST,J71104,APOLLO

@ASG,U PROGFILE/READK/WRITEK,F

@FOR,I PROGRFILE.~~IN

FORTRAN Source Language

@FOR,I PROGFILE.SUBP

Subroutine SQRT

......
FORTRAN Source Language

@ASM,I PROGFILE.DIVIDE

ASSEMBLER Souree Language

@FIN

The Assign (ASG) statement is used to name an external file,

set-up its I/O requirements and catalog the file for future

reference. The "U" option on the ASG card specifies that the

file is to be catalogued regardless of the manner of termin-

ation of the run. "PROGFlLE" is the name of the file to be

assigned to thl3 run. "READK" and "WRITEK" are specification

fields which prevent reading and writing of the user's file by

other users. Iro gain access to the file the appropriate keys

must be specified at assign time or the assignment will not

be made.

"F" indicates that the file will be located on Fastrand.

The processor control statement (@FOR) specifies that a source

language element will be introduced into the file "PROGFILE"

from the control stream and also given to the processor for

compilation. The "I" option on the @FOR card directs this

introduction of source language.

,3.5 UPDATE EXISTING PROGRAM AND EXECUTE

@RUN,/TP TEST,J71104,APOLLO,20,300

@ASG PROGFILE/READK/WRITEK

@FOR,UW PROGFILE.MAIN

Correction Statements

MAP,I PROGFILE.MINT2

@XQT PROGFILE.MINT2

@FIN

On the RUN statement, the "20" in the specifications field is

programmer estimated run-time. If the run exceeds this time

the run will be terminated. The "300" in the last specifi-

cation field means that a maximum of 300 pages of output is

expected from this run. If exceeded, the run will be termin-

ated automatically.

The Assign (ASG) statement is used to name an external file,

"PROGFILE," which contains the program source language for this

run.

In the above example corrections will be made to FORTRAN element

"MAIN" before compilation. The correction statements must

immediately follow the processor call statement. The "U"

option on the @FOR statement specifies that an updated source

SEC PAGE
3 -6-

language element will be produced by applying corrections to

the input source language. The "Wit option specifies that all

correction statements will be listed.

Subroutines "SUER" and "DIVIDE" are also part of this program.

(see previous ex.ample). Since there are no modifications to

these routines, they are not recompiled.

The main element "MAIN" with subroutine "SUER" and "DIVIDE"

will be collected together and an absolute element "MINTIYf,

which will also be placed in the file, "PROGFILE". The absolute

program is to be: executed; data cards follow the @XQT statement.

3.6 EXECUTE EXISTING PROGRAMS USING CATALOGUED DATA FILES

@RUN MINT, J711 04, APOLLO

@ASG PROGFlLE/READK

@ASG J71100*MASTER-FLT

@USE MASTER,J71100*MASTER-FLT

@ASG,T TEMP,F/3/POS

@XQT PROGFILE.MINI

Data Cards

@FREE J71100*MASTER-FLT

@ASG MINT

@USE OLD,MINT

@ASG,CR MINT(+1) ,F

@USE NEW, MINT (+1)

@XQT PROGFILE.MINT2

@FIN

In the above example two programs, MINT1 and MINT2, are to be

executed in respective order. The programs are currently con-

tained as absolute elements in file PROGFILE.

The program, MINT1, reads data cards and a file, MASTER. For

this run a file created under account, J71100 is to be used as

MASTER. A temporary file, TEMP, is created.

The program, MINT 2 , updates the file, MINT, referencing the

current cycle of the file as OLD and the updated cycle of the

file as NEW. The temporary file created by MINT1 is used as

the basis for the update.

Note that the file, J71100*MASTER-FLT, is not required by

the run after MINT1 is terminated. The @FREE statement releases

the file so that another run might gain exclusive access to the

file during the time that MINT2 is being executed.

SEC PAGE
4 1

4. FILE UTILITY ROUTINES

In addition to the Executive Control Statements previously

described, there is a set of commands which are recognized as

calls for the File Utility Routine and the Program File Utility

Routine (FUR/PUR).

When the Executive encounters one of these commands, the FUR/

PUR Processor will be loaded into core. (An @XQT statement is

not required). When FUR/PUR receives control it will access

the command which caused the processor to be loaded. After

completing the action required by the first command, FUR/PUR

will continue to read and process commands until it is deter-

mined that the next command is not directed to FUR/PUR at

which time FUR/PUR will terminate and relinquish its core

space •

. 4. 1 STATEMENT FORMAT AND RULES

®COMMAND, Options Spec1,Spec2, •••• ,Specn

Where Spec1 --- Specn are of the form:

Qualifier*Filename(F)/Key1/Key2. Element/Version (C)

j!r.1 • 1 The run temporary file (TPF) may be referenced by omitting

the file name and giving only the element name.

4.1 .2 All rules for referencing a file by name apply as for Executive

control statements. (Except as specified in 4.1.4).

4.1 .3 The options field serves the same purpose as in the Executive

Control Language.

Options and their meanings vary between commands except for

the following, which are applicable to most commands:

C = Attempt to continue processing in case of error detection.

S = Process only symbolic elements (including PROCS).

R = Process only relocatable elements.

A = Process only absolute elements.

Files referenced in FUR/PUR commands must be assigned to the

run via an ASG statement except that the ASG may be omitted if

the file is a catalogued mass storage file.

Certain FUR/PUR commands manipulate elements within files. In

these statements the Spec field includes the file name and the

element description.

FUR/PUR manipulates elements within program files or element

files. A program file is a random file on mass storage. (Here-

after called FASTRAND). When a program file is removed from

FASTRAND for any reason by means of a @COPOUT command it is

placed on magnetic tape in a sequential equivalent called an

Element file. An element file must be restored to FAST RAND

program file format with a @COPIN statement before any language

processor or the collector can access the data.

~~.1 .7 The commands which are directed to FUR/PUR are listed below

with a brief explanation of the functions to be performed; each

is described in detail in subsequent paragraphs.

COMMAND FUNCTION

@COPY To copy a file or a program file element from one

device to another.

@COPIN To copy an element file onto FASTRAND and

reformat it as a program file.

@COPOUT To copy a program file and reformat it as an

element file~

@DELETE To delete an element from a program file or a

file from the master directory.

@CHG To change the name and/or version of an element

in a program file.

@PACK To purge a program file of deleted elements.

@PRT To list the table of contents of a program file

or text of s~nbolic elements.

@PREP To create an entry point table for a program

file.

@CYCLE To specify the number of cycles for a symbolic

program file element.

@PCH To punch s~bolic or relocatable elements from

a program file.

@FIND To locate a specific element of an element file

on tape.

@MOVE To position a tape (element file) past a speci-

fied number of end-of-file marks.

@ERS To return the program file to its initial con-

dition and make its space available for reuse.

@REWIND To rewind a tape (element file).

@MARK To write an end-of-file mark on a tape (element

flle) •

@CIDSE To write an end-of-file mark and rewind a tape

(E!lement file).

4.2 THE COpy STATEMENT

The @COPY command copies an entry file by reading from tape

or FASTRAND and writing to tape or FASTRAND. @COPY manipulates

both program and data files. The only partial file operation

allowed is to add an element from one FASTRAND program file

to another FASTRAND program file.

The format of the @COPY Statement is as follows:

@COPY,Options Spec1,Spec2

4.2.1 OPTIONS

(None) An entire data file is to be copied from the input

file named in Spec1 to the output file named in Spec2.

The input file Spec1 must have been written sequentially

with the data handling routines and must be catalogued.

An entire file is to be copied. Spec1 and Spec2

are the input and output files. The input file is

in System Data Format (SDF) as produced by the @COPOUT

command and will be written in the same format.

P An entire program file is to be copied from Spec1 to

Spec2 (both of which are FASTRAND files). Deleted

elements are not copied (see @DELETE statement), and

4 .. 2.2

all copied elements are packed.. The table of contents

for Spee2 is updated. The entry point table of Spec2

is not reconstructed and the file must be prepared

by the @PREP statement after any subsequent @COPIN.

The following options are available for dealing with elements:

I = The input file named in SPEC1 is source code data in System

Data File Format (SDF). These data are to be added to a

program file. The program file and the identification to

be given to the new element are described in SPEC2 as

PF.EN/V. The symbolic element is given a cycle number of

o when it is inserted into the program file ..

S These three options may be used singly or in combination

R for copying elements from one program file to another.
(Refer to 4.1.3)

A

SPECIFICATION FIELDS

The specification fields are written as PF.EN/V(c), with cycle

only applicable to symbolic elements. In SPEC1, the element

name is required, but the version need be specified only if

required to identify the element. If cycle is omitted for a

symbolic element, the latest cycle will be aSSlrmed.

In SPEC2, the entire EN/V(c) may be omitted if the SPEC1

SEC PAGE
4 7

EN/V(c) is to be used for the output. If SPEC2 contains an

EN without a version (and cycle for option S), the output will

be given a blank version (and cycle 0 for option S).

4.2.3 Some typical @COFY statements are given below:

1. ®COFY,P PHOG1.,PROG2.

The program file PROG1 is reproduced onto PROG2. Deleted

elements are not copied and the table of contents is

revised to include only the non-deleted entries (same as

in PACK).

2. @COPY,I SDFlLE.,PFILE.ELT1

A file of source code data in System Data File Format (SDF)

on file SDFlLE is added to the program file named PFILE and

identified as symbolic element ELT1, no version name, Cycle

O.

3. @COPY,S FILEA.ELTA,FILEB.ELTB/VERSB(2)

The latest cycle of sy~bolic element ELTA in the program

file named FILEA is reproduced in the program file named

FILEB where it is identified as element name ELTB, version

name VERSB, Cycle 2.

4. ®COPY,S .ELTA,FILEB.

Element ELTA in the temporary program file is copied to

FILEB, and can be referenced later asFILEB.ELTA with a

version n~le of blanks (none necessary), and the cycle

number is O. (R and A options are applicable also).

5. @COPY ,P ,]~ILEX.

The entire temporary program file (excluding deleted

elements) is copied to FILEX.

6. @COPY,S ,FILEX.

The symbolic elements in the temporary program file are

copied to :irILEX.

1.1-.3 @COPOUT

The @COPOUT command copies a program file or program file

element from FASTRAND onto magnetic tape and reformats the

data into element file format. Procedure name table entries

are preserved so that the program file can be fully recon-

structed with @COPIN. Deleted elements are not copied into

the element file. If a packed file is copied out, the entry

point table is not preserved. After a @COPIN, the user should

execute @PREP to allow the program file to be used as a library.

The @COPOUT Statement is in the following format:

@COPOUT,OPTIONS SPEC1,SPEC2

4 .• 3.2

4.3.3

OPTIONS

The options available to the user are (S), (R), and (A) and

they may be used to copy the symbolic, relocatable, or absolute

elements from a program file on mass storage to an element file

on tape.

SPEC1,SPEC2

The file named in SPEC1 must be a program file or, if the

field is blank, the run-temporary program file. SPEC2 must

name an element file on tape.

EXAMPLES OF THE USE OF @COPOUT

The @COPOUT Statement is typically used in the following manner:

1. @COPOUT PROGRAM.,HOLDPROG.

The program file named PROGRAM will be copied onto the

output file HOLDPROG. It will be reformatted as Rn

element file.

2. @COPOUT,S PROGFIL.ELT1, ELTFIL.ELT1

The symbolic element ELT1 from the program file PROGFIL

is copied onto the element file ELTFIL. The element

name remains the same.

SEC PAGE.
4 10

4,,4 @COPIN

The @COPIN command copies an element file from magnetic tape

onto FASTRAND and reformats the data into program file format.

The table of contents is rebuilt to include element table and

procedure tables if any were present in the program file when

@COPOUT was executed.

The format for using the COPIN Statement is as follows:

@COPIN,OPTIONS SPEC1 , SPEC2

OPTIONS

The S, R, and A options apply as with @COPOUT.

4.4.2 SPECIFICATIONS

This command will cause the file or element indicated by SPEC1

to be reformatted and written out on SPEC2. SPEC1 mU~3t indicate

an element filE~ on magnetic tape. SPEC2 must indicate a pro-

gram file on FASTRAND.

EXAMPLE OF THE @COPIN STATEMENT

The @COPIN Statement is typically used in the following manner:

@COPIN HOLDPROG.,PROGRAM.

In this exampl l9, the element file HOLDPROG is copied and re-

SEC PAGE
If 11

formatted on the FASTRAND area assigned to file PROGP~M. When

the @COPIN operation is complete, file PROGRAM will be in the

standard program-file format and may be treated as a progra.m-

file in any subsequent operation.

@COPIN,R TEMP.ELTA,PF1.

The above example causes the relocatable element (ELTA), to be

read from the element file assigned the external name 'TEMP'

to be added to the program file PF1. The element file must be

positioned at ELTA if ELTA is not the first element of file 'TEMP'.

When adding to the program file, care must be used if it has

been prepared. If it has been, it will have to be prepared

again (via a @PREP Statement).

4., 5 @DELETE

The DELETE command may be used to delete one or more entries

from the master file directory or one or more elements from a

program file on FASTRAND.

If a whole file is deleted from FASTRAND, the storage area is

released for re-use. If the file is on tape, the reels are

released. If a program file element is deleted the elemer.t

table entry is flagged but the physical storage area on FASTRAND

remains assigned until a @PACK, @COPY or @COPOUT command is found.

SEC PAGE
4 12

The @DELETE Statement has the following format:

@DELETE,OPTIONS SPEC1, •••.. SPECN

4.5.1 OPTIONS

The available options for program file element deletion are

, S r, r R', and 'A'.

SPECIFICATIONS

Several elements of the same type may be deleted by the same

command. Each element must be described by name and must be

from the same file. Version name should be included as needed

to further identify the element.

Deletion of multiple elements in a file may be accomplished by

adding additional specification fields to the control card

(viz. @DELETE SPEC1,.SPEC2,.SPEC3, •..•) where SPEC1 is the

form FILE.EL/VR, and SPEC2 through SPECN are of the form .EL2/V2,

.E3/V3 etc. (see example 2 and 3 below).

4 .. 5.3 EXAMPLES OF @DELETE STATEMENTS

Some typical @DELETE Statements are as follows:

1. @DELETE,S PROGRAM. ELT1

Symbolic element ELT1 is to be deleted from the file PROGRAM.

2. @DELETE,A PROGFILE.SAM/XYZ,.JOE

SEC PAGE
4 '13

Absolute elements SAM (Version XYZ) and JOE (Version not

needed for uniqueness) are to be deleted from the file

PROGFILE.

3 • @DELETE, S PF1.ELTA,.ELTB,.ELTC,.ELTD

This control card will cause symbolic elements ELTA,

ELTB, ELTC and ELTD in Program File PF1 to be deleted.

4.6 @CHG

The @CHG command changes the name and security keys of a cata-

logued file or optionally changes the element name and/or

version name of an element in a program file on FASTRP~~D.

4.6.1 The format to change the name of a catalogued file is as

follows:

@CHG SPEC1.,SPEC2.

4.6.1.1 If SPEC1. was originally catalogued with security keys they

must be specified in SPEC1. If SPEC2 contains no keys then

the file is effectively "unlocked f~ (previous keys are removed).

If SPEC2 does contain keys, they will become the applicable

keys for the file (whether different or not).

4.6.2 The format to change the element and/or version names is as

follows:

@CHG,OPTIONS FILE1.EL1/V1,.EL2/V2

SEC PAGE
1+ 14

4.6.2.1 OPTIONS

The allowable options are S, R, and A.

4.6.2.2 FILE1 identifies the program file in which EL1/V1 is located.

The sub-file V1 is required only when needed to uniquely

identify the element. The field EL2/V2 contains the new

names for the element and version. If the field EL2 is

omitted, only the version will be changed.

EXAMPLES OF THE @CHG STATEMENT

1. @CHG OLDF /RD:f,/WT$., NEWF / /WT$

The file na.me OLDF is changed to NEWF and the read

key RDb is removed to allow free reading of NEWF. The

write key WT$ is retained.

2. @CHG,SRA PROGF.SUBR/ONE,.STAND/PRIHE

The symbolic!, reloca table and absolute elements of

program fil '9 PROGF, element SUER, version ONE will

be renamed 13lement STAND, version PRIME.

4.,7 @PRT

For a program file, there are two special options for @PRT

which list either the table of contents of a program file or

the text of a specified symbolic element.

SEC PAGE
4 15

The @PRT Statement has the following general format:

@PRT,OPTIONS SPEC1,SPEC2, ••• SPECN

~" 7.1 OPTIONS

T - List the table of contents for the program file named

in SPEC1. Additional program files may be specified

in SPEC2, etc.

No - List a symbolic element. SPEC1 is FN.EN/V(c). Only

Option one element may be listed by this option. Relocatable

and absolute elements can not be listed.

4.7.2 EXAMPLES OF @PRT STATEMENTS

Some typical uses of the @PRT Statement are shown below:

1. @PRT,T PROGFILE

The table of contents of the program file named PROGFILE

are listed. The entries flagged as deleted are listed as

well as the active entries. Procedure table and entry

point table entries follow the element table entries.

2. @PRT PROGFILE.SAM/XYZ

The latest cycle of symbolic element SAM, Version XYZ in

PROGFILE, is listed.

4.:~.1

4.:3.2

SEC PAGE
4 16-

The @PACK command causes all deleted elements to be physically

removed from a program file on FASTRAND and revises the table

of contents to include only the non-deleted elements. Pro-

cedure table entries are removed if they are flagged as

deleted or point to deleted element table entries. The com-

plete entry point table is removed. If the newly packed file

is to be used as a library, it must be re-prepared (@PREP).

The @PACK Statement is used in the following format:

@PACK

OPTIONS

FILEA.,------,FILEN.
\

No options are used.

SPECIFICATIONS

FILEA is the name of the file to be packed. More than one file

may be named in a pack statement. The actual packing function

will consist of the rewriting of some, though not necessarily

all, elements, a.nd a rewriting of the table of contents.

EXAMPLE OF THE @PACK STATEMENT

A typical use of the @PACK Statement is shown below:

@PACK PROGR1.,PROGR3.,UPROGRAM.

SEC PAGE
4 17

The program files PROGR1, PROGR3, and UPROGRAM are to be

packed. Deleted elements are to be dropped, the tables of

contents are to be reconstructed and any assignable granules

of mass storage released by the packing function are to be

returned to the system for reassignment.

4.9 @PREP

The @PREP command is used to 'prepare' a program file, on

FASTRAND for subsequent referencing as a library by the

collector. The @PREP statement causes an entry point table

to be generated which contains all the entry points (external

definitions) of all relocatable elements in the file.

A file must be prepared when elements in the file are to be

added to a program collection from that file merely by re-

ferencing an entry point in the element. The file must also

be named on a 'LIB' collector control statement for the auto-

matic inclusion. If all desired elements from the file are

included. in the collection as a result of source language

statements, the file need not be prepared.

The @PREP Statement is used as follows:

@PREP FILEA.,FILEB.,-----.,FINEn

4.9.1 OPTIONS

No options are used.

SEC PAGE
4 18

4.9.2 SPECIFICATIONS

FILEA is the nanle of a program file. If this field is blank,

the run temporary program file is assumed. In its processing,

@PREP will review all relocatable elements, extract all entry

points and create a new entry point table. More than one

program file may be named in a @PREP statement.

EXAMPLES OF THE @PREP STATEMENT

1. @PREP

All the entry points in the run-temporary program file

are put into the entry point table.

2 • @PREP A. ,B •

An entry point table is created for File A a.nd also for

File B.

4.10 @PCH

The @PCH command causes a symbolic or relocatable element of a

program-file on FASTRAND to be punched out in 80 COllliml. punch

card format.

The @PCH statement is used in the following formats:

@PCH,OPTIONS FILENAME.ELEMENT/VERSION

SEC PAGE
4 19

4.10.1 OPTIONS

The allowable options are'S' and tR'.

4.10.2 SPECIFICATIONS

The field 'FILENAME.' will be a program file. If omitted,

the TPF will be assumed. The field ELEMENT names the element

to be punched. The field VERSION is required only to guarantee

uniqueness to the element name.

Only one element may be punched by a single @PCH command.

4.10.3 EXAMPLES OF THE @PCH STATEMENT

Some typical uses of the @PCH sta.tement are shown below:

1. @PCH,SR PROGA.SAM/XYZ

The symbolic and relocatable elements named SAM, version

XYZ of program-file PROGA are to be punched •

2. @PCH,S • DUMP/10K

The latest cycle of the symbolic element dump, version 10K,

of the run-temporary program-file is to be punched.

3. @PCH,RS MAINPROG.LISTING (10)

The relocatable element and cycle 10 of the symbolic

element named LISTING of program-file MAINPROG are to be

punched.

SEC PAGE
L1,- 20

4.11 @ERS

This directive is used to remove all elements from the named

file and restore the file to its initial condition. The file

will be considered as empty and available for use just as it

was at the beginning of the run.

This statement is provided primarily for use on temporary pro-

gram file TPF which may be used as scratch area Quring a run.

@ERS SPEC1

Where SPEC is the name of a file assigned to this rlli"'1.

4.11.1 EXAMPLE OF AN @ERS STATEMENT

@ERS FlLE~.

Remove all traces of data in 'FlLEA' such that if it were to be

copied a blank file would result on the output side.

4.12 @CYCLE

The @CYCLE statement is used to specify the number of update

(c) cycles to be maintained for a symbolic program file element

or to change the number of F-cycles -to be retained for a data

file.

A standard number is established at system generation for the

retention of both (c) and (f) cycles. The @CYCLE command need

SEC PAGE
4 21

not be used unless the standard is to be changed for a specific

file or element.

If the number of cycles in existence at the ti.me the @CYCLE

command is executed is greater than the new number specified,

the number in existence will be reduced with the oldest cycles

being deleted in order of age.

The @CYCLE statement is used in the following format:

@CYCLE FILEA.E~~NT/VERSION,N

N is the maximum nmnber of cycles to be retained.

~1-.12.1 EXAMPLE OF THE @CYCI~ STA'I'EME.N1:.

@CYCLE BASEPROG.SYMBOL/A221,10

This command tells the system that ten (10) update cycles are

to be retained for the symbolic element sym.bol, version 'A221 ,

of program file BASEPROG.

@CYCLE ivrA I NDATA , 3

Three cycles are to be retained in the catalogued file

MAINDATA ..

~ .• 13 @FIND

The @FIND command will locate a specific eleme:r:t of an elem.ent

file on magnetic tape. When the element is found the tape will

SEC PAGE
4 22

be positioned so that a @COPIN will process the element.

Formatting the @FIND Statement:

The @FIND statement is used in the following format:

@FIND,OPTION FILEA.ELEMENT/VERSION

The allowable options, denoting eleme::lt type are'S', 'R',

and 'A'. One (and only one) must be present.

The field FILEA must be the name of an element file on tape.

The fields ELEMENT and VERSION identify the particular element

sought. Version may be eliminated if not needed to uniquely

identify the elElment.

EXAMPLE OF THE @FIND STATEMENT

A typical use of' the @FIND statement is shown below:

@FIND,S ELTFILE,BLITZ/CLOTH

Find the symbolic element BLITZ, version CLOTH on element file

ELTFILE. When the element is found, the file will be positioned

so the next @COPIN will bring in the element BLITZ, version

CLOTH.

The @MOVE command will move any tape file forward or backward

over a specified number of end-of-file marks.

The @MOVE statement is used in the following format:

@MOVE,OPTION FILEA •. ,N

J.~.14.1 OPTIONS

If the option field is omitted the tape is moved forward. If

the tape is to be moved backward, the option is 'B'.

~~. 14.2 SPECIFICATIONS

FILEA is the name of the tape file to be positioned, and N is

the number of end-of-file marks (decimal) past which the tape

is to be moved.

4 .• 14.3 Some typical uses of the @MOVE statement are:

1. @MOVE ELTFIL. ,2

This statement will cause the element file, ELTFIL., to be

moved forward past two end-of-file marks.

2. @MOVE,B HARRY. ,1

This statement moves data file HARRY backward past one end-

of-file mark. A forward @MOVE can be used to move over the

file mark to the beginning of the next data file on the tape.

NOTE: The system makes no check of the information passed when search-

ing for an end-of-file mark. The user must be sure that the

tape contains at least 'N' end-of-file marks.

SEC PAGE
4 24

4. 1 5 @REWIND

The @REWIND Statement rewinds any magnetic tape file with or

without interlock.

The format of the @REWIND statement is as follows:

@REWIND,OPTION FILEA.,FlLEB., •••

4,.15.1 OPTIONS

The only allowable option for the REWIND command is 'I' which

is used to specify a rewind-with-interlock. The absence of

the 'I' option denotes rewind to load point.

~ .• 1 5.2 SPECIFICATIONS

Parameters FlLEA and FlLEB are the names of the element files

to be rewound. MOre than one file may be referenced :in a

@REWIND sta temlent. Each file referenced must be on tape with

a mounted reel.

i~. 1 5.3 EXAMPLE OF THE @REWIND STATEMENT

A typical example of the @REWIND statement is as follows:

@REWIND,I ELTFIL.

The file ELTFIL is to be rewound-with-interlock.

SEC PAGE
4 25

The @MARK command writes 2 EOF marks on an element and back-

spaces over the second EOF mark.

The format for using the @MARK statement is as follows:

@MARK FILEA.,FILEB.,----.,FILEn

The field FILEA must contain the name of a tape file. More

than one file may be called in a @MARK statement, but each

must be assigned and pre-positioned.

4,.16.1 EXAMPLE OF THE @MARK STATEMENT

A typical use of the MARK processor call statement is shown

below:

@MARK DATA1.,TPFLE.,ELTFLE.

The three named files currently mounted, are to have end-of-

file marks written at their present positions.

4.17 @CLOSE

The @CLOSE command combines the functions of @MARK and @REWIND.

The @CLOSE statement is used in the following manner:

®CLOSE, OPTION FILEA.,FILEB.,----.,FILEn

SEC PAGE
4 26

4.17. 1 OPTIONS

The 'I' option will cause the named tape file to be marked and

rewound with interlock.

4.17.2 SPECIFICATIONS

The field FILEA is the name of a mounted element file. More

than one file may be named in a close statement. Two EOF marks

will be written on the file at the point where it is positioned

when the @CLOSE call is given.

4 .• 17.3 EXAMPLE OF THE @CLOSE STATEMENT

The following is a typical use of the @CLOSE statement:

@CLOSE]~LTFlLE.

Two end-of -filE3 marks will be written on the element file

ELTFlLE and it will be rewound without interlock.

5 THE COLLECTOR

5.1 GENERAL

The Collector is a system processor designed to provide the

user with a means of gathering (collecting) and interconnecting

one or more relocatable elements to produce a program in a

form ready to be loaded into memory and executed. This pro-

gram form is called an absolute element. Optionally the

collector can be used to produce one relocatable element from

a collection of several relocatable elements.

5. 1 • 1 INPUTS TO THE COLLECTOR

The three basic inputs to the collector are:

1. Parameters from the executive control statement causing

the collection (@MAP).

2. Source language control statements (IN, SEG, etc.).

3. Relocatable elements from a variety of sources.

5.1 .2 THE COLLECTION PROCESS

The Collector collects relocatable elements out of program

files according to the source language control statements.

The program files may be:

1. The run-temporary file (TPF$)

2. User program file libraries

3. The relocatable system library

5.2 THE @MAP STATEMlM

The @MAP Statement is used to load the (;ollector in order to

combine one or lnore relocatable elements into an absolute

element or a sil1gle relocatable element.

The format of the @MAP statement is as follows:

@MAP,OPTIONS SPEC1,SPEC2,SPEC3

OPTIONS

I =Initial Insertion: The following source language control

statements will direct the collection. SPECl names the

output source element. SPEC3 is not used. If no source

statements follow, IN TP~$ is assumed. (See source control

statements below).

U =Update: Produce a new cycle of source language element

using the corrections which follow. SPEC3 is not used.

L =Produce a complete listing. Will contain a summary of

core space used by the program, the space allocated to

each elemen.t, the program address of all definitions, and

the external references of each element.

N =Produce no listing. Diagnostic messages are always

printed. If nejther L nor N are coded, only summary

information is printed.

X =If any errors are detected, inhibit execution of the

run. (Except a @PMD statement). Normal action is to

accept results of the allocation as long as an absolute

element is produced.

R =Produce a relocatable element rather than an absolute

element.

5.2.2 SPECIFICATION FIELDS

The "SPEC" fields are of the form FILE.ELT/VER(c)

SPEC1 normally identifies the source input element. When

the I option is present it identifies the source output element.

SPEC2 normally identifies the absolute output element. When

the R option is present it identifies the relocatable output

element.

SPEC3 is optional. If used it names the output source element

and the I and U options m~y not be present.

EXAMPLES OF THE @MAP STATEMFJNT ARE AS FOLLOWS:

@MAP SYMIN/LAT,BACKUP.ABSOUT

Element SYMIN/LAT in TPF$ is used to direct the collection of

element ABSOUT which is written to file BACKUP. If any

corrections follow they will be used but not saved because

no output source element is produced.

@MAP , I BACKUP. SYMOUT , 8 AB SOUT

The statements f1ollowing the @MAP are used to direct the

collection and a.re output as SYMOUT in file BACKUP. The

absolute element. ABSOUT is also output to file BACKUP.

@MAP OLDFIL.OU>ELT ,A,NEWFIL.NEWELT

The source statements in element OLDELT of file OLDFIL, as

amended by correction statements following the @MAP, are

used to direct the collection, and are output to file NEWFIL

element NEWELT. The absolute output element 'A' goes to TPF$.

5.3 COLLECTOR CONTROL STATEMENTS

The source language collector control statements can bE3 used

to control the building of an absolute element by specif'ying

many relocatablt3 elements from many sources.

The control statements recognized by the collector include

the following:

IN Include specific files or elements in the collection.

NOT E'.occlude specific elements from the collecti.on.

LIB Specify user libraries to be searched.

SEG Direct the segmentation of a program.

5.3. 1 THE 'IN' STATEMENT

The IN control statement allows the inclusion of full files or

only specific elements from named files. Particularly the

user can specify the elements to be included in a segment

named in a preceding SEG statement.

The forIIL!lt of the IN statement is as follows:

IN FILEl.ELTA/VERl,FILE2,FILE3.E3.E4

Include only VERl of ELTA of FILEl, all etements of FILE2 and

elements E3 and E4 of FILE3.

If no file is named, TPF$ is assumed. An element

name IIL!ly appear in only one IN statement in any

collection.

5.3.1 •. 1 EXAMPLES OF THE IN STATEMENT ARE AS FOLLOWS

IN FILEA. ,FILES.

All elements of FlLEA and FlLEB are included in

the collection.

SEC PAGE
5 -6-

IN FILEB .All, .BB ,DD

Elements AA and BB of FILEB and element DD of TPF$

are included in the collection.

5.3.2 THE 'NOT' STATEMENT

The NOT control statement is essentially the inverse of the

IN statement. It is used to state explicitly which elements of

a file are to be included in the collection.

The format of thE~ NOT statement is as follows:

NOT FILE1. E1 , • E2 ,FILE2 • E1

The specified elements are to be omitted from the

collection, j .• e. E1 and E2 of FlLE1 and E1 of FILE2.

If only an element name is given, then all elements of the

same name will be excluded.

5.3.2. 1 EXAMPLES OF THE NOT STATEMENT ARE AS FOLLOWS

NOT AA,BB

All elements in the TPF$ except AA,BB are

included in the collection.

IN FILEA

NOT FILEA.AA, .BB

All elements in FILEA are included except AA and BB.

5.3.3

IN FILEA.,FILEB.

NOT FILEA.AA,.BB,FILEB.CC,.DD

All elements of FILEA except AA and BB and all

elements of FILES except CC and DD.

THE LIB STATEMENT

The LIB statement allows the user to specify program libraries

to be searched to satisfy external references and/or to find

elements specified without filenames which were not found in

the TPF$.

The format of the LIB statement is as follows:

LIB FILE1,FILE2

5.3.3.1 The names of files to be treated as libraries are specified in

successive fields. The libraries are searched in the sequence

given and before the system library. The same file may be

searched more than once by naming it in more than one LIB

statement. Files will not be searched for external definitions

unless prepared by the FUR/PUR @PREP statement.

5.3.3.2 EXAMPLES

LIB USER1

File USER1 will be searched before the system library.

SEC PAGE
5 8

LIB USER1,USER2

Files USER1 then USER2 will be searched before the

system library.

5 .. 3.4 THE SEG STATEMENT

The SEG statement is used to define the relationship and con-

tents of segments within a program.

The format(s) of the SEG statement is as follows:

SEG NAME1,NAME2
or

SEG NAMEl , (NAME2, NAME3, ... - - - ,name __ n)

5 .• 3.4.1 The field NAME1 is required and is the name of the segment.

5.3.4.2 The first segment named in the source input is called the Main

segment and is never overlaid by any other segment. It should

be specified using only the NAME1 field.

5.3.4.3 If NAME2 is blank then segment NAME1 starts immediately follow-

ing the preceding segment.

5.3.,4.4 If NAME2 is present and is not inclosed in parentheses the

NAME1 segment will start at the same location as NAME2 segment.

5.3.4.5 If NAME2, NAME3, etc. is inclosed in parentheses, NAME1 segment

will start following the highest location of any of the NAME2,

NAME3, etc. segments.

5.3.4.6 Each segment may have both an I Bank and a D Bank.

5.3.4.7 At least one IN statement must follow each SEG statement.

5.3.4.8 If NAME1 is suffixed by an asterisk, i.e. "NAME1*", the

segment may be loaded indirect (sutomatic'load).

~).3.4.9 Following a schematic diagram can best illustrate the results

of various SEG statements.

a. SEG A B

SEG B, (A) I A
C

SEG C,B or SEG C, (A)

b. SEn A

SEG B, (A)

SEG C,B

SEG D, (B,C)

SEG E,D

SEC PAGE
5 10

c. SID A

SEG B, (A)

SID M,B

SEG c, (B)

SID D B D

SID E,C F

A G
SEG F" (E)

I I

SID G,.F
I K

M H ~
I

L I

SEG H, (M) J ..---.

SEn I"H

SID J,H

SEG K,(H,I,J)

SID L:,K

5.3.4.10 SIDMENT LOADINq

When a segmented program. is called into memory for execution

(@XQT control statement) only the main segment is initially

loaded. Other segments may be loaded by the direct or indirect

method as explained below.

5.3.4. 1 O. 1 DIRECT LOADING METHOD

A secondary segment is loaded directly by the procedure call:

L$OAD NAME, JUMP ,CLF.AR

SEC PAGE
5 11

NAME is the name of the segment to be loaded (Spec. field 1

of the SEG statement). JUMP is the address to receive control

when the segment is loaded. If omitted, control returns at

the point after the call. CLEAR, if non zero, inhibits the

clearing to zero of the area in which the segment is to be

loaded.

5.3.4.10.2 INDIRECT LOADING METHOD

The indirect method of loading a segment is applicable only

to segments whose names were suffixed by an asterisk in the

SEG statement. This method provides for a segment to be loaded

automatically when referenced by any jump command to an in-

struction area. The referenced segment will be loaded if not

already in memory and the jump will be executed.

+SPE~RA~~ UNIVAC

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	xBack

