
§1 EGGDATA INTRODUCTION 1

1. Introduction.

EGGDATA

Egg Database Access Tools

by John Walker
http://www.fourmilab.ch/

This program is in the public domain.

This program contains low-level utilities for manipulating “egg” data collected by the Global Consciousness
Project. Egg sites around the world periodically report the random event generator results they collect
each second to one or more “basket” sites, where the data are archived and eventually assembled into daily
“eggsummary” files, in which data for each second in the day for each egg are tabulated in Comma-Separated
Value (.csv) format.

This program implements a generic eggsummary class which provides an in-memory representation of
these files, extensible to handle data sets of arbitrary time span and resolution, with a user-defined data type
for the individual samples. Known bad data can be excluded either based on a list of egg numbers and time
intervals known to be bad, or based on limit values. Samples for individual eggs can be time-shifted to align
them in ways other than simultaneous Universal Time (for example, by civil or local solar time), and an
extract of a time interval may be prepared. Data can be exported in .csv format which can be subsequently
reloaded.

A generic eggsummary cache class, in connection with a utility eggdatabases class manages daily egg
summary information at a higher level. One can request data simply by specifying a time within the day, all
mapping to file name, loading data into memory as required, and storage allocation occurring automatically.
Users can access either “live” data from the egg network or the pseudorandom mirror data simply by changing
a single parameter to the cache. The cache will prepare a summary file for an arbitrary time interval, merging
and extracting data for individual days. The ability for this summary to block data into time intervals longer
than the original one second resolution (to reduce memory requirements and computation time when studying
extended intervals) is defined but not presently implemented.

Properties of individual egg sites are defined in a .csv format file which is accessed via the egg properties database
class. Given the “egg number” for a site, one may obtain its latitude, longitude, altitude, random event
generator type, and other information pertinent to analyses.

A utility csv parser class is used to read the various .csv files used by the other classes, and is available
for reading other files in that format.

This program uses the systemtime class, defined in the timedate program, to represent and operate on
dates and times; please refer to that program for details of its implementation and use.

〈 eggdata_test.c 1 〉 ≡
#define REVDATE "17th February 2002"

See also section 74.

2 PROGRAM GLOBAL CONTEXT EGGDATA §2

2. Program global context.

#include "config.h" /∗ System-dependent configuration ∗/
〈Preprocessor definitions 〉
〈Application include files 4 〉
〈Class implementations 5 〉

3. We export the class definitions for this package in the external file eggdata.h that programs which use
this library may include.
〈 eggdata.h 3 〉 ≡
#ifndef EGGDATA_HEADER_DEFINES

#define EGGDATA_HEADER_DEFINES

#include <math.h> /∗ Make sure math.h is available ∗/
#include <iostream>

#include <iomanip>

#include <fstream>

#include <cstdlib>

#include <exception>

#include <algorithm>

#include <stdexcept>

#include <string>

#include <vector>

#include <map>

#define HAVE_FDSTREAM_COMPATIBILITY

#ifdef HAVE_FDSTREAM_COMPATIBILITY

#include "fdstream.hpp"

#endif
using namespace std;

#include <ctype.h>

#include <assert.h>

#include "timedate.h"

〈Class definitions 8 〉
#endif

4. The following include files provide access to external components of the program not defined herein.
〈Application include files 4 〉 ≡
#include "eggdata.h" /∗ Class definitions for this package ∗/
This code is used in section 2.

5. The following classes are defined and their implementations provided.
〈Class implementations 5 〉 ≡
〈Egg data utilities 9 〉

This code is used in section 2.

§6 EGGDATA EGG DATA UTILITIES 3

6. Egg data utilities.

4 COMMA-SEPARATED-VALUE (CSV) PARSING EGGDATA §7

7. Comma-Separated-Value (CSV) Parsing.
The class csv parser This function implements a somewhat extended flavour of CSV. In addition to the

standard quoted fields, permitting embedded commas, with embedded quotes represented as "", backslash
escaped character expressed as three octal digits are also permitted, with a double backslash representing
an embedded backslash. This is necessary to permit fields which include end-of-line delimiters which would
otherwise truncate the record when it is read.

§8 EGGDATA COMMA-SEPARATED-VALUE (CSV) PARSING 5

8. A csv parser operates on a line buffer supplied by its creator. It may be created with a Λ line buffer
and a line buffer subsequently supplied with the new line method. Changing the line buffer resets the scan
pointer to the start of the line. You may query the scan pointer and reset it with the scan pointer and
set scan pointer methods.
〈Class definitions 8 〉 ≡

class csv parser {
private:

string line buffer ;
int charpos ;
bool pending field ;

public:
csv parser(string linebuf = "")
{

new line (linebuf);
}
∼csv parser()
{ }
void new line (string linebuf)
{

line buffer = linebuf ;
set scan pointer (0);

}
int scan pointer (void)
{

return charpos ;
}
void set scan pointer (int charnum = 0)
{

charpos = charnum ;
if (charnum ≡ 0) {

pending field = false ;
}

}
bool next field (string &f);

private:
static bool isOctal (char c)
{

return (((c) ≥ ’0’) ∧ ((c) ≤ ’7’));
}
bool chars left (int n)
{

return ((charpos + (n− 1)) < line buffer .length ());
}

};
See also sections 11, 12, 13, 20, 24, 27, 28, 29, 33, 39, 43, 44, 48, 49, 50, 52, 53, 62, and 67.

This code is used in section 3.

6 COMMA-SEPARATED-VALUE (CSV) PARSING EGGDATA §9

9. The next field method returns the parsed next field from the current CSV string to its argument f .
The return value is a bool which is true is a field was found and false if the end of record was encountered.

The pending field twiddling is a spot of bother due to our desire to properly handle CSV records with
trailing commas. Such records should be parsed as containing a void final field, not the absence of such field.
Thus, if we’ve parsed one or more fields from a CSV record and then find nothing after the last comma, we
treat it as void final field, not as an end of record.
〈Egg data utilities 9 〉 ≡

bool csv parser ::next field (string &f)
{

string fld ("");
bool foundfield = false , quoted = false ;
if (chars left (1)) {

foundfield = true ;
while (chars left (1) ∧ isspace (line buffer [charpos])) {

charpos ++;
}
if (chars left (1)) {

if (line buffer [charpos] ≡ ’"’) {
〈Parse quoted CSV field 10 〉;

}
while (chars left (1) ∧ line buffer [charpos] 6= ’,’) {

fld += line buffer [charpos ++];
}
if (chars left (1)) {

charpos ++;
pending field = true ;

}
else {

pending field = false ;
}

}
}
if (foundfield ∧ ¬quoted) {

while ((fld .length () > 0) ∧ isspace (fld [fld .length ()− 1])) {
fld .erase (fld .length ()− 1);

}
}
if (foundfield) {

f = fld ;
}
else if (pending field) {

f = fld ;
foundfield = true ;
pending field = false ;

}
return foundfield ;

}
See also sections 45, 63, 65, 66, 68, 69, 70, 71, 72, and 73.

This code is used in section 5.

§10 EGGDATA COMMA-SEPARATED-VALUE (CSV) PARSING 7

10. Fields in CSV files may be quoted, permitting them to contain arbitrary characters such as commas or
binary values. If the first character of a field is a ", the following code parses it. Such fields are terminated
by a matching quote mark and may contain double quote marks denoting an embedded quote. Binary
character codes may be included with the escape sequence “\ddd” where ddd are three octal digits. To
include a backslash in a quoted field, write two consecutive backslashes.
〈Parse quoted CSV field 10 〉 ≡

quoted = true ;
charpos ++;
while (chars left (1)) {

if (line buffer [charpos] ≡ ’"’) {
if (chars left (2) ∧ (line buffer [charpos + 1] ≡ ’"’)) {

fld += ’"’;
charpos += 2;

}
else {

charpos ++;
break;

}
}
else if (line buffer [charpos] ≡ ’\\’ ∧ chars left (2)) {

if (line buffer [charpos + 1] ≡ ’\\’) {
fld += ’\\’;
charpos += 2;

}
else if (chars left (4) ∧ isOctal (line buffer [charpos + 1]) ∧ isOctal (line buffer [charpos + 2]) ∧

isOctal (line buffer [charpos + 3])) {
char v;
v = ((line buffer [charpos + 1] − ’0’) � 6) | ((line buffer [charpos + 2] − ’0’) � 3) |

(line buffer [charpos + 3]− ’0’);
fld += (char) v;
charpos += 4;

}
else {

fld += line buffer [charpos + 1];
charpos += 2;

}
}
else {

fld += line buffer [charpos ++];
}

}
This code is used in section 9.

8 THE EGG SUMMARY CLASS EGGDATA §11

11. The Egg Summary Class.
The eggsummary class is an in-memory representation of a day’s data from a collection of random event

generator “eggs”. Daily archives in CSV format are prepared by the basketran program, which reads the
raw binary basket data files and assembles them into CSV files with names of basketdata−yyyy−mm−dd.

We define a template class, generic eggsummary , which is instantiated with the data type for the egg
samples it contains. By default, this is unsigned char, which covers the 0–200 range in original egg data
sets, as well as accommodating the special codes we use to represent missing samples, bad data, and the like.
A typedef is supplied to instantiate generic eggsummary as eggsummary with samples of unsigned char.

The reason for going to the trouble of defining a template with a parametric sample type is to make all of
the general-purpose services of the class (loading databases, time shifting, extraction of time intervals, etc.)
available for analyses which require non-integral sample types or those with larger capacity than the raw egg
data files.

For example, suppose we wish to aggregate samples into blocks along the time axis: say, storing the mean
(or some other metric such as a composite z score) for each minute’s worth of samples. If we were forced
to keep the samples in the default type of unsigned char, we’d lose precision in the aggregated values,
introducing unacceptable bias due to round off. In such circumstances, we can simply declare the data table
as “generic eggsummary < double >” and presto. . .we have all the functionality of the class plus double
precision floating point resolution for the samples.
〈Class definitions 8 〉 +≡

template〈class Sample〉 class generic eggsummary {
public: /∗ The following value identifies missing samples in the egg data table. We assume, therefore,

that trial size below is always less than MissingSample . ∗/
static const unsigned char MissingSample = 255; /∗ The following value identifies samples

marked as bad in the database loaded with exclude bad data . Again, trial size must be less than
this value. ∗/

static const unsigned char BadSample = 254;
/∗ This value flags samples which failed the limit test applied by limit to range . ∗/

static const unsigned char OutsideLimitsSample = 253; /∗ The following value replaces samples
shifted outside the time spanned by the data set by time shift . ∗/

static const unsigned char TimeShiftedOutSample = 252;
/∗ The following gives the size in bytes of the Sample type we’re instantiated with. ∗/

static const unsigned int sampleBytes = sizeof (Sample); /∗ The following variables specify
the protocol used by the eggs in collecting the data. These are required to be uniform across all
eggs contributing to a day summary file. These are rarely relevant to analysis of the summary file,
but do appear in it and are loaded with the file. ∗/

int samples per record ; /∗ Samples per data record ∗/
int seconds per record ; /∗ Seconds per data record ∗/
int records per packet ; /∗ Records per network data packet ∗/ /∗ Each individual report from

an egg consists of the number of one bits in a series of “trials” emitted by the random event
generator. Like the network protocol the trial size must be uniform for all eggs in a day’s data. The
mean value of results is expected to be trial size/2 and the standard deviation

√
trial size/4. ∗/

int trial size ; /∗ Trials per report ∗/
/∗ The basketdata files contain all reports submitted by eggs in a given day. A column for an egg

will be included in the report even if it submits the results of only one trial for that day. The
following field indicates how many egg columns are present in the report. ∗/

int eggs reporting ; /∗ Egg columns in this report ∗/
/∗ The start time and end time are systemtime objects which give the start and ending time of

data contained in this report. For reports generated by the normal daily summary process, these
are midnight on the day of the report and 23:59:59 on that day, respectively. ∗/

systemtime start time ; /∗ Report start time ∗/

§11 EGGDATA THE EGG SUMMARY CLASS 9

systemtime end time ; /∗ Report end time ∗/
/∗ The seconds of data field indicates how many seconds of data this report contains, which should

be equal to (end time − start time) + 1. ∗/
unsigned int seconds of data ; /∗ Seconds of data in report ∗/ /∗ The seconds per row field

indicates how many seconds separate successive rows in the egg data table. ∗/
unsigned int seconds per row ; /∗ Seconds of data per record ∗/

/∗ If the data source is pseudorandom, this variable so indicates ∗/
bool pseudorandom data ; /∗ True if data source pseudorandom ∗/

/∗ Each egg is identified by an unsigned integer “egg number”, with the hundreds digit denoting the
type of random event generator used by the egg. The egg number vector indicates which egg is
responsible for data in a given column of the data table. ∗/

vector〈unsigned int〉 egg number ; /∗ Egg number table ∗/
public: /∗ We’ll frequently want to locate the column containing data for a given egg number, so to

avoid repetitively searching the egg number array, we create a map from the egg numbers to the
column containing the data for the eggs. ∗/

map〈unsigned int,unsigned int〉 egg index ;
/∗ Map egg number to index ∗/ /∗ The egg data array contains the individual samples from the

eggs. Missing samples are denoted by the value MissingSample . To address the cell for egg n in a
given row, use the subscript expression n + (row × eggs reporting). ∗/

Sample ∗egg data ; /∗ Address a cell in the egg data table ∗/
Sample ∗egg cell (int row , int egg index)
{

return egg data + (egg index + (row ∗ eggs reporting));
} /∗ Allocate an egg data table ∗/
void allocate egg data (void)
{

assert (egg data ≡ Λ);
egg data = new Sample[eggs reporting ∗ (seconds of data/seconds per row)];

} /∗ Release the egg data table if allocated ∗/
void free egg data (void)
{

if (egg data 6= Λ) {
delete egg data ;

}
egg data = Λ;

}
public: /∗ Our constructor and destructor take care of releasing the egg data table when required. ∗/

generic eggsummary()
{

egg data = Λ;
}
∼generic eggsummary()
{

free egg data ();
} /∗ Retrieve egg data by row and egg index ∗/
Sample get egg index (int row , int egg index)
{

return ∗egg cell (row , egg index);
} /∗ Set egg data by row and egg index ∗/
void set egg index (int row , int egg index ,Sample value)

10 THE EGG SUMMARY CLASS EGGDATA §11

{
#if 0

cout � "Set egg index(" � row � ", " � egg index � ") = " � ((int) value) � "\n";
#endif

∗egg cell (row , egg index) = value ;
} /∗ Obtain egg index from egg number ∗/
int egg number to index (int egg number)
{

map〈unsigned int,unsigned int〉 :: iteratormpair ;
mpair = egg index .find (egg number);
if (mpair ≡ egg index .end ()) {

throw (invalid argument("egg_number_to_index: Invalid egg number"));
}
return mpair~second ;

} /∗ Retrieve egg data by row and egg number ∗/
Sample get egg number (int row , int egg number)
{

return get egg index (row , egg number to index (egg number));
} /∗ Test whether a sample is valid based on its value ∗/
bool isSampleValid (Sample sample)
{

return sample ≤ trial size ;
} /∗ Test whether a sample for a given row and egg number is valid ∗/
bool isSampleValid (int row , int egg number)
{

return isSampleValid (get egg number (row , egg number));
} /∗ Load egg data from input stream of CSV file ∗/
void load from CSV (istream &i);
void load from CSV (string filename); /∗ Save data to CSV file ∗/
void save to CSV (ostream &o,bool interpret missing = false);
void save to CSV (string fileName ,bool interpret missing = false);

/∗ Exclude known bad samples specified by CSV file ∗/
void exclude bad data (istream &i);
void exclude bad data (string filename);

/∗ Test samples within limits and mark bad those outside ∗/
void limit to range (Sample minLimit = 0,Sample maxLimit = 255,ostream ∗os = 0);

/∗ Time-shift samples from a given egg by a specified number of seconds ∗/
void time shift (int egg index , int seconds);

/∗ Extract data for a specified time range into another eggsummary ∗/
void extract time range (generic eggsummary〈Sample〉 ∗es , systemtime begin , systemtime

end , int sec row = 1); /∗ Extract data for a subset of eggs in the data set ∗/
void extract eggs (generic eggsummary〈Sample〉 ∗es ,vector〈unsigned int〉 &eggs);

/∗ Write description to output stream ∗/
void describe (ostream &os = cout);

};
typedef generic eggsummary〈unsigned char〉 eggsummary;

§12 EGGDATA LOADING DATA FROM CSV FILES 11

12. Loading data from CSV files.
Egg summary files are complied on a daily basis as CSV (comma-separated-value) files. The load from CSV

method reads one of these files from an input stream (in a strictly serial manner) into an in-memory
eggsummary object.
〈Class definitions 8 〉 +≡

template〈class Sample〉 void generic eggsummary〈Sample〉 :: load from CSV (istream &i)
{

string s;
int egg row = 0;
free egg data (); /∗ Release egg data if already allocated ∗/
while (getline (i, s)) {

csv parser p(s);
string f ;
int i, m type , s type , arg ; /∗ Direct CSV record to processing module by major type ∗/
if (¬p.next field (f) ∨ f.length () < 1 ∨ ¬isdigit (f [0])) {

throw (out of range("load_from_CSV: Invalid major type"));
}
m type = atoi (f.c str ());
switch (m type) {
case 10:
〈Process type 10 CSV record 16 〉;
break;

case 11:
〈Process type 11 CSV record 17 〉;
break;

case 12:
〈Process type 12 CSV record 18 〉;
break;

case 13:
〈Process type 13 CSV record 19 〉;
break;

}
}

#ifdef CSV_LOAD_DEBUG

cout � "CSV load complete.\n";
cout .flush ();

#endif
}

12 LOADING DATA FROM CSV FILES EGGDATA §13

13. We provide a variant of the load from CSV method which accepts a file name argument rather than an
existing istream. This version identifies compressed files and sets up a pipe through which the uncompressed
data are retrieved.
〈Class definitions 8 〉 +≡

template〈class Sample〉 void generic eggsummary〈Sample〉 :: load from CSV (string filename)
{

#ifdef HAVE_FDSTREAM_COMPATIBILITY

fdistreamiscc ;
#endif

ifstream is ;
FILE ∗ip = Λ;
〈Configure compression suffix and command 14 〉;

#ifdef COMPRESSED_FILES

if (filename .rfind (Compressed file type) 6= string ::npos) {
string cmd (Uncompress command);
cmd += ’ ’ + filename ;
ip = popen (cmd .c str (), "r");

#ifdef HAVE_FDSTREAM_COMPATIBILITY

iscc .attach (fileno(ip));
#else

is .attach (fileno(ip));
#endif

}
else {

#endif
is .open (filename .c str (), ios :: in);

#ifdef COMPRESSED_FILES

}
#endif
#ifdef HAVE_FDSTREAM_COMPATIBILITY

if (ip ≡ Λ) {
load from CSV (is);

}
else {

load from CSV (iscc);
}

#else
load from CSV (is);

#endif
if (ip 6= Λ) {

pclose (ip);
}

}

§14 EGGDATA LOADING DATA FROM CSV FILES 13

14. The type of compression and command required to expand compressed files may differ from system to
system. The following code, conditional based on variables determined by the autoconf process, defines the
file suffix denoting a compressed file and the corresponding command used to decode it. We only support
one type of compression on a given system; if gzip is available, we use it in preference to compress.
〈Configure compression suffix and command 14 〉 ≡
#if (defined HAVE_GUNZIP) ∨ (defined HAVE_GZCAT) ∨ (defined HAVE_GZIP)

define COMPRESSED_FILES

static const char Compressed file type [] = ".gz";
static const char Uncompress command [] =
if (defined HAVE_GUNZIP)
"gunzip −c"
elif (defined HAVE_GZCAT)
"gzcat"

elif (defined HAVE_GZIP)
"gzip −cd"
endif
;

#elif (defined HAVE_ZCAT) ∨ (defined HAVE_UNCOMPRESS) ∨ (defined HAVE_COMPRESS)
define COMPRESSED_FILES

static const char Compressed file type [] = ".Z";
static const char Uncompress command [] =
if (defined HAVE_ZCAT)
"zcat"

elif (defined HAVE_HAVE_UNCOMPRESS)
"uncompress −c"
elif (defined HAVE_COMPRESS)
"compress −cd"
endif
;

#endif
This code is used in sections 13 and 27.

15. CSV header records types 10 and 11 have a sub-code as the second field which identifies the individual
datum. The following code parses the subcode.
〈Parse CSV header subcode 15 〉 ≡

if (¬p.next field (f) ∨ f.length () < 1 ∨ ¬isdigit (f [0])) {
throw (out of range("load_from_CSV: Invalid subtype"));

}
s type = atoi (f.c str ());
if (¬p.next field (f) ∨ f.length () < 1 ∨ ¬isdigit (f [0])) {

throw (out of range("load_from_CSV: Invalid argument"));
}
arg = atoi (f.c str ());

This code is used in sections 16 and 17.

14 LOADING DATA FROM CSV FILES EGGDATA §16

16. Type 10 CSV records are main header information. We read them into the protocol definition and
experiment parameters fields of the eggsummary object.
〈Process type 10 CSV record 16 〉 ≡
〈Parse CSV header subcode 15 〉;
switch (s type) {
case 1:

samples per record = arg ;
break;

case 2:
seconds per record = arg ;
break;

case 3:
records per packet = arg ;
break;

case 4:
trial size = arg ;
assert (trial size < MissingSample);
break;

}
This code is used in section 12.

17. Type 11 CSV records provide details of the data to follow: the start and ending times, and the number
of eggs reporting data for this interval.
〈Process type 11 CSV record 17 〉 ≡
〈Parse CSV header subcode 15 〉;
switch (s type) {
case 1:

eggs reporting = arg ;
if (¬p.next field (f) ∨ (f.length () < 1)) {

throw (out of range("load_from_CSV: Invalid Eggs reporting header"));
}
pseudorandom data = f.find ("pseudorandom") 6= string ::npos ;
break;

case 2:
start time .set time (arg);
break;

case 3:
end time .set time (arg);
break;

case 4:
seconds of data = arg ;
break;

}
This code is used in section 12.

§18 EGGDATA LOADING DATA FROM CSV FILES 15

18. The single type 12 CSV record supplies the list of egg numbers which correspond to the columns in
the type 13 records supplying the data table which follows.
〈Process type 12 CSV record 18 〉 ≡ /∗ The first two fields of the type 12 record are place-holders ∗/

for (i = 0; i < 2; i++) {
if (¬p.next field (f)) {

throw (out of range("load_from_CSV: Invalid type 12 record"));
}

} /∗ The subsequent fields give the egg numbers for the columns in the data table. ∗/
for (i = 0; i < eggs reporting ; i++) {

unsigned int eggno ;
if (¬p.next field (f) ∨ f.length () < 1 ∨ ¬isdigit (f [0])) {

throw (out of range("load_from_CSV: Invalid type 12 egg table"));
}
eggno = atoi (f.c str ()); /∗ Add egg number to egg number vector ∗/
egg number .push back (eggno); /∗ Add egg number to egg index map ∗/
egg index .insert (make pair (eggno , i));

}
This code is used in section 12.

16 LOADING DATA FROM CSV FILES EGGDATA §19

19. Type 13 records contain the actual egg data samples. The second field is the date and time of the
record, followed by a void place-holder field and the actual egg sample data. Note that missing fields are
void, not equal to the MissingSample convention we use here.
〈Process type 13 CSV record 19 〉 ≡

time t rtime , xrtime ; /∗ Allocate egg data table before processing first type 13 record ∗/
if (egg data ≡ Λ) {

seconds per row = seconds per record /samples per record ;
egg data = new Sample[eggs reporting ∗ (seconds of data/seconds per row)];

/∗ Start time is expected time for first record ∗/
xrtime = start time .get time ();
egg row = 0;

}
if (¬p.next field (f) ∨ f.length () < 1 ∨ ¬isdigit (f [0])) {

throw (out of range("load_from_CSV: Invalid time in type 13 record"));
}
rtime = atoi (f.c str ());
assert (rtime ≡ xrtime); /∗ Update expected time for next record ∗/
xrtime += seconds per row ;
if (¬p.next field (f)) {

throw (out of range("load_from_CSV: Invalid place holder in type 13 record"));
} /∗ Now read the egg sample column data and store into the egg data table. Note that we must

replace void fields with our MissingSample indicator. ∗/
#ifdef CLEAN_BUT_SLOW

for (i = 0; i < eggs reporting ; i++) {
unsigned char eggdat = MissingSample ;
if (¬p.next field (f)) {

throw (out of range("load_from_CSV: Missing egg data in type 13 record"));
}
if (f.length () > 0) {

if (¬isdigit (f [0])) {
throw (out of range("load_from_CSV: Invalid egg data in type 13 record"));

}
eggdat = atoi (f.c str ());

}
set egg index (egg row , i, eggdat);

}
#else /∗ Hey, I agree, this ain’t pretty, but it’s five times faster (when compiled with optimisation)

than the squeaky clean CLEAN_BUT_SLOW implementation above. Cleanliness is fine, but you also
need to get the answer out before the protons decay in your CPU chip, so we descend into low-level C

string bashing to get the job done in the following inner loop. Note that this code assumes the CSV
file is perfectly formatted and that the eggdat array is laid out with columns occupying consecutive
memory addresses. ∗/

const char ∗cp = s.c str ();
Sample ∗ep = egg cell (egg row , 0); /∗ Skip first three fields already scanned the slow way ∗/
cp = strchr (strchr (strchr (cp , ’,’) + 1, ’,’) + 1, ’,’) + 1;
for (i = 0; i < eggs reporting ; i++) {

unsigned char eggdat ;
if (¬isdigit (∗cp)) {

eggdat = MissingSample ;
}
else {

§19 EGGDATA LOADING DATA FROM CSV FILES 17

eggdat = (∗cp ++)− ’0’;
while (isdigit (∗cp)) {

eggdat = (eggdat ∗ 10) + ((∗cp ++)− ’0’);
}

}
∗ep ++ = eggdat ;
cp ++;

}
#endif

egg row ++;
This code is used in section 12.

20. Saving data to CSV files.

〈Class definitions 8 〉 +≡
template〈class Sample〉 void generic eggsummary〈Sample〉 ::save to CSV (ostream &o,bool

interpret missing)
{

int i;
〈Write CSV file header 21 〉;
〈Write CSV egg number table 22 〉;
〈Write CSV egg data table 23 〉;

}
template〈class Sample〉 void generic eggsummary〈Sample〉 ::save to CSV (string fileName ,bool

interpret missing)
{

ofstream of (fileName .c str ());
save to CSV (of , interpret missing);

}

21. First we write the CSV file header, containing the global parameters for the data set.
〈Write CSV file header 21 〉 ≡

o � "10,1," � samples per record � ",\"Samples per record\"" � endl ;
o � "10,2," � seconds per record � ",\"Seconds per record\"" � endl ;
o � "10,3," � records per packet � ",\"Records per packet\"" � endl ;
o � "10,4," � trial size � ",\"Trial size\"" � endl ;
o � "11,1," � eggs reporting � ",\"Eggs reporting\"" � endl ;
o � "11,2," � start time .get time () � ",\"Start time\"," � start time .dateToString () � " " �

start time .timeToString () � endl ;
o � "11,3," � end time .get time () � ",\"End time\"," � end time .dateToString () � " " �

end time .timeToString () � endl ;
o � "11,4," � seconds of data � ",\"Seconds of data\"" � endl ;

This code is used in section 20.

18 SAVING DATA TO CSV FILES EGGDATA §22

22. Next, we emit the record giving the egg numbers for the columns in the data set which follows.
〈Write CSV egg number table 22 〉 ≡

o � "12,\"gmtime\",";
for (i = 0; i < eggs reporting ; i++) {

o � "," � egg number [i];
}
o � endl ;

This code is used in section 20.

23. Finally, we write out the egg data for each time interval in the data set. If the interpret missing
argument is true , we include the codes which identify the reason for the absence of specific samples.
Otherwise, they are simply output as empty fields.
〈Write CSV egg data table 23 〉 ≡

int nrows = seconds of data/seconds per row ;
systemtime now = start time ;
for (int n = 0; n < nrows ; n++) {

o � "13," � now .get time () � ",";
for (int e = 0; e < eggs reporting ; e++) {

Sample s = get egg index (n, e);
o � ",";
if ((s ≤ trial size) ∨ interpret missing) {

o � ((double) get egg index (n, e));
}

}
o � endl ;
now .set time (now .get time () + seconds per row);

}
This code is used in section 20.

§24 EGGDATA EXCLUDING DATA KNOWN TO BE BAD 19

24. Excluding data known to be bad.
To maintain the integrity of the primary Egg Summary database, we do not modify it, even to exclude

known bad samples (due, in most cases, to a defective random event generator or misconfigured computer).
Instead, we note the time range and egg number of data known to be bad in a separate CSV database.
After loading the original data, bad samples may be excluded by passing the bad sample database to the
exclude bad data method. Bad data are replaced with BadSample .
〈Class definitions 8 〉 +≡

template〈class Sample〉 void generic eggsummary〈Sample〉 ::exclude bad data (istream &i)
{

string s;
systemtime startTime , endTime ;
int rottenEgg ;
while (getline (i, s)) {

if ((s.length () > 0) ∧ (s[0] 6= ’;’) ∧ (s[0] 6= ’#’)) {
csv parser p(s);
string f ;
int i, m type , s type , arg ;
if (¬p.next field (f) ∨ f.length () < 1 ∨ ¬isdigit (f [0])) {

throw (out of range("exclude_bad_data: Invalid record type"));
}
m type = atoi (f.c str ());
switch (m type) {
case 47: 〈Process record from bad sample database 25 〉;

break;
default: throw (out of range("exclude_bad_data: Invalid record type"));

break;
}

}
}

#ifdef EXCLUDE_DEBUG

cout � "Exclusion of bad data complete.\n";
cout .flush ();

#endif
}

20 EXCLUDING DATA KNOWN TO BE BAD EGGDATA §25

25. Records in the bad sample database have the following format:
47,Start time,End time,Egg number

where 47 is the record type, Start time and End time specify the start and end of the period during which
the egg produced bad samples, and Egg number is the number of the rotten egg. The start and end time may
be specified either as ISO 8601 date and time, for example, “2001-08-19 03:35:18” or as the equivalent
UNIX date and time value, 998192118.

Comments may be included in the bad sample database as lines which begin with “#” or “;”.
〈Process record from bad sample database 25 〉 ≡

if (¬p.next field (f) ∨ f.length () < 1 ∨ ¬isdigit (f [0])) {
throw (out of range("exclude_bad_data: Invalid start time in type 47 record"));

}
if (f.find (’−’) 6= string ::npos) {

startTime .fromString (f);
}
else {

startTime .set time (atoi (f.c str ()));
}
if (¬p.next field (f) ∨ f.length () < 1 ∨ ¬isdigit (f [0])) {

throw (out of range("exclude_bad_data: Invalid end time in type 47 record"));
}
if (f.find (’−’) 6= string ::npos) {

endTime .fromString (f);
}
else {

endTime .set time (atoi (f.c str ()));
}
if (endTime .get time () < startTime .get time ()) {

throw (out of range("exclude_bad_data: End time before start time in type 47 record"));
}
if (¬p.next field (f) ∨ f.length () < 1 ∨ ¬isdigit (f [0])) {

throw (out of range("exclude_bad_data: Invalid egg number in type 47 record"));
}
rottenEgg = atoi (f.c str ());
assert (rottenEgg ≥ 1);

#ifdef EXCLUDE_DEBUG

cout � rottenEgg � ": " � startTime .dateToString () � " " � startTime .timeToString () �
" −−> " � startTime .dateToString () � " " � endTime .timeToString () � endl ;

#endif
〈Exclude samples marked as bad 26 〉;

This code is cited in section 51.

This code is used in section 24.

§26 EGGDATA EXCLUDING DATA KNOWN TO BE BAD 21

26. For each record in the bad sample database, we first perform a quick reject to determine if the time
range overlaps that represented in this eggsummary. If so, we walk through the table, row by row, and
zap the sample for the specified bad egg for all samples within the bad data range. Samples are replaced
with the special BadSample value (even if they were marked as MissingSample).
〈Exclude samples marked as bad 26 〉 ≡

if (¬((endTime .get time () < start time .get time ()) ∨ (startTime .get time () > end time .get time ()))) {
map〈unsigned int,unsigned int〉 :: iteratormpair ;
mpair = egg index .find (rottenEgg);
if (mpair 6= egg index .end ()) {

int egg column = mpair~second ;
systemtime rowTime (start time .get time ());
time t endt = end time .get time ();
if (endTime .get time () < endt) {

endt = endTime .get time ();
}
int row = 0;
while (rowTime .get time () ≤ endt) {

if ((rowTime .get time () ≥ startTime .get time ())∧ (rowTime .get time () ≤ endTime .get time ()))
{
set egg index (row , egg column ,BadSample);

#ifdef EXCLUDE_DEBUG

cout � "Zapped egg " � rottenEgg � " at " � rowTime .dateToString () � " " �
rowTime .timeToString () � " index " � row � endl ;

#endif
}
rowTime .set time (rowTime .get time () + seconds per row);
row ++;

}
}

#ifdef EXCLUDE_DEBUG

else {
cout � "No such egg." � endl ;

}
#endif
}

#ifdef EXCLUDE_DEBUG

else {
cout � "Quick reject." � endl ;

}
#endif
This code is used in section 25.

22 EXCLUDING DATA KNOWN TO BE BAD EGGDATA §27

27. We provide a variant of the exclude bad data method which accepts a file name argument rather
than an existing istream. This version identifies compressed files and sets up a pipe through which the
uncompressed data are retrieved.
〈Class definitions 8 〉 +≡

template〈class Sample〉 void generic eggsummary〈Sample〉 ::exclude bad data (string filename)
{

ifstream is ;
#ifdef HAVE_FDSTREAM_COMPATIBILITY

fdistreamiscc ;
#endif

FILE ∗ip = Λ;
〈Configure compression suffix and command 14 〉;

#ifdef COMPRESSED_FILES

if (filename .rfind (Compressed file type) 6= string ::npos) {
string cmd (Uncompress command);
cmd += ’ ’ + filename ;
ip = popen (cmd .c str (), "r");

#ifdef HAVE_FDSTREAM_COMPATIBILITY

iscc .attach (fileno(ip));
#else

is .attach (fileno(ip));
#endif

}
else {

#endif
is .open (filename .c str (), ios :: in);

#ifdef COMPRESSED_FILES

}
#endif
#ifdef HAVE_FDSTREAM_COMPATIBILITY

if (ip ≡ Λ) {
exclude bad data (is);

}
else {

exclude bad data (iscc);
}

#else
exclude bad data (is);

#endif
if (ip 6= Λ) {

pclose (ip);
}

}

§28 EGGDATA EXCLUDING SAMPLES WHICH EXCEED “SANITY CHECK” LIMITS 23

28. Excluding samples which exceed “sanity check” limits.
Random event generators occasionally get “the vapours” or the computers they’re connected to flip

out to la-la land, resulting in absurd samples. These are normally excluded by the bad sample database
applied by the exclude bad data method above, but absent specific exclusion thereby, it’s often convenient
to prune implausible outliers based solely on their value. The limit to range method allows you to replace
all samples in an eggsummary not within the range minLimit ≤ sample ≤ maxLimit with the value
OutsideLimitsSample which causes it to be ignored in analysis. If os is non-Λ, a summary of all samples
deleted as outside limits will be written to that output stream.
〈Class definitions 8 〉 +≡

template〈class Sample〉 void generic eggsummary〈Sample〉 :: limit to range (Sample
minLimit ,Sample maxLimit ,ostream ∗os)

{
for (int i = 0; i < eggs reporting ; i++) {

int row = 0;
for (time t t = start time .get time (); t ≤ end time .get time (); t += seconds per row) {

if (isSampleValid (get egg index (row , i))) {
Sample was = get egg index (row , i);
if ((was < minLimit) ∨ (was > maxLimit)) {

set egg index (row , i,OutsideLimitsSample);
if (os 6= 0) {
∗os � "limit_to_range: zapping egg " � egg number [i] � " at " �

systemtime(t).dateToString () � " " � systemtime(t).timeToString () �
" was " � ((unsigned int) was) � endl ;

}
}

}
row ++;

}
}

}

24 TIME SHIFTING SAMPLES FROM INDIVIDUAL EGGS EGGDATA §29

29. Time shifting samples from individual eggs.
Data from individual eggs are arranged in the eggsummary so that each row contains samples made at

the same moment (assuming the egg hosts’ clocks are properly synchronised, of course). For some studies,
we’re interested not in instantaneous behaviour of the network but, for example, effects related to local solar
or perhaps sidereal time at individual egg sites.

The time shift method facilitates such explorations. It shifts the data for the specified egg index (note:
index, not egg number—you can obtain the index for an egg number with egg number to index) by the
specified number of seconds , which can be positive or negative. Data shifted out of the time spanned by the
eggsummary are replaced by the invalid sample value TimeShiftedOutSample .

Suppose, for example, you wish to study the behaviour of eggs based on local solar time at the egg location
over a period of one day. Begin by obtaining a eggsummary for three days centred on the day in question.
Then, for each egg, use time shift to shift the samples by a number of seconds corresponding to the egg
site’s latitude (which you can obtain from the egg properties database). Eggs to the East of the Greenwich
meridian would have their data shifted by a negative number of seconds, eggs to the West, by a positive
number. Starting with three days’ data guarantees that after the shifting is complete, the middle day will
contain no shifted out samples. We can then extract the aligned day from the middle of the table and
perform the desired analyses.

The code is written out in a series of hand-optimised cases in the interest of efficiency; if you need this
function, your code is probably going to spend a lot of time in here and it’s worth a little additional complexity
to speed things up.
〈Class definitions 8 〉 +≡

template〈class Sample〉 void generic eggsummary〈Sample〉 ::time shift (int egg index , int
seconds)

{
assert ((egg index ≥ 0) ∧ (egg index < eggs reporting)); /∗ Egg index out of bounds ? ∗/
int rows to shift = seconds/seconds per row , /∗ Number of rows to shift data ∗/
nrows = seconds of data/seconds per row ; /∗ Number of rows in table ∗/
if (rows to shift 6= 0) {

if (abs (seconds) ≥ seconds of data) {
〈Time shift data entirely out of the table 32 〉;

}
else {

if (rows to shift < 0) {
〈Time shift data to earlier slots in table 30 〉;

}
else {
〈Time shift data to later slots in table 31 〉;

}
}

}
}

§30 EGGDATA TIME SHIFTING SAMPLES FROM INDIVIDUAL EGGS 25

30. When the seconds argument is negative, we shift samples for the designated egg to earlier time slots
in the eggsummary table, shifting in TimeShiftedOutSample into the slots at the end.
〈Time shift data to earlier slots in table 30 〉 ≡

rows to shift = −rows to shift ;
int i, ncopy = nrows − rows to shift ; /∗ Rows to copy ∗/
Sample ∗dstp = egg cell (0, egg index), ∗srcp = egg cell (rows to shift , egg index);
for (i = 0; i < ncopy ; i++) {
∗dstp = ∗srcp ;
srcp += eggs reporting ;
dstp += eggs reporting ;

} /∗ Fill data shifted out at end of table ∗/
dstp = egg cell (ncopy , egg index);
for (i = 0; i < rows to shift ; i++) {
∗dstp = TimeShiftedOutSample ;
dstp += eggs reporting ;

}
This code is used in section 29.

31. Conversely, when seconds is positive, we move samples for the egg to later time slots in the table,
filling vacated cells at the beginning of the table with TimeShiftedOutSample .
〈Time shift data to later slots in table 31 〉 ≡

int i, ncopy = nrows − rows to shift ; /∗ Rows to copy ∗/
Sample ∗srcp = egg cell ((nrows −1)−rows to shift , egg index), ∗dstp = egg cell ((nrows −1), egg index);
for (i = 0; i < ncopy ; i++) {
∗dstp = ∗srcp ;
srcp −= eggs reporting ;
dstp −= eggs reporting ;

} /∗ Fill data shifted out at start of table ∗/
dstp = egg cell (0, egg index);
for (i = 0; i < rows to shift ; i++) {
∗dstp = TimeShiftedOutSample ;
dstp += eggs reporting ;

}
This code is used in section 29.

32. If the time shift specified is longer than the time interval present in the table, data for the egg are
entirely wiped out and replaced by TimeShiftedOutSample . This is a pretty dopey thing to do, but one can
imagine circumstances in which it makes sense.
〈Time shift data entirely out of the table 32 〉 ≡

Sample ∗cellp = egg cell (0, egg index);
for (int i = 0; i < nrows ; i++) {
∗cellp = TimeShiftedOutSample ;
cellp += eggs reporting ;

}
This code is used in section 29.

26 EXTRACTION OF DATA FOR A TIME INTERVAL WITHIN THE DATA SET EGGDATA §33

33. Extraction of data for a time interval within the data set.
When studying predictions with a predefined time span, you’ll want to analyse a subset of the data

covering the prediction. The extract time range method extracts the data for a given time period (which
must be entirely present within the source eggsummary) and writes it into a destination eggsummary
es . We do the somewhat eccentric pointer game so that this method can be used with classes derived
from eggsummary, for example, those which add analytical facilities. Users of those classes can use
extract time range to prepare the raw data table, then employ the methods of the derived class to perform
the analyses.
〈Class definitions 8 〉 +≡

template〈class Sample〉 void
generic eggsummary〈Sample〉 ::extract time range (generic eggsummary〈Sample〉
∗es , systemtime begin , systemtime end , int sec row)

{
assert (sec row ≡ 1); /∗ Aggregation of data into longer intervals isn’t implemented yet! ∗/
assert (sec row ≥ seconds per row); /∗ Can’t increase time resolution by extracting! ∗/
assert ((begin .get time () ≥ start time .get time ()) ∧ (end .get time () ≤ end time .get time ()));

/∗ Requested range outside that in data set ∗/
〈Copy header fields into extracted data set 34 〉;
〈Set header fields which differ in extracted data set 35 〉;
〈Allocate and copy data table for extracted data set 36 〉;

}

34. It’s tedious, but there’s nothing for it—we have to copy all of the header fields the extract inherits
from the source eggsummary. There’s never a MOVE CORRESPONDING when you need one.
〈Copy header fields into extracted data set 34 〉 ≡
#define Cf (x)es~x = x

Cf (samples per record);
Cf (seconds per record);
Cf (records per packet);
Cf (trial size);
Cf (eggs reporting);
Cf (pseudorandom data);
Cf (egg number);
Cf (egg index);

#undef Cf
This code is used in section 33.

35. Naturally, some header fields differ in the extracted data set. Here we initialise them.
〈Set header fields which differ in extracted data set 35 〉 ≡

es~start time .set time (begin .get time ());
es~end time .set time (end .get time ());
es~seconds of data = end .get time ()− begin .get time ();
es~seconds per row = sec row ;

This code is used in section 33.

§36 EGGDATA EXTRACTION OF DATA FOR A TIME INTERVAL WITHIN THE DATA SET 27

36. Finally, we’re ready to actually extract the data. Allocate the data table (releasing any previously
allocated table) and copy the extract into it.
〈Allocate and copy data table for extracted data set 36 〉 ≡

es~ free egg data (); /∗ Release existing egg data table, if any ∗/
es~egg data = new Sample[eggs reporting ∗ (seconds of data/seconds per row)];
Sample ∗dstp = es~egg cell (0,

0), ∗srcp = egg cell (((es~start time .get time ()− start time .get time ())/seconds per row), 0);
if (seconds per row ≡ es~seconds per row) {
〈Copy data table for extracted data set with identical time resolution 37 〉;

}
else {
〈Summarise data table for extracted data set with reduced time resolution 38 〉;

}
This code is used in section 33.

37. When the time resolution of the extracted data set is identical to that of the source, we can simply
blast-memcpy the bytes of the data table from the source to destination, offsetting the source pointer to
begin at the row containing the start time of the requested extract.
〈Copy data table for extracted data set with identical time resolution 37 〉 ≡

memcpy (dstp , srcp , sampleBytes ∗ eggs reporting ∗ (es~seconds of data/es~seconds per row));
This code is used in section 36.

38.

〈Summarise data table for extracted data set with reduced time resolution 38 〉 ≡
assert (false); /∗ Not implemented yet ∗/

This code is used in section 36.

39. Extraction of data for a subset of eggs.

〈Class definitions 8 〉 +≡
template〈class Sample〉 void

generic eggsummary〈Sample〉 ::extract eggs (generic eggsummary〈Sample〉
∗es ,vector〈unsigned int〉 &eggs)

{
〈Copy header fields into extracted list of eggs data set 40 〉;
〈Create egg number table and map for extracted eggs 41 〉;
〈Copy data for extracted eggs 42 〉;

}

28 EXTRACTION OF DATA FOR A SUBSET OF EGGS EGGDATA §40

40. Copy the header fields which are identical in the original data set and the extract.
〈Copy header fields into extracted list of eggs data set 40 〉 ≡
#define Cf (x)es~x = x

Cf (samples per record);
Cf (seconds per record);
Cf (records per packet);
Cf (trial size);
Cf (start time);
Cf (end time);
Cf (seconds of data);
Cf (seconds per row);
Cf (pseudorandom data);

#undef Cf
This code is used in section 39.

41. To build the egg number table for the extracted data set, we iterate through the eggs argument vector
and add each egg which appears in the source eggsummary to the extract’s egg number vector. We permit
the specification of egg numbers in the argument which aren’t present in the source data, as the user might
want to request a subset of eggs for a series of days in which some of them may not figure. If the egg does not
appear in the source data, it will not appear in the extract. We sort the egg number table before building
the map from it to preserve the convention that eggs appear in ascending order by number.
〈Create egg number table and map for extracted eggs 41 〉 ≡

es~egg index .clear ();
es~egg number .clear ();
vector〈unsigned int〉 :: iterator s;
for (s = eggs .begin (); s 6= eggs .end (); s++) { /∗ cout ¡¡ *s ¡¡ endl; ∗/

if (egg index .find (∗s) 6= egg index .end ()) {
es~egg number .push back (∗s);

}
}
es~eggs reporting = es~egg number .size ();
int e;
〈Prepare egg table and map for extracted data set 59 〉;

This code is used in section 39.

§42 EGGDATA EXTRACTION OF DATA FOR A SUBSET OF EGGS 29

42. All that remains is to allocate the egg data table for the extracted eggs and copy the data into it.
Note that since the extract covers the same time span as the original data set and only eggs present in the
source are included in the extract, there is no need to pre-fill the data table with MissingSample . We copy
the data cowboy-style in the interest of not spending all day here.
〈Copy data for extracted eggs 42 〉 ≡

es~ free egg data ();
es~allocate egg data ();
for (e = 0; e < es~eggs reporting ; e++) {

Sample ∗dstp = es~egg cell (0, e), ∗srcp = egg cell (0, egg number to index (es~egg number [e]));
int nrows = seconds of data/seconds per row ;
for (int j = 0; j < nrows ; j++) {
∗dstp = ∗srcp ;
dstp += es~eggs reporting ;
srcp += eggs reporting ;

}
}

This code is used in section 39.

43. Describing the data set in human-readable form.
Our describe method writes global information for the data table to the designated output stream. Derived

classes may call this parent class method to write the header for the more detailed information they describe.
〈Class definitions 8 〉 +≡

template〈class Sample〉 void generic eggsummary〈Sample〉 ::describe (ostream &os)
{

os � "Egg summary:" � endl � " Start time: " � start time .dateToString () � " " �
start time .timeToString () � ". End time: " � end time .dateToString () � " " �
end time .timeToString ();

if (pseudorandom data) {
os � " (Pseudorandom data)";

}
os � endl ;
os � " Seconds of data: " � seconds of data � " Seconds per row: " � seconds per row �

" Bytes per sample: " � sampleBytes � endl ;
os � " Samples per record: " � samples per record � " Seconds per record: " �

seconds per record � " Records per packet: " � records per packet � " Trial size: " �
trial size � endl ;

os � " Eggs reporting: " � eggs reporting � ":";
for (int i = 0; i < eggs reporting ; i++) {

if ((i % 10) ≡ 9) {
os � endl � " ";

}
os � " " � egg number [i];

}
os � endl ;

}

30 EGG DATABASES CLASS EGGDATA §44

44. Egg databases class.
We have the ability to access any number of individual egg databases. There are usually two databases,

one containing “live” data from the random event generators and a mirror containing pseudorandom data for
control studies, but one can define additional databases with different selection criteria: for example, type
of random event generator or general geographic location. The eggdatabases class maps a database category
name into a path prefix where the basketdata files for that category are to be found.
〈Class definitions 8 〉 +≡

class eggdatabases {
private:

map〈string, string〉 cat to path ;
public:

eggdatabases()
{ }
void add database (string dbname , string path)
{

cat to path .insert (make pair (dbname , path));
}
string path (string database name)
{

map〈string, string〉 ::const iterator p = cat to path .find (database name);
if (p ≡ cat to path .end ()) {

throw (out of range("eggdatabases::path: unknown database name"));
}
return p~second ;

}
string database file (systemtime t, string which = "gcp");
〈Define database locations for archive sites 46 〉;

};

45. The database file method returns the file name containing the data for a given systemtime.
〈Egg data utilities 9 〉 +≡

string eggdatabases ::database file (systemtime t, string which)
{

return path (which) + "/basketdata−" + t.dateToString () + ".csv.gz";
}

§46 EGGDATA EGG DATABASES CLASS 31

46. We provide functions to pre-initialise eggdatabases for the locations of the real and pseudo data egg
summary files at the main Global Consciousness Project site and the backup mirror at Fourmilab.
〈Define database locations for archive sites 46 〉 ≡

void set Fourmilab defaults (void)
{

add database ("gcp", "/files/Server/Backup/egg/eggsummary");
add database ("pseudo", "/files/Server/Backup/egg/pseudoeggsummary");

}
void set noosphere defaults (void)
{

add database ("gcp", "/home/httpd/html/data/eggsummary");
add database ("pseudo", "/home/httpd/html/data/pseudoeggsummary");

}
See also section 47.

This code is used in section 44.

47. Finally, as a really dirty trick, we define a method which configures the proper defaults for the host
we’re running on based on the automatically sensed host name from the configurator. This permits writing
code which adapts to any mirror of the database without any source code changes.
〈Define database locations for archive sites 46 〉 +≡
#ifdef HOSTNAME

void set local defaults (void)
{

if (HOSTNAME ≡ "hayek.lan.fourmilab.ch") {
set Fourmilab defaults ();

}
else if (HOSTNAME ≡ "noosphere.princeton.edu") {

set noosphere defaults ();
}
else {

string em = "eggdatabases::set_local_defaults: unknown host name ";
em += HOSTNAME;
throw (out of range(em .c str ()));

}
}

#endif

32 EGG SUMMARY CACHE EGGDATA §48

48. Egg summary cache.
To provide for flexible and efficient access to archived eggsummary databases, we interpose the eggsummary cache

class between the archived data and in-memory representations. By going through this class, accessors need
not worry about loading databases from disc or worrying about exhausting memory by keeping too many
databases in memory simultaneously.

The cache is defined as a template class generic eggsummary cache which can be instantiated with any
class derived from eggsummary; we provide a typedef of eggsummary cache to create a cache of the basic
eggsummary class. Using a template permits analysis code which extends the basic eggsummary to
benefit from caching of its specialised database objects.

At the moment, the implementation of the cache simply accumulates eggsummary objects in memory
without bound. In the future, it will be upgraded to limit memory consumption to a specified upper bound
by flushing out cached data via an LRU algorithm.
〈Class definitions 8 〉 +≡

template〈class T 〉 class generic eggsummary cache { private: /∗ The name cache maps the
path name used to load an egg summary file into the in-memory cached version of the file. ∗/

map 〈string, T ∗> name cache ;
eggdatabases ∗eDB ;
string eWhich ;
string rottenEggDatabase ;
int minSample , maxSample ;

public:
void setEggDatabases (eggdatabases ∗ed = 0, string which = "gcp")
{

eDB = ed ;
eWhich = which ;

}
void setRottenEgg (string rottenEgg = "")
{

rottenEggDatabase = rottenEgg ;
}
void setSampleLimits (int minSamp = −1, int maxSamp = 1024)
{

minSample = minSamp ;
maxSample = maxSamp ;

}
generic eggsummary cache(eggdatabases ∗ed = 0, string rottenEgg = "", int minSamp = −1, int

maxSamp = 1024, string which = "gcp")
{

setEggDatabases (ed ,which);
setRottenEgg (rottenEgg);
setSampleLimits (minSamp ,maxSamp);

}
T ∗ get (string path name);
T ∗ get by date (string date);
T ∗ get by date (systemtime &t);
T ∗ get by date (time t tt);
∼generic eggsummary cache()
{

purge ();
}

§48 EGGDATA EGG SUMMARY CACHE 33

void purge (void); /∗ Extract data for a specified time range into a composite eggsummary ∗/
void extract time range (T ∗ es , systemtime begin , systemtime end , int sec row = 1); } ;
typedef generic eggsummary cache〈eggsummary〉 eggsummary cache;

49. The get method takes the path name used to load an eggsummary file and returns an in-memory
eggsummary containing its contents, from the cache if already loaded, or after loading the data from the
file and adding it to the cache.
〈Class definitions 8 〉 +≡

template〈class T 〉 T∗generic eggsummary cache〈T 〉 ::get (string path name){ typename map
〈string, T ∗> :: iterator item ;

item = name cache .find (path name);
if (item ≡ name cache .end ()) {

T ∗ es = new T ();
es~ load from CSV (path name);
es~pseudorandom data = eWhich ≡ "pseudo";
〈Exclude bad samples from eggsummary loaded into cache 51 〉;
name cache .insert (make pair (path name , es));

#ifdef CACHE_DEBUG

cout � "Loaded " � path name � " from file.\n";
cout .flush ();

#endif
return es ;

}
#ifdef CACHE_DEBUG

cout � "Returned " � path name � " from cache.\n";
cout .flush ();

#endif
return item~second ; }

50. If a source of Egg databases has been provided, we permit the user to request a database simply by
supplying its date. Polymorphic functions are provided to permit specifying this date as a string in ISO-8601
format, a systemtime, or a UNIX time t value.
〈Class definitions 8 〉 +≡

template〈class T 〉 T∗generic eggsummary cache〈T 〉 ::get by date (string date)
{

systemtime t;
t.fromString (date);
return get (eDB~database file (t, eWhich));

}
template〈class T 〉 T∗generic eggsummary cache〈T 〉 ::get by date (systemtime &t)
{

return get (eDB~database file (t, eWhich));
}
template〈class T 〉 T∗generic eggsummary cache〈T 〉 ::get by date (time t tt)
{

systemtime t(tt);
return get (eDB~database file (t, eWhich));

}

34 EGG SUMMARY CACHE EGGDATA §51

51. When we load an eggsummary file, if the user has specified a database of known bad data (see
〈Process record from bad sample database 25 〉 for details) or limits outside which a sample is considered
invalid and discarded, we enforce those limits immediately the eggsummary for the day loaded into the
cache. Limitation of data to a defined range is done silently; if you wish to log out of range samples, you’ll
have to call limit to range yourself after the cache returns the eggsummary.
〈Exclude bad samples from eggsummary loaded into cache 51 〉 ≡

if (rottenEggDatabase 6= "") {
es~exclude bad data (rottenEggDatabase);

}
if (minSample ≥ 0) {

es~ limit to range (minSample ,maxSample);
}

This code is used in section 49.

52. The purge method empties the cache, releasing all of the in-memory eggsummary objects in it.
〈Class definitions 8 〉 +≡

template〈class T 〉 void generic eggsummary cache〈T 〉 ::purge (void){ typename map 〈string,
T ∗> :: iterator item ; /∗ Delete all in-memory eggsummary objects ∗/

for (item = name cache .begin (); item 6= name cache .end (); item ++) {
delete item~second ;

}
name cache .clear ();

#ifdef CACHE_DEBUG

cout � "Purged map.\n";
cout .flush ();

#endif
}

53. Extraction of data for a time interval.
The cache provides an extract time range method with the same arguments as the eponymous method of

the generic eggsummary class but, provided the cache has been properly initialised with the source of the
required egg summary files, is able to produce an extract of any time period with a specified time resolution.
We create the resulting eggsummary in an existing structure, dynamically allocating the egg data table as
required.
〈Class definitions 8 〉 +≡
#undef CETR_DEBUG

template〈class T 〉 void generic eggsummary cache〈T 〉 ::extract time range (T ∗ es , systemtime
begin , systemtime end , int sec row)

{
assert (sec row ≡ 1); /∗ Aggregation of data into longer intervals isn’t implemented yet! ∗/
assert ((begin .get time () < end .get time ())); /∗ Begin time ≥ end time ∗/
int e;
〈 Initialise header for extracted data set 54 〉;
〈Perform first pass scan of days included in extracted data set 55 〉;
〈Prepare egg table and map for extracted data set 59 〉;
〈Perform second pass, extracting data from individual days 60 〉;

}

§54 EGGDATA EXTRACTION OF DATA FOR A TIME INTERVAL 35

54. We start by plugging in the few header fields we know directly from the arguments and clear out any
existing data in the eggsummary.
〈 Initialise header for extracted data set 54 〉 ≡

es~ free egg data ();
es~seconds of data = (end .get time ()− begin .get time ()) + 1;
es~start time = begin ;
es~end time = end ;
es~seconds per row = sec row ;
es~egg index .clear ();
es~egg number .clear ();
es~eggs reporting = 0;

This code is used in section 53.

55. Before we can allocate the data table and load it with data for the requested period, we first need to
determine how many unique eggs have contributed data for the period in question. Individual eggsummary
objects for a day only contain a column for an egg if it contributed a sample that day, and hence when the
requested intervals spans more than one day, the days contributing to the extract may differ in the number
of eggs they report and the assignment of egg numbers to columns in the table. We make a preliminary pass
over the days in the interval (bringing them into the cache), creating a list of all eggs in all days. Note that
if an egg is present in a day in the interval but did not actually contribute any samples within the interval
itself, the egg will be listed in the result, but all of its samples will be MissingSample .
〈Perform first pass scan of days included in extracted data set 55 〉 ≡

systemtime t(begin .midnight ());
bool firstLaid = true ;
do {

#ifdef CETR_DEBUG

cout � "First pass loading " � t.dateToString () � endl ;
#endif

T ∗ ds = get by date (t);
if (firstLaid) {
〈Set properties of extract from those of first day’s data 56 〉;
firstLaid = false ;

}
else {
〈Verify consistency of parameters for all days in extract period 57 〉;

}
〈Add new egg numbers to extract egg table 58 〉;
t.nextDay ();

} while (t.get time () < end .get time ());
This code is used in section 53.

56. All the days contributing to the extract are assumed to have the same experimental parameters (we
verify this below). When processing the first day’s data, we set the parameters of the extract from its header.
〈Set properties of extract from those of first day’s data 56 〉 ≡

es~samples per record = ds~samples per record ;
es~seconds per record = ds~seconds per record ;
es~records per packet = ds~records per packet ;
es~ trial size = ds~ trial size ;
es~pseudorandom data = ds~pseudorandom data ;

This code is used in section 55.

36 EXTRACTION OF DATA FOR A TIME INTERVAL EGGDATA §57

57. As noted above, we require that all days contributing data to the extract share the same experimental
parameters. Having set the parameters of the extract from the first day’s header, we confirm here that they
haven’t changed on subsequent days.
〈Verify consistency of parameters for all days in extract period 57 〉 ≡

if ((es~samples per record 6= ds~samples per record) ∨ (es~seconds per record 6=
ds~seconds per record) ∨ (es~records per packet 6= ds~records per packet) ∨ (es~ trial size 6=
ds~ trial size) ∨ (es~pseudorandom data 6= ds~pseudorandom data)) {

throw (out of range("generic_eggsummary_cache::extract_time_range: Parameters di\
ffer in days in extract"));

}
This code is used in section 55.

58. For each day within the interval, we look up each egg in the day’s egg table in the egg number to
column map we’re building for the extract and add it if it’s not already present.
〈Add new egg numbers to extract egg table 58 〉 ≡

for (e = 0; e < ds~eggs reporting ; e++) {
if (es~egg index .find (ds~egg number [e]) ≡ es~egg index .end ()) {

es~egg number .push back (ds~egg number [e]);
es~egg index .insert (make pair (ds~egg number [e], es~eggs reporting));
es~eggs reporting ++;

}
}

This code is used in section 55.

59. After completing the first pass, we have a list of all eggs whose data appear in the interval, but
this list isn’t necessarily sorted in ascending order of egg number. This isn’t strictly required, but since
eggsummary files for individual days are, in fact, sorted, we sort the egg table and re-build the map using
the sorted order here.
〈Prepare egg table and map for extracted data set 59 〉 ≡

sort (es~egg number .begin (), es~egg number .end ());
es~egg index .clear ();
for (e = 0; e < es~eggs reporting ; e++) {

es~egg index .insert (make pair (es~egg number [e], e));
}

This code is used in sections 41 and 53.

§60 EGGDATA EXTRACTION OF DATA FOR A TIME INTERVAL 37

60. Now that we have an egg table covering the entire extract, we need only walk back through the days
in the extract and actually copy the requested data to the extract. We begin by allocating the egg data
table and initialising it to MissingSample .
〈Perform second pass, extracting data from individual days 60 〉 ≡

int egg data size = es~eggs reporting ∗ (es~seconds of data/es~seconds per row);
es~allocate egg data ();
for (e = 0; e < egg data size ; e++) {

es~egg data [e] = es~MissingSample ;
}
t.set time (begin .midnight ());
systemtime now = begin ;
firstLaid = true ;
int nr = 0;
do {

#ifdef CETR_DEBUG

cout � "Second pass loading " � t.dateToString () � endl ;
#endif

T ∗ ds = get by date (t);
if (firstLaid) {

e = begin .get time ()− ds~start time .get time ();
assert ((e ≥ 0) ∧ (e < systemtime ::SecondsPerDay));
firstLaid = false ;

}
else {

e = 0;
}
〈Copy day’s data to extracted data set 61 〉;
t.nextDay ();

} while (t.get time () < end .get time ());
This code is used in section 53.

61. Transcribe the egg data within the extract interval from this day’s eggsummary. This is presently
written as “clean but slow” code—it looks up the egg column in the destination map for every sample it
stores. This could be optimised by computing a vector of column transformations once for each day’s data,
but in practice this wouldn’t speed things up very much because the time spent in this code is very small
compared to loading the CSV files into memory.
〈Copy day’s data to extracted data set 61 〉 ≡

while ((now .get time () ≤ ds~end time .get time ()) ∧ (now .get time () ≤ es~end time .get time ())) {
for (int n = 0; n < ds~eggs reporting ; n++) {

es~set egg index (nr , es~egg number to index (ds~egg number [n]), ds~get egg index (e, n));
}
e++;
nr ++;
now .set time (now .get time () + 1);

}
This code is used in section 60.

38 EGG PROPERTIES DATABASE EGGDATA §62

62. Egg Properties Database.
The Egg Properties database describes the characteristics of each egg in the network. Each egg is identified

by a unique “egg number”, the range of which also identifies the type of random event generator employed
by the egg.

We begin by introducing the class which expresses the properties of an individual egg.
〈Class definitions 8 〉 +≡

class egg properties {
public:

static const int unknownAltitude = −9999; /∗ Code for unknown altitude ∗/
unsigned int eggNumber ;
double latitude , longitude , altitude ;
string location , REGtype , hostName ; /∗ Initialise fields from a CSV database record ∗/
void setFromCSV (string s); /∗ Write description to output stream ∗/
void describe (ostream &os = cout); /∗ Write tabular representation to output stream ∗/
void tabulate (ostream &os = cout);
bool isAltitudeKnown (void)
{

return altitude 6= unknownAltitude ;
}

};

63. The egg properties database is normally loaded from a CSV file. Given a line from the CSV file, this
method parses the fields and initialises the properties from them. Note that discarding comment lines must
be done before this method is called.
〈Egg data utilities 9 〉 +≡

void egg properties ::setFromCSV (string s)
{

csv parser p(s);
string f ;
int i, m type , s type , arg ;
if (¬p.next field (f) ∨ f.length () < 1 ∨ ¬isdigit (f [0])) {

throw (out of range("egg_properties::setFromCSV: Invalid record type"));
}
m type = atoi (f.c str ());
switch (m type) {
case 41: 〈Process record from egg property database 64 〉;

break;
default: throw (out of range("egg_properties::setFromCSV: Invalid record type"));

break;
}

}

§64 EGGDATA EGG PROPERTIES DATABASE 39

64. Records in the egg property database have the following form:
41,Egg number,Latitude,Longitude,Altitude,Location,REG type,Host name

The record begins with the record identifier 41. The Egg number is a unique identifier assigned to the
egg. The Latitude and Longitude are given as floating point numbers, with negative numbers denoting South
latitude and East longitude. Altitude is in metres above (or, if negative, below) mean sea level; if the altitude
is not known, this field is given as "NA" and the altitude will be set to unknownAltitude : −9999. The Location
is a text field identifying the site at which the egg host is installed: if known, this should be its Unix time
zone designation to permit conversion from UTC to local time. The REG type identifies the kind of random
event generator employed by the egg: this is a text field. If the egg has a permanently assigned fully qualified
domain name (for example, “noosphere.princeton.edu”, it should be given in the Host name field, or "NA"
for dial-up eggs or those with a dynamically assigned host name.
〈Process record from egg property database 64 〉 ≡

if (¬p.next field (f) ∨ f.length () < 1 ∨ ¬isdigit (f [0])) {
throw (out of range("egg_properties::setFromCSV: Invalid egg number in type 41 r\

ecord"));
}
eggNumber = atoi (f.c str ());
assert (eggNumber > 0);
if (¬p.next field (f) ∨ f.length () < 1) {

throw (out of range("egg_properties::setFromCSV: Invalid latitude in type 41 record"));
}
latitude = atof (f.c str ());
assert (latitude ≥ −90 ∧ latitude ≤ 90);
if (¬p.next field (f) ∨ f.length () < 1) {

throw (out of range("egg_properties::setFromCSV: Invalid longitude in type 41 record"));
}
longitude = atof (f.c str ());
assert (longitude ≥ −180 ∧ longitude ≤ 180);
if (¬p.next field (f) ∨ f.length () < 1) {

throw (out of range("egg_properties::setFromCSV: Invalid altitude in type 41 record"));
}
if ((f ≡ "NA") ∨ (f ≡ "?")) {

altitude = unknownAltitude ;
}
else {

altitude = atof (f.c str ());
assert (longitude ≥ −180 ∧ longitude ≤ 180);

}
if (¬p.next field (f) ∨ f.length () < 1) {

throw (out of range("egg_properties::setFromCSV: Invalid location in type 41 record"));
}
location = f ;
if (¬p.next field (f) ∨ f.length () < 1) {

throw (out of range("egg_properties::setFromCSV: Invalid REG type in type 41 record"));
}
REGtype = f ;
if (¬p.next field (f) ∨ f.length () < 1) {

throw (out of range("egg_properties::setFromCSV: Invalid host name in type 41 record"));
}
if (f ≡ "NA") {

f = "";
}

40 EGG PROPERTIES DATABASE EGGDATA §64

hostName = f ;
This code is used in section 63.

65. The describe method sends a primate-readable description of the egg properties to the designated
output stream.
〈Egg data utilities 9 〉 +≡

void egg properties ::describe (ostream &os)
{

os � "Egg " � eggNumber � ":" � endl ;
os � " Latitude: " � latitude � " Longitude: " � longitude � " Altitude: " � altitude �

endl ;
os � " Location: " � location � " REG type: " � REGtype � " Host name: " �

hostName � endl ;
}

66. The tabulate method is much like describe above, but outputs the information in a spiffy columnar
format. Note the crazy requirement to break out a C string from our string objects; if you don’t, looney
ostream won’t fill and justify the field!
〈Egg data utilities 9 〉 +≡

void egg properties ::tabulate (ostream &os)
{

os .setf (ios ::fixed , ios ::floatfield);
os .precision (3);
os � setw (4) � eggNumber � " " � setw (10) � latitude � " " � setw (10) � longitude � " ";
if (isAltitudeKnown ()) {

os � setw (6) � setprecision (0) � altitude � " ";
}
else {

os � " N.A. ";
}
os .setf (ios :: left , ios ::adjustfield);
os � setw (10) � REGtype .c str () � " " � setw (24) � location .c str () � " " �

hostName .c str () � endl ;
os .setf (ios ::right , ios ::adjustfield);
os .precision (6);

}

§67 EGGDATA EGG PROPERTIES DATABASE 41

67. OK, with these preliminaries out of the way, we’re now ready to implement the egg property database
class. This is simply a list of egg properties objects with tools to load and access them.
〈Class definitions 8 〉 +≡

class egg properties database {
private:

map〈unsigned int, egg properties ∗〉 eggs ;
vector〈egg properties ∗〉 eggv ;

public:
void loadFromCSV (istream &i);
void loadFromCSV (string fileName);
void describe (ostream &o = cout);
void tabulate (ostream &o = cout);
unsigned int size (void);
egg properties ∗find (unsigned int egg number);
egg properties ∗operator[](int n);

};

68. The size method simply returns the number of eggs in the database.
〈Egg data utilities 9 〉 +≡

unsigned int egg properties database ::size (void)
{

return eggs .size ();
}

69. The find method looks up an egg in the properties database and returns a pointer to its egg properties.
If the egg number is unknown, Λ is returned.
〈Egg data utilities 9 〉 +≡

egg properties ∗egg properties database ::find (unsigned int egg number)
{

map〈unsigned int, egg properties ∗〉 :: iterator p = eggs .find (egg number);
return (p ≡ eggs .end ()) ? Λ : p~second ;

}

70. We overload the [] operator to provide access to items in the eggs table by index.
〈Egg data utilities 9 〉 +≡

egg properties ∗egg properties database ::operator[](int n)
{

return eggv [n];
}

42 EGG PROPERTIES DATABASE EGGDATA §71

71. The loadFromCSV method adds eggs described by a records in a CSV file to the database.
〈Egg data utilities 9 〉 +≡

void egg properties database :: loadFromCSV (istream &i)
{

string s;
while (getline (i, s)) {

if ((s.length () > 0) ∧ (s[0] 6= ’;’) ∧ (s[0] 6= ’#’)) {
egg properties ∗ep = new egg properties;
ep~setFromCSV (s);
eggs .insert (make pair (ep~eggNumber , ep));
eggv .push back (ep);

}
}

}

72. For convenience, we define a variant of loadFromCSV which accepts a file name instead of an already-
open input stream.
〈Egg data utilities 9 〉 +≡

void egg properties database :: loadFromCSV (string fileName)
{

ifstream icsv (fileName .c str ());
loadFromCSV (icsv);

}

73. The describe method simply iterates through all of the eggs in the eggs map and asks each to describe
itself. tabulate does the same thing, but calls the member’s tabulate method instead.
〈Egg data utilities 9 〉 +≡

void egg properties database ::describe (ostream &o)
{

map〈unsigned int, egg properties ∗〉 :: iterator e = eggs .begin ();
while (e 6= eggs .end ()) {

(e~second)~describe (o);
e++;

}
}
void egg properties database ::tabulate (ostream &o)
{

map〈unsigned int, egg properties ∗〉 :: iterator e = eggs .begin ();
o � " Egg Latitude Longitude Alt REG Type Location Host" �

endl ;
while (e 6= eggs .end ()) {

(e~second)~ tabulate (o);
e++;

}
}

§74 EGGDATA TEST PROGRAM 43

74. Test program.
〈 eggdata_test.c 1 〉 +≡
〈Test program include files 77 〉;
〈Show how to call test program 76 〉;
int main (int argc , char ∗argv [])
{

extern char ∗optarg ; /∗ Imported from getopt ∗/
extern int optind ;
try {

int opt ;
〈Process command-line options 75 〉;

#if 0 /∗ Eggsummary file I/O tests ∗/
eggsummary es ;

#if 0
ifstream ci ("../test.csv");
es .load from CSV (ci);
ci .close ();

#endif
es .load from CSV ("../test.csv.gz");
for (int j = 0; j < es .eggs reporting ; j++) {

cout � es .egg number [j] � ": " � (int) es .get egg index (86399, j) � "\n";
}

#endif
#if 1 /∗ Egg properties database tests ∗/

{
egg properties database ed ;
ed .loadFromCSV ("eggs.csv");
ed .tabulate ();

}
#endif
#if 0 /∗ Egg database tests ∗/

{
eggdatabases ed ;
systemtime t;
ed .set Fourmilab defaults ();
t.fromString ("2001−04−21 18:21:19");
cout � ed .database file (t) � endl ;
t.nextDay ();
cout � ed .database file (t, "pseudo") � endl ;

}
#endif
#if 0 /∗ Time shifting cache tests ∗/

{
int j;
eggsummary esr ;
esr .load from CSV ("../test.csv.gz");
int eggno = 7;
for (j = 0; j < 10; j++) {

cout � j � ": " � setw (3) � ((int) esr .get egg index (j, eggno)) � " " � setw (3) � ((int)
esr .get egg index ((86400− 10) + j, eggno)) � endl ;

44 TEST PROGRAM EGGDATA §74

}
esr .time shift (eggno , 0);
cout � endl � " 0" � endl ;
for (j = 0; j < 10; j++) {

cout � j � ": " � setw (3) � ((int) esr .get egg index (j, eggno)) � " " � setw (3) � ((int)
esr .get egg index ((86400− 10) + j, eggno)) � endl ;

}
esr .time shift (eggno ,−5);
cout � endl � " −5" � endl ;
for (j = 0; j < 10; j++) {

cout � j � ": " � setw (3) � ((int) esr .get egg index (j, eggno)) � " " � setw (3) � ((int)
esr .get egg index ((86400− 10) + j, eggno)) � endl ;

}
esr .load from CSV ("../test.csv.gz");
esr .time shift (eggno , 5);
cout � endl � " +5" � endl ;
for (j = 0; j < 10; j++) {

cout � j � ": " � setw (3) � ((int) esr .get egg index (j, eggno)) � " " � setw (3) � ((int)
esr .get egg index ((86400− 10) + j, eggno)) � endl ;

}
esr .load from CSV ("../test.csv.gz");
esr .time shift (eggno ,−90000);
cout � endl � " −90000" � endl ;
for (j = 0; j < 10; j++) {

cout � j � ": " � setw (3) � ((int) esr .get egg index (j, eggno)) � " " � setw (3) � ((int)
esr .get egg index ((86400− 10) + j, eggno)) � endl ;

}
}

#endif
#if 0 /∗ Cache range extract tests ∗/

{
eggdatabases ed ;
ed .set Fourmilab defaults ();
generic eggsummary cache〈eggsummary〉 ec(&ed , "rotten_egg.csv", 50, 150);
eggsummary ext ;
systemtime exstart , exend ;
exstart .fromString ("2001−04−20 13:00:00");
exend .fromString ("2001−04−24 22:30:00");
ec .extract time range (&ext , exstart , exend);
ext .describe ();
ext .save to CSV ("/tmp/extract.csv", true);

}
#endif
#if 0 /∗ Eggsummary cache tests ∗/

{
int j;
eggsummary ∗es ;
eggsummary cache ec ;
es = ec .get ("../test.csv.gz");
eggsummary &esr = ∗es ;
for (j = 0; j < esr .eggs reporting ; j++) {

§74 EGGDATA TEST PROGRAM 45

cout � esr .egg number [j] � ": " � (int) esr .get egg index (86399, j) � "\n";
} /∗ Once more to test cache ∗/
es = ec .get ("../test.csv.gz");
esr = ∗es ;
for (j = 0; j < esr .eggs reporting ; j++) {

cout � esr .egg number [j] � ": " � (int) esr .get egg index (86399, j) � "\n";
}

}
#endif
#if 0 /∗ Interactively test CSV parsing ∗/

while ((cout � "−−> "), getline (cin , s)) {
csv parser p(s);
string f ;
cout � s;
cout � "\n";
while (p.next field (f)) {

cout � "{" + f + "}\n";
}

}
#endif

}
catch(exception &e)
{

cout � "Blooie!!! Exception popped: " � e.what () � endl ;
#ifndef CORE_DUMP

#ifdef STACK_TRACE

char s[160];
sprintf (s,

"/bin/echo ’where\nq’ >/tmp/gdbcmd ; gdb −batch −−command ""/tmp/gdbcmd %s %d",
argv [0], getpid ());

system (s);
sleep(5);

#endif
throw; /∗ Re-throw exception to dump core ∗/

#endif
}
return 0;

}

46 TEST PROGRAM EGGDATA §75

75. We use getopt to process command line options. This permits aggregation of options without
arguments and both −darg and −d arg syntax.
〈Process command-line options 75 〉 ≡

while ((opt = getopt (argc , argv , "nu−:")) 6= −1) {
switch (opt) {
case ’u’: /∗ −u Print how-to-call information ∗/

case ’?’: usage ();
return 0;

case ’−’: /∗ −− Extended options ∗/
switch (optarg [0]) {
case ’c’: /∗ −−copyright ∗/

cout � "This program is in the public domain.\n";
return 0;

case ’h’: /∗ −−help ∗/
usage ();
return 0;

case ’v’: /∗ −−version ∗/
cout � PRODUCT � " " � VERSION � "\n";
cout � "Last revised: " � REVDATE � "\n";
cout � "The latest version is always available\n";
cout � "at http://www.fourmilab.ch/eggtools/eggshell\n";
return 0;

}
}

}
This code is used in section 74.

76. Procedure usage prints how-to-call information.
〈Show how to call test program 76 〉 ≡

static void usage (void)
{

cout � PRODUCT � " −− Analyse eggsummary files. Call:\n";
cout � " " � PRODUCT � " [options] [infile] [outfile]\n";
cout � "\n";
cout � "Options:\n";
cout � " −−copyright Print copyright information\n";
cout � " −u, −−help Print this message\n";
cout � " −−version Print version number\n";
cout � "\n";
cout � "by John Walker\n";
cout � "http://www.fourmilab.ch/\n";

}
This code is used in section 74.

§77 EGGDATA TEST PROGRAM 47

77. We need the following definitions to compile the test program.
〈Test program include files 77 〉 ≡
#include "config.h" /∗ Our configuration ∗/ /∗ C++ include files ∗/
#include <iostream>

#include <exception>

#include <stdexcept>

#include <string>

using namespace std;
#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#ifdef HAVE_GETOPT

#ifdef HAVE_UNISTD_H

#include <unistd.h>

#endif
#else
#include "getopt.h" /∗ No system getopt—use our own ∗/
#endif
#include "eggdata.h" /∗ Class definitions for this package ∗/
This code is used in section 74.

48 INDEX EGGDATA §78

78. Index. The following is a cross-reference table for eggdata. Single-character identifiers are not
indexed, nor are reserved words. Underlined entries indicate where an identifier was declared.

abs : 29.
add database : 44, 46.
adjustfield : 66.
allocate egg data : 11, 42, 60.
altitude : 62, 64, 65, 66.
arg : 12, 15, 16, 17, 24, 63.
argc : 74, 75.
argv : 74, 75.
assert : 11, 16, 19, 25, 29, 33, 38, 53, 60, 64.
atof : 64.
atoi : 12, 15, 18, 19, 24, 25, 63, 64.
attach : 13, 27.
BadSample : 11, 24, 26.
begin : 11, 33, 35, 41, 48, 52, 53, 54, 55, 59, 60, 73.
c: 8.
c str : 12, 13, 15, 18, 19, 20, 24, 25, 27, 47,

63, 64, 66, 72.
CACHE_DEBUG: 49, 52.
cat to path : 44.
cellp : 32.
CETR_DEBUG: 53, 55, 60.
Cf : 34, 40.
charnum : 8.
charpos : 8, 9, 10.
chars left : 8, 9, 10.
ci : 74.
cin : 74.
CLEAN_BUT_SLOW: 19.
clear : 41, 52, 54, 59.
close : 74.
cmd : 13, 27.
Compressed file type : 13, 14, 27.
COMPRESSED_FILES: 13, 14, 27.
const iterator : 44.
CORE_DUMP: 74.
cout : 11, 12, 24, 25, 26, 49, 52, 55, 60, 62,

67, 74, 75, 76.
cp : 19.
CSV_LOAD_DEBUG: 12.
csv parser: 1, 7, 8, 9, 12, 24, 63, 74.
database file : 44, 45, 50, 74.
database name : 44.
date : 48, 50.
dateToString : 21, 25, 26, 28, 43, 45, 55, 60.
dbname : 44.
describe : 11, 43, 62, 65, 66, 67, 73, 74.
ds : 55, 56, 57, 58, 60, 61.
dstp : 30, 31, 36, 37, 42.
e: 23, 41, 53, 74.
ec : 74.

ed : 48, 74.
eDB : 48, 50.
egg cell : 11, 19, 30, 31, 32, 36, 42.
egg column : 26.
egg data : 11, 19, 36, 53, 60.
egg data size : 60.
egg index : 11, 18, 26, 29, 30, 31, 32, 34, 41,

54, 58, 59.
egg number : 11, 18, 22, 28, 34, 41, 42, 43, 54,

58, 59, 61, 67, 69, 74.
egg number to index : 11, 29, 42, 61.
egg properties: 62, 63, 65, 66, 67, 69, 70, 71, 73.
egg properties database: 1, 29, 67, 68, 69,

70, 71, 72, 73, 74.
egg row : 12, 19.
eggdat : 19.
EGGDATA_HEADER_DEFINES: 3.
eggdatabases: 1, 44, 45, 46, 48, 74.
eggno : 18, 74.
eggNumber : 62, 64, 65, 66, 71.
eggs : 11, 39, 41, 67, 68, 69, 70, 71, 73.
eggs reporting : 11, 17, 18, 19, 21, 22, 23, 28,

29, 30, 31, 32, 34, 36, 37, 41, 42, 43, 54,
58, 59, 60, 61, 74.

eggsummary: 11, 12, 16, 26, 28, 29, 30, 33, 34,
41, 48, 49, 51, 52, 53, 54, 55, 59, 61, 74.

eggsummary cache: 48, 74.
eggv : 67, 70, 71.
em : 47.
end : 11, 26, 33, 35, 41, 44, 48, 49, 52, 53, 54,

55, 58, 59, 60, 69, 73.
end time : 11, 17, 21, 26, 28, 33, 35, 40, 43, 54, 61.
endl : 21, 22, 23, 25, 26, 28, 43, 55, 60, 65,

66, 73, 74.
endt : 26.
endTime : 24, 25, 26.
ep : 19, 71.
erase : 9.
es : 11, 33, 34, 35, 36, 37, 39, 40, 41, 42, 48, 49,

51, 53, 54, 56, 57, 58, 59, 60, 61, 74.
esr : 74.
eWhich : 48, 49, 50.
exception: 74.
exclude bad data : 11, 24, 27, 28, 51.
EXCLUDE_DEBUG: 24, 25, 26.
exend : 74.
exstart : 74.
ext : 74.
extract eggs : 11, 39.
extract time range : 11, 33, 48, 53, 74.

§78 EGGDATA INDEX 49

f : 8, 9, 12, 24, 63, 74.
false : 8, 9, 11, 38, 55, 60.
fdistream : 13, 27.
filename : 11, 13, 27.
fileName : 11, 20, 67, 72.
fileno : 13, 27.
find : 11, 17, 25, 26, 41, 44, 49, 58, 67, 69.
firstLaid : 55, 60.
fixed : 66.
fld : 9, 10.
floatfield : 66.
flush : 12, 24, 49, 52.
foundfield : 9.
free egg data : 11, 12, 36, 42, 54.
fromString : 25, 50, 74.
generic eggsummary: 1, 11, 12, 13, 20, 24,

27, 28, 29, 33, 39, 43, 53.
generic eggsummary cache: 1, 48, 49, 50,

52, 53, 74.
get : 48, 49, 50, 74.
get by date : 48, 50, 55, 60.
get egg index : 11, 23, 28, 61, 74.
get egg number : 11.
get time : 19, 21, 23, 25, 26, 28, 33, 35, 36, 53,

54, 55, 60, 61.
getline : 12, 24, 71, 74.
getopt : 74, 75.
getpid : 74.
HAVE_COMPRESS: 14.
HAVE_FDSTREAM_COMPATIBILITY: 3, 13, 27.
HAVE_GETOPT: 77.
HAVE_GUNZIP: 14.
HAVE_GZCAT: 14.
HAVE_GZIP: 14.
HAVE_HAVE_UNCOMPRESS: 14.
HAVE_UNCOMPRESS: 14.
HAVE_UNISTD_H: 77.
HAVE_ZCAT: 14.
HOSTNAME: 47.
hostName : 62, 64, 65, 66.
i: 11, 12, 20, 24, 28, 30, 31, 32, 43, 63, 67, 71.
icsv : 72.
ifstream: 13, 27, 72, 74.
in : 13, 27.
insert : 18, 44, 49, 58, 59, 71.
interpret missing : 11, 20, 23.
invalid argument: 11.
ios : 13, 27, 66.
ip : 13, 27.
is : 13, 27.
isAltitudeKnown : 62, 66.
iscc : 13, 27.

isdigit : 12, 15, 18, 19, 24, 25, 63, 64.
isOctal : 8, 10.
isSampleValid : 11, 28.
isspace : 9.
istream: 11, 12, 13, 24, 27, 67, 71.
item : 49, 52.
iterator : 11, 26, 41, 49, 52, 69, 73.
j: 42, 74.
latitude : 62, 64, 65, 66.
left : 66.
length : 8, 9, 12, 15, 17, 18, 19, 24, 25, 63, 64, 71.
limit to range : 11, 28, 51.
line buffer : 8, 9, 10.
linebuf : 8.
load from CSV : 11, 12, 13, 49, 74.
loadFromCSV : 67, 71, 72, 74.
location : 62, 64, 65, 66.
longitude : 62, 64, 65, 66.
m type : 12, 24, 63.
main : 74.
make pair : 18, 44, 49, 58, 59, 71.
map: 11, 26, 44, 48, 49, 52, 67, 69, 73.
maxLimit : 11, 28.
maxSamp : 48.
maxSample : 48, 51.
memcpy : 37.
midnight : 55, 60.
minLimit : 11, 28.
minSamp : 48.
minSample : 48, 51.
MissingSample : 11, 16, 19, 26, 42, 55, 60.
mpair : 11, 26.
n: 8, 23, 61, 67, 70.
name cache : 48, 49, 52.
ncopy : 30, 31.
new line : 8.
next field : 8, 9, 12, 15, 17, 18, 19, 24, 25, 63, 64, 74.
nextDay : 55, 60, 74.
now : 23, 60, 61.
npos : 13, 17, 25, 27.
nr : 60, 61.
nrows : 23, 29, 30, 31, 32, 42.
o: 11, 20, 67, 73.
of : 20.
ofstream: 20.
open : 13, 27.
opt : 74, 75.
optarg : 74, 75.
optind : 74.
os : 11, 28, 43, 62, 65, 66.
ostream: 11, 20, 28, 43, 62, 65, 66, 67, 73.

50 INDEX EGGDATA §78

out of range: 12, 15, 17, 18, 19, 24, 25, 44,
47, 57, 63, 64.

OutsideLimitsSample : 11, 28.
p: 12, 24, 63, 74.
path : 44, 45.
path name : 48, 49.
pclose : 13, 27.
pending field : 8, 9.
popen : 13, 27.
precision : 66.
PRODUCT: 75, 76.
pseudorandom data : 11, 17, 34, 40, 43, 49, 56, 57.
purge : 48, 52.
push back : 18, 41, 58, 71.
quoted : 9, 10.
records per packet : 11, 16, 21, 34, 40, 43, 56, 57.
REGtype : 62, 64, 65, 66.
REVDATE: 1, 75.
rfind : 13, 27.
right : 66.
rottenEgg : 24, 25, 26, 48.
rottenEggDatabase : 48, 51.
row : 11, 26, 28.
rows to shift : 29, 30, 31.
rowTime : 26.
rtime : 19.
s: 12, 23, 24, 62, 63, 71, 74.
s type : 12, 15, 16, 17, 24, 63.
Sample: 11, 12, 13, 19, 20, 23, 24, 27, 28, 29,

30, 31, 32, 33, 36, 39, 42, 43.
sample : 11, 28.
sampleBytes : 11, 37, 43.
samples per record : 11, 16, 19, 21, 34, 40, 43,

56, 57.
save to CSV : 11, 20, 74.
scan pointer : 8.
sec row : 11, 33, 35, 48, 53, 54.
second : 11, 26, 44, 49, 52, 69, 73.
seconds : 11, 29, 30, 31.
seconds of data : 11, 17, 19, 21, 23, 29, 35, 36,

37, 40, 42, 43, 54, 60.
seconds per record : 11, 16, 19, 21, 34, 40, 43,

56, 57.
seconds per row : 11, 19, 23, 26, 28, 29, 33, 35,

36, 37, 40, 42, 43, 54, 60.
SecondsPerDay : 60.
set egg index : 11, 19, 26, 28, 61.
set Fourmilab defaults : 46, 47, 74.
set local defaults : 47.
set noosphere defaults : 46, 47.
set scan pointer : 8.
set time : 17, 23, 25, 26, 35, 60, 61.

setEggDatabases : 48.
setf : 66.
setFromCSV : 62, 63, 71.
setprecision : 66.
setRottenEgg : 48.
setSampleLimits : 48.
setw : 66, 74.
size : 41, 67, 68.
sleep : 74.
sort : 59.
sprintf : 74.
srcp : 30, 31, 36, 37, 42.
STACK_TRACE: 74.
start time : 11, 17, 19, 21, 23, 26, 28, 33, 35,

36, 40, 43, 54, 60.
startTime : 24, 25, 26.
std: 3, 77.
strchr : 19.
string: 8, 9, 11, 12, 13, 17, 20, 24, 25, 27, 44, 45,

47, 48, 49, 50, 52, 62, 63, 66, 67, 71, 72, 74.
system : 74.
systemtime: 1, 11, 23, 24, 26, 28, 33, 44, 45,

48, 50, 53, 55, 60, 74.
T : 49, 50.
t: 28, 44, 45, 48, 50, 55, 74.
tabulate : 62, 66, 67, 73, 74.
time shift : 11, 29, 74.
TimeShiftedOutSample : 11, 29, 30, 31, 32.
timeToString : 21, 25, 26, 28, 43.
trial size : 11, 16, 21, 23, 34, 40, 43, 56, 57.
true : 9, 10, 23, 55, 60, 74.
tt : 48, 50.
Uncompress command : 13, 14, 27.
unknownAltitude : 62, 64.
usage : 75, 76.
v: 10.
value : 11.
vector: 11, 39, 41, 67.
VERSION: 75.
was : 28.
what : 74.
which : 44, 45, 48.
xrtime : 19.

EGGDATA NAMES OF THE SECTIONS 51

〈Add new egg numbers to extract egg table 58 〉 Used in section 55.

〈Allocate and copy data table for extracted data set 36 〉 Used in section 33.

〈Application include files 4 〉 Used in section 2.

〈Class definitions 8, 11, 12, 13, 20, 24, 27, 28, 29, 33, 39, 43, 44, 48, 49, 50, 52, 53, 62, 67 〉 Used in section 3.

〈Class implementations 5 〉 Used in section 2.

〈Configure compression suffix and command 14 〉 Used in sections 13 and 27.

〈Copy data for extracted eggs 42 〉 Used in section 39.

〈Copy data table for extracted data set with identical time resolution 37 〉 Used in section 36.

〈Copy day’s data to extracted data set 61 〉 Used in section 60.

〈Copy header fields into extracted data set 34 〉 Used in section 33.

〈Copy header fields into extracted list of eggs data set 40 〉 Used in section 39.

〈Create egg number table and map for extracted eggs 41 〉 Used in section 39.

〈Define database locations for archive sites 46, 47 〉 Used in section 44.

〈Egg data utilities 9, 45, 63, 65, 66, 68, 69, 70, 71, 72, 73 〉 Used in section 5.

〈Exclude bad samples from eggsummary loaded into cache 51 〉 Used in section 49.

〈Exclude samples marked as bad 26 〉 Used in section 25.

〈 Initialise header for extracted data set 54 〉 Used in section 53.

〈Parse CSV header subcode 15 〉 Used in sections 16 and 17.

〈Parse quoted CSV field 10 〉 Used in section 9.

〈Perform first pass scan of days included in extracted data set 55 〉 Used in section 53.

〈Perform second pass, extracting data from individual days 60 〉 Used in section 53.

〈Prepare egg table and map for extracted data set 59 〉 Used in sections 41 and 53.

〈Process command-line options 75 〉 Used in section 74.

〈Process record from bad sample database 25 〉 Cited in section 51. Used in section 24.

〈Process record from egg property database 64 〉 Used in section 63.

〈Process type 10 CSV record 16 〉 Used in section 12.

〈Process type 11 CSV record 17 〉 Used in section 12.

〈Process type 12 CSV record 18 〉 Used in section 12.

〈Process type 13 CSV record 19 〉 Used in section 12.

〈Set header fields which differ in extracted data set 35 〉 Used in section 33.

〈Set properties of extract from those of first day’s data 56 〉 Used in section 55.

〈Show how to call test program 76 〉 Used in section 74.

〈Summarise data table for extracted data set with reduced time resolution 38 〉 Used in section 36.

〈Test program include files 77 〉 Used in section 74.

〈Time shift data entirely out of the table 32 〉 Used in section 29.

〈Time shift data to earlier slots in table 30 〉 Used in section 29.

〈Time shift data to later slots in table 31 〉 Used in section 29.

〈Verify consistency of parameters for all days in extract period 57 〉 Used in section 55.

〈Write CSV egg data table 23 〉 Used in section 20.

〈Write CSV egg number table 22 〉 Used in section 20.

〈Write CSV file header 21 〉 Used in section 20.

〈 eggdata.h 3 〉
〈 eggdata_test.c 1, 74 〉

EGGDATA

Section Page
Introduction . 1 1
Program global context . 2 2
Egg data utilities . 6 3

Comma-Separated-Value (CSV) Parsing . 7 4
The Egg Summary Class . 11 8

Loading data from CSV files . 12 11
Saving data to CSV files . 20 17
Excluding data known to be bad . 24 19
Excluding samples which exceed “sanity check” limits . 28 23
Time shifting samples from individual eggs . 29 24
Extraction of data for a time interval within the data set . 33 26
Extraction of data for a subset of eggs . 39 27
Describing the data set in human-readable form . 43 29

Egg databases class . 44 30
Egg summary cache . 48 32

Extraction of data for a time interval . 53 34
Egg Properties Database . 62 38

Test program . 74 43
Index . 78 48

	Introduction
	Program global context
	Egg data utilities
	Comma-Separated-Value (CSV) Parsing
	The Egg Summary Class
	Loading data from CSV files
	Saving data to CSV files
	Excluding data known to be bad
	Excluding samples which exceed ``sanity check'' limits
	Time shifting samples from individual eggs
	Extraction of data for a time interval within the data set
	Extraction of data for a subset of eggs
	Describing the data set in human-readable form

	Egg databases class
	Egg summary cache
	Extraction of data for a time interval

	Egg Properties Database
	Test program
	Index
	Names of the sections
	Add new egg numbers to extract egg table
	Allocate and copy data table for extracted data set
	Application include files
	Class definitions
	Class implementations
	Configure compression suffix and command
	Copy data for extracted eggs
	Copy data table for extracted data set with identical time resolution
	Copy day's data to extracted data set
	Copy header fields into extracted data set
	Copy header fields into extracted list of eggs data set
	Create egg number table and map for extracted eggs
	Define database locations for archive sites
	Egg data utilities
	Exclude bad samples from eggsummary loaded into cache
	Exclude samples marked as bad
	Initialise header for extracted data set
	Parse CSV header subcode
	Parse quoted CSV field
	Perform first pass scan of days included in extracted data set
	Perform second pass, extracting data from individual days
	Prepare egg table and map for extracted data set
	Process command-line options
	Process record from bad sample database
	Process record from egg property database
	Process type 10 CSV record
	Process type 11 CSV record
	Process type 12 CSV record
	Process type 13 CSV record
	Set header fields which differ in extracted data set
	Set properties of extract from those of first day's data
	Show how to call test program
	Summarise data table for extracted data set with reduced time resolution
	Test program include files
	Time shift data entirely out of the table
	Time shift data to earlier slots in table
	Time shift data to later slots in table
	Verify consistency of parameters for all days in extract period
	Write CSV egg data table
	Write CSV egg number table
	Write CSV file header
	eggdata.h
	eggdata_test.c

