§1 COLOUR INTRODUCTION 1

1. Introduction.

COLOUR
Colour System Library

John Walker
This program is in the public domain.

This program provides tools for representing colours, interconverting colour spaces, and transforming
physical definitions of colour (for example, spectra or black body emission) into perceptual colour metrics
such as the CIE tristimulus values, and thence to computer approximations such as RGB values for various
phosphors.

This program is not presently used by the analysis suite; it is only exercised by its own
built-in test program. It is provided as part of the eventual goal of supporting internal
plotting without the need to invoke GNUPLOT, and also facilitate visual presentation of
data in the form of colour (for example, one might wish to express a z score as a colour
representing how “hot” it was, expressing z as a black body temperature).

References

Hunt, R.W.G. Measuring Colour. West Sussex England: Ellis Horwood Ltd., 1987. (Distributed in the U.S.
by John Wiley Sons). ISBN 0-470-20986-0.

Adobe Systems, Inc. PostScript Language Reference Manual, 3rd ed. Reading Massachusetts: Addison-
Wesley, 1999. ISBN 0-201-37922-8.

Rossotti, Hazel. Colour: Why the World Isn’t Grey. Princeton: Princeton University Press, 1983. ISBN 0-
691-02386-7.

Judd, Deane B. and Giinter Wyszecki. Color in Business, Science, and Industry. New York: John Wiley
Sons, 1975.

Arvo, James ed. Graphics Gems II. San Diego: Academic Press, Inc., 1991, section II1.6, “Television Color
Encoding”. ISBN 0-12-064480-0.

Foley, J.D., A. van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics: Principles and Practice, 2nd
ed. in C. Reading Massachusetts: Addison-Wesley, 1996. ISBN 0-201-84840-6.

Pantone, Inc. PANTONE Process Color Imaging Guide. Moonachie NJ: Pantone, Inc., 1990.

(colour_test.c 1) =
#define REVDATE "1st February ,2002"

See also section 40.

http://www.fourmilab.ch/

2 PROGRAM GLOBAL CONTEXT COLOUR 62

2. Program global context.

#include "config.h" /* System-dependent configuration */
(Preprocessor definitions)
(Application include files 4)
(Colour system data tables 37)
(Class implementations 5)

3. We export the class definitions for this package in the external file colour.h that programs which use
this library may include.

(colour.h 3)=
#ifndef COLOUR_HEADER_DEFINES
#define COLOUR_HEADER_DEFINES
#include <math.h> /* Make sure math.h is available */
#include <iostream>
#include <exception>
#include <stdexcept>
#include <string>
#include <vector>
#include <algorithm>
using namespace std;
#include "bitmap.h"
#include <stdio.h> /* Needed to define FILE for gifout.h */
#include "gifout.h"
#include "graphics.h"
#include "pstampr.h"
#include "psrtext.h"
(Class definitions 6)
#endif

4. The following include files provide access to external components of the program not defined herein.

(Application include files 4) =
#include "colour.h" /* Class definitions for this package s/

This code is used in section 2.

5. The following classes are defined and their implementations provided.

(Class implementations 5) =
(Colour systems 17)

This code is used in section 2.

86 COLOUR COLOUR SYSTEM PARENT CLASS: CSCOLOUR 3

6. Colour system parent class: csColour.
This is the parent class of all colour classes.

(Class definitions 6) =
class csColour {
public:
virtual string colourSystemName(void) = 0; /* Return colour system name x*/

virtual void writeParameters(ostream &of)

{ /+ Write description of colour system to output stream =/
of < "Colourysystem: " < colourSystemName() < "\n";

b
See also sections 7, 8, 9, 10, 11, 12, and 33.

This code is used in section 3.

4 SPECTRAL COLOUR SYSTEMS PARENT CLASS: CSSPECTRALCOLOUR COLOUR 87

7. Spectral colour systems parent class: csSpectralColour.

The most general of all our notions of colour is that of an function that maps wavelengths (given in metres)
onto intensities. This form allows specification of any radiation in the electromagnetic spectrum. Intensities
are normalised to the range zero to one by dividing the intensity for a given frequency by the integrated
intensity over the entire electromagnetic spectrum.

(Class definitions 6) +=
class csSpectralColour : public csColour {

public: /* Return normalised intensity for a given wavelength in metres =/
virtual double getintensity (double waveLength) = 0;
/* Return true if this is a pure (monochromatic) radiator, false */ /* otherwise. =/

virtual bool isMonochromatic(void) = 0;

b

68 COLOUR MONOCHROMATIC SPECTRAL COLOUR SYSTEMS: CSMONOCHROMATICCOLOUR 5

8. Monochromatic spectral colour systems: csMonochromaticColour.

A monochromatic colour is a abstract notion of a source which radiates all its intensity at a single
wavelength. These don’t really exist in the real world, since fundamental quantum processes will always
spread the spectrum of any real radiator.

(Class definitions 6) +=
class csMonochromaticColour : public csSpectralColour {
private:
double wavelength;
public:
virtual string colourSystemName (void)

{

return "monochromatic,spectral";

}

double getIntensity (double waveLength)

{

return (waveLength = wavelength) ? 1.0 : 0.0;
}

bool isMonochromatic(void)

{

return true;
} /* Constructors and destructors */

csMonochromaticColour (void)

{

wavelength = 0.0;

}

csMonochromaticColour (double waveLength)

{

wavelength = waveLength;
} /* Class-specific methods */

void setWavelength(double waveLength)

{

wavelength = waveLength;
}
double getWavelength(void)
{

return wavelength;

}

void writeParameters (ostream &of)
{
csSpectralColour :: writeParameters (of);
of < "LuuuWavelength =" < getWavelength() < "\n";
}
b

6 BLACK: CSSPECTRALBLACK COLOUR 89

9. Black: csSpectralBlack. Black is the absence of colour. We define it as a spectral colour with zero
intensity at any wavelength.

(Class definitions 6) +=
class csSpectralBlack : public csSpectralColour {
public:
virtual string colourSystemName (void)

{

return "black ;spectral";

}

double getIntensity (double waveLength)

{

return 0.0;

}

bool isMonochromatic(void)

{
return false;
}
b

10. White: csSpectralWhite. A theoretical source of white noise has equal power at all wavelengths.
Such a source is impossible in reality since the energy flux would be infinite.
(Class definitions 6) +=
class csSpectralWhite : public csSpectralColour {
public:
virtual string colourSystemName (void)

{

return "white spectral";

}

double getIntensity (double waveLength)

{

return 1.0;

}

bool isMonochromatic(void)

{

return false;

}
h

811 COLOUR PLANCKIAN BLACK BODY: CSBLACKBODY 7

11. Planckian black body: csBlackBody. Define the colour of a Planckian black body radiator with
a given colour temperature.

(Class definitions 6) +=
class csBlackBody : public csSpectralColour {

private: /* Change temperature to class with system conversions x/
double temperature; /* Temperature of radiator (°K) =/
public:

double getIntensity (double waveLength)

{

return 0.0;

}

bool isMonochromatic(void)

{

return false;
} /* Constructors and destructors */
csBlackBody (void)
{

temperature = 0.0;

}
csBlackBody (double temp)

{

temperature = temp;
} /* Class-specific methods */

void setTemperature(double temp)

{

temperature = temp;

}

double getTemperature (void)

{

return temperature;

}
double totalFlux (void) /* Total energy flux in W/m? x/
{ /x Total energy flux in Watts per square metre of a black body with temperature T (degrees
Kelvin) is given by:
c,1

where Cy is the Stefan-Boltzman constant:
5.67051 x 107 %W/(m*K*?)

which, in fundamental terms is:

(mk*)/(60(h/(2m))*c?)
*/

return 5.67051 - 1073 x (temperature * temperature * temperature * temperature);

}

double fluz (double wl) /* Energy flux at a given wavelength =/
{ /* Energy flux from a black body with temperature T' (degrees Kelvin), in Watts per square
metre at wavelength A (metres) is given by:

M, = C1>\75(602/()*T) _ 1)71

8 PLANCKIAN BLACK BODY: CSBLACKBODY COLOUR 811

where:
Cy = 3.74183¢ — 16Wm”
Cy =1.4388¢ — 2m° K
*/
return 3.74183 - 10716 /((wl * wl * wl * wl * wl) * (exp(1.4388 - 1072 /(wl * temperature)) — 1));
}
void writeParameters (ostream &of)
{

csSpectralColour :: writeParameters(of);
of < "LuuuTemperature =" < getTemperature() < " K\n";

}
%

812 COLOUR DEVICE COLOUR SYSTEMS PARENT CLASS: CSDEVICECOLOUR 9

12. Device colour systems parent class: csDeviceColour. This class is the parent of all classes
which specify colour in a device-specific way, assuming a particular set of illuminants which are summed to
form the colour.

(Class definitions 6) +=
class csDeviceColour : public csColour {
public:
(Device colour fundamental methods 13)
(Device colour derived methods 14)
(Device colour system conversion utilities 15)

b

13. The following three must-implement methods allow retrieving the colour in any of the three fun-
damental device colour spaces: RGB (additive), CMYK (subtractive), or Greyscale. Typically, a specific
device colour class will store the colour in one of these forms and implement the other retrieval methods by
converting the colour representation to that form.

(Device colour fundamental methods 13) =
virtual void asRGB(double &r,double &g, double &b) = 0;
virtual void asCMYK (double &c,double &m,double &y, double &k) = 0;
virtual void asGreyScale(double &g) = 0;

This code is used in section 12.

14. The following methods allow retrieval of a device colour in other colour mapping spaces. The
csDeviceColour class implements methods for these functions which provide default definitions which
use the subclass asRGB method to obtain RGB components which are the converted into the requested
colour space.

(Device colour derived methods 14) =
virtual void asHSV (double &h,double &s,double &v);
virtual void asHLS (double &h,double &I, double &s);
virtual void asYIQ(double &y,double &i,double &q);
virtual void asYUV (double &y, double &u,double &v);
virtual void asSMPTE (double &y, double & Pb,double & Pr);
virtual void asCMY (double &c,double &m, double &y);

This code is used in section 12.

10 DEVICE COLOUR SYSTEMS PARENT CLASS: CSDEVICECOLOUR COLOUR 815

15. The following static methods of the csDeviceColour class provide interconversions of common
colour systems using the convention that colour components ¢ are double values 0 < ¢ < 1.

(Device colour system conversion utilities 15) =
protected:
static double hlsval(double n1,double n2,double hue);
public:
static void hsv_rgb(double h,double s, double v,double *r, double g, double *b);
/+* HSV — RGB x/
static void rgb_hsv(double r,double g, double b, double *h,double *s,double xv);
/* RGB — HSV x/
static void rgb_hls(double r,double g,double b, double xh, double *l,double xs);
/* RGB — HLS x/
static void hls_rgb(double h,double [,double s,double *r,double g, double *b);
/+x HLS — RGB */
static void rgb_yig(double r,double g,double b, double *y, double xi,double xq);
/* RGB — YIQ x/
static void yig_rgb(double y, double i, double ¢, double xr,double xg, double xb);
/* YIQ — RGB %/
static void rgb_yuv(double r,double g, double b, double *y,double *u,double *v);
/* RGB — YUV x/
static void yuv_rgb(double y,double u,double v,double *r, double g, double *b);
/* YUV — RGB */
static void rgb_smpte_204M (double r,double g,double b, double xy, double xPb,double *Pr);
/* RGB — SMPTE 204M x/
static void smpte_20/M_rgb(double y, double Pb,double Pr,double xr,double xg, double xb);
/* SMPTE 204M — RGB x/
static void rgb_cmy(double r,double g,double b, double xc¢,double xm,double x*y);
/* RGB — CMY x/
static void c¢my_rgb(double ¢, double m,double y, double xr,double *g, double xb);
/x CMY — RGB %/
static void cmy_cmyk(double ¢, double m,double y, double xoc,double xom,double xoy,double
xok); /* CMY — CMYK x/
static void c¢myk_cmy(double ¢,double m,double y, double k,double xoc, double xom,double
*0Y); /¥ CMYK — CMY x/

This code is used in section 12.

16. Colour system conversion utilities. The following static methods of the csDeviceColour class
implement interconversions of common colour systems using the convention that colour components ¢ are
double values 0 < ¢ < 1.

817 COLOUR COLOUR SYSTEM CONVERSION UTILITIES 11

17. HSV_RGB: Convert HSV colour specification to RGB intensities. Hue (h) is specified as a double
value from 0 to 360°, Saturation (s) and Intensity (v) as doubles from 0 to 1. The (r, g,b) components are
returned as doubles from 0 to 1.
(Colour systems 17) =

void csDeviceColour :: hsv_rgb(double h,double s, double v, double *r,double xg, double *b)

{
int 7;
double f, p, q, t;
if (s=0) {

*r = xg = *b = v;
}
else {
if (h =360.0) h = 0;
h /= 60.0;
i = (int) h;
f=h—1
p=wvx*(1.0—2);
g=v*(L0—(sxf));
t=v#* (10— (sx(1.0—f)));
assert(i > 0N i < 5);
switch (i) {
case 0: xr =wv;
xg = t;
*b = p;
break;
case 1: *xr = q;
xg = v;
*b = p;
break;
case 2: *xr =p;
*g =,
xb = t;
break;
case 3: *r = p;
*g = q;
xb = v;
break;
case 4: *xr =t;
*g = Dp;
xh = v;
break;
case 5: *xr = v;
*g =p;
xb = q;
break;
}
}
¥

See also sections 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, and 36.

This code is used in section 5.

12 COLOUR SYSTEM CONVERSION UTILITIES COLOUR 818

18. RGB_HSV: Map r, g, b intensities in the range from 0 to 1 into Hue (h), Saturation (s), and Value (v):
Hue from 0 to 360°, Saturation from 0 to 1, and Value from 0 to 1. Special case: if Saturation is 0 (it’s a
grey scale tone), Hue is undefined and is returned as -1.
This follows Foley et al., section 13.3.4.
(Colour systems 17) +=
void csDeviceColour :: rgb_hsv(double r,double g, double b, double xh, double xs, double xv)
{
double imaz = maxz (r, maz(g,b)), imin = min(r, min(g,b)), rc, gc, be;
*U = 1Mazx;
if (¢maz #0) *xs = (imazx — imin)/imaz;
else xs = 0;

if (xs=0) {
xh = —1;

}

else {
rc = (imaz — r)/(imaz — imin);
gc = (imaz — g)/(imaz — imin);

be = (imaz — b)/(imax — imin);

if (r = imaz) xh = be — gc;

else if (g = imax) *h = 2.0+ rc — be;
else xh =4.0+4 gc — rc;

xh *x= 60.0;

f (xh < 0.0) xh += 360.0;

819 COLOUR COLOUR SYSTEM CONVERSION UTILITIES 13

19. RGB_HLS: Map r, g, b intensities in the range from 0 to 1 into Hue (h), Lightness (1), and Saturation
(s): Hue from 0 to 360°, Lightness from 0 to 1, and Saturation from 0 to 1. Special case: if Saturation is 0
(it’s a grey scale tone), Hue is undefined and is returned as -1.
This follows Foley et al., section 13.3.5.
(Colour systems 17) +=
void csDeviceColour :: rgb_hls(double r,double g, double b, double xh,double */,double xs)
{
double imaz = max (r, maz(g,b)), imin = min(r, min(g,b)), rc, gc, be;
«l = (imax + imin)/2;
if (imaz = imin) {
xs = 0;
xh = —1;

else {
if (x <0.5) xs = (imaz — imin)/(imax + imin);
else xs = (imaz — imin)/(2.0 — imaz — imin);
rec = (imazx — r)/(imax — imin);
gc = (imaz — g)/(imax — imin);
be = (tmaz —b)/(imaz — imin);
if (r =imax) *h = be — gc;
else if (g = imax) *h = 2.0+ rc — be;
else xh =4.0+ gc — rc;
xh x= 60.0;
if (+h < 0) %h += 360.0;

14 COLOUR SYSTEM CONVERSION UTILITIES COLOUR §20

20. HLS_RGB: Convert HLS colour specification to r,g,b intensities. Hue (h) is specified as a double
value from 0 to 360°; Lightness (1) and Saturation (s) as doubles from 0 to 1. The RGB components are
returned as doubles from 0 to 1.

{ Colour systems 17) +=
double csDeviceColour :: hisval (double n1,double n2,double hue)
{
if (hue > 360.0) hue —= 360.0;
else if (hue < 0.0) hue += 360.0;
if (hue < 60.0) {
return nl + ((n2 — nl) * hue)/60.0;
}
else if (hue < 180.0) {
return n2;
}
else if (hue < 240.0) {
return nl + ((n2 — nl1) x (240.0 — hue))/60.0;
}
else {
return ni;

}
}

void csDeviceColour : his_rgb(double h,double [,double s,double *r,double g, double *b)
{

double m1, m2;

if (1<0.5) m2=10x(1.0+ s);
else m2 =1+ s— (I*s);

ml =2x]—m2;

if (s=0) {

xr = kg = *b = [;
}
else {

w1 = hlsval(m1,m2,h + 120.0);
xg = hlsval(m1,m2,h);
xb = hisval(m1,m2,h —120.0);
}
}

§21 COLOUR COLOUR SYSTEM CONVERSION UTILITIES 15

21. RGB_YIQ Convert RGB colour specification, r, g, b ranging from 0 to 1, to Y, I, Q colour specification.
YIQ is the encoding used in NTSC television.

Y 0.2989 0.5866 0.1144 R
I|=1]0599 -0.2741 -0.3218]- |G
Q 0.2113 —-0.5227 0.3113 B

{ Colour systems 17) +=
void csDeviceColour : 7gb_yig(double 7, double g, double b, double *y, double *i, double *q)
{
double ay = (r % 0.2989 + g * 0.5866 + b x 0.1144), ai = (r % 0.5959 + g * —0.2741 + b * —0.3218),
aq = (r%0.2113 + g x —0.5227 4+ b % 0.3113);

¥y = ay;
if (ay =1.0) { /* Prevent round-off on grey scale */
at = aq = 0.0;
}. .
*i = ai;
*q = ag;
}

22. YIQ_RGB: Convert YIQ colour specification, Y, I,Q given as doubles: 0 <Y <1, —0.6 < I < 0.6,
—0.52 < @ < 0.52, to R, G, B intensities in the range from 0 to 1. The matrix below is the inverse of the
RGB_YIQ matrix above. YIQ is the encoding used in NTSC television.

R 1.0000 0.9562 0.6210 Y
G| = |1.0000 —0.2717 —-0.6485| - | I
B 1.0000 —1.1053 1.7020 Q

(Colour systems 17) +=
void csDeviceColour :: yig_rghb(double y, double i, double ¢,double #r, double *g, double *b)
{
double ar = (y + ¢ % 0.9562 + ¢ * 0.6210), ag = (y + i * —0.2717 + g * —0.6485),
ab = (y+ i+ —1.1053 + ¢ * 1.7020);
«r = max (0.0, min (1.0, ar));
xg = maz (0.0, min (1.0, ag));
*b = maz (0.0, min (1.0, ab));

16 COLOUR SYSTEM CONVERSION UTILITIES COLOUR §23

23. RGB_YUV: Convert RGB colour specification, R, G, B ranging from 0 to 1, to Y, U,V colour specifica-
tion. YUV is the encoding used by PAL television.

Y 0.2989 0.5866 0.1144 R
Ul =|-01473 —-0.2717 04364 |- | G
|4 0.6149 —0.5145 —0.1004 B

{ Colour systems 17) +=

void csDeviceColour : rgb_yuv (double r,double g, double b, double xy, double xu,double *v)
{

double ay = (r *0.2989 + ¢ * 0.5866 + b * 0.1144), au = (r * —0.1473 + g x+ —0.2891 + b x 0.4364),

av = (r*0.6149 + g * —0.5145 + b —0.1004);
Yy = ay;
if (ay =1.0) { /* Prevent round-off on grey scale */
au = av = 0.0;

}

*U = au;

¥V = QU;
¥

24. YUV_RGB: Convert YUV colour specification, Y, U,V given as doubles, to R, G, B intensities in the
range from 0 to 1. The matrix below is the inverse of the rgb_yuv matrix above. YUV is the encoding used
by PAL television.

R 1.0000 0.0000 1.1402 Y
G| = |1.0000 —0.3959 —-0.5810| . |U
B 1.0000 2.0294 0.0000 |4

(Colour systems 17) +=
void csDeviceColour :: yuv_rgb (double y, double u, double v, double *r, double g, double *b)
{
double ar = (y + u * 0.0000 4+ v % 1.1402), ag = (y + u * —0.3959 + v * —0.5810),
ab = (y + u * 2.0294 + v % 0.0000);
«r = max (0.0, min (1.0, ar));
xg = maz (0.0, min (1.0, ag));
*b = maz (0.0, min (1.0, ab));

§25 COLOUR COLOUR SYSTEM CONVERSION UTILITIES 17

25. RGB_SMPTE_204M: Convert RGB colour specification, R, G, B ranging from 0 to 1, to Y, P, P,

colour specification according to the SMPTE 204M (1988) specification for HDTV using the SMPTE set of
phosphors.

Y 0.2122 0.7013 0.0865 R
P, | = | —-0.1162 —0.3838 0.5000 | - | G
P, 0.6149 —0.4451 —0.0549 B

{ Colour systems 17) +=

void csDeviceColour :: rgb_smpte_20/M (double r,double g, double b, double xy, double
*Pb,double xPr)
{

double ay = (r % 0.2122 + g * 0.7013 4+ b % 0.0865), aPb = (r *+ —0.1162 + g * —0.3838 + b * 0.5000),
aPr = (r x 0.5000 + g * —0.4451 4+ b * —0.0549);
*Y = ay;
if (ay =1.0) { /* Prevent round-off on grey scale */
aPb = aPr = 0.0;

}
*Pb = aPb;
*Pr = aPr;

}

26. SMPTE_204M_RGB: Convert a colour specified using the SMPTE reference phosphors as given in the
SMPTE 204M (1988) specification for HDTV to R, G, B intensities in the range from 0 to 1. The matrix
below is the inverse of the RGB_SMPTE_204M matrix above.

R 1.0000 0.0000 1.5755 Y
G| = |1.0000 —0.2254 —-0.4768 | - | P,
B 1.0000 1.8270 0.0000 P,

(Colour systems 17) +=
void csDeviceColour :: smpte_204M_rgb(double y,double Pb,double Pr,double *r,double
*g, double *b)
{

double ar = (y + Pb % 0.0000 4+ Pr x 1.5755), ag = (y + Pb * —0.2254 + Pr x —0.4768),
ab = (y + Pb * 1.8270 + Pr 0.0000);

xr = max (0.0, min (1.0, ar));

xg = max (0.0, min (1.0, ag));

xb = maz (0.0, min (1.0, ab));

18 COLOUR SYSTEM CONVERSION UTILITIES COLOUR 827

27. RGB_CMY: Convert RGB colour specification, R, G, B ranging from 0 to 1, to C, M,Y colour specifi-
cation, also ranging from 0 to 1.

C 1 R
M|=|1|-1|G
Y 1 B

{ Colour systems 17) +=
void csDeviceColour :: rgb_cmy(double r,double g, double b, double xc, double xm,double *y)

{

xc = 1.0 —r;
*m = 1.0 — g;
xy = 1.0 — b;

}

28. CMY_RGB: Convert CMY colour specification, C', M,Y ranging from 0 to 1, to R, G, B colour specifi-
cation, also ranging from 0 to 1.

R 1 C
G|l=|1|—-|M
B 1 Y

(Colour systems 17) +=
void csDeviceColour :: cmy_rgb(double ¢,double m,double y, double *r, double *g, double *b)
{
xr = 1.0 —¢;
*g = 1.0 —m;
xb=1.0—1y;
}

29. cmy_cmyk: Convert CMY colour specification, C, M,Y ranging from 0 to 1, to C,M,Y, K colour
specification, also ranging from 0 to 1. K is the black ink component in four colour printing processes. We
convert C, M,Y by computing K = min(C, M,Y), then subtracting that value from each of the C, MY
components.
(Colour systems 17) +=

void csDeviceColour :: cmy_cmyk (double ¢, double m,double y, double *oc, double *xom,double

x0y, double xok)
{

double k = min(c, min(m,y));
xoc = ¢ — k;

xom =m — k;

xoy =y — k;

xok = k;

830 COLOUR COLOUR SYSTEM CONVERSION UTILITIES 19

30. cmyk_cmy: Convert CMYK colour specification, C, M,Y, K ranging from 0 to 1, to C, M,Y colour
specification, also ranging from 0 to 1. K is the black ink component in four colour printing processes. We
simply add the K component to each of the C, M,Y components.
{ Colour systems 17) +=
void csDeviceColour :: cmyk_cmy(double ¢, double m, double y, double k, double xoc, double
xom, double xoy)

{

xoc = c+ k;
xom =m + k;
*oy =y + k;

}

20 COLOUR SYSTEM CONVERSION METHODS COLOUR §31

31. Colour system conversion methods.
The following methods express a colour in a given colour system in a variety of others. The class must
implement the asRGB method required for each of these conversions.

{ Colour systems 17) +=
void csDeviceColour :: asHSV (double &h,double &s,double &v) /x To HSV %/

{
double r, g, b;
asRGB (r,g,b);
rgb_hsv(r, g,b, &h, &s, &v);
}
void csDeviceColour ::asHLS (double &h,double &I, double &s) /% To HLS x/

{
double r, g, b;

asRGB(r, g,b);

rgb_hls(r, g, b, &h, &l, &s);
¥
void csDeviceColour :: asYIQ (double &y, double &i,double &q) /% To YIQ =/
{

double r, g, b;

asRGB(r,g,b);
rgb-yiq(r, g,b, &y, &i, &q);

}
void csDeviceColour ::asYUV (double &y, double &u,double &v) /* To YUV x/

double r, g, b;
asRGB(r,g,b);
rgb_yuv (r, g, b, &y, &u, &v);
¥
void csDeviceColour :: asSMPTE (double &y, double & Pb,double & Pr)
/% To SMPTE 204M +/

{
double r, g, b;

asRGB (r,g,b);
rgb_smpte_204M (r, g,b, &y, &Pb, & Pr);

void csDeviceColour :: asCMY (double &c,double &m,double &y) /% To CMY =/

{
double r, g, b;

asRGB(r,g,b);
Tgb’cmy (707 g7 b’ &C7 &m7 &y);

}

§32 COLOUR PERCEPTUAL COLOUR SYSTEMS 21

32. Perceptual colour systems.
The following sections define data used in manipulating colour systems.

22 CIE COLOUR SYSTEMS COLOUR §33

33. CIE colour systems.

A colour system is defined by the CIE x and y coordinates of its three primary illuminants and the x and
y coordinates of the white point.
(Class definitions 6) +=

class CIEColourSystem {

private:
string name; /+ Colour system name */
double zRed, yRed, /* Red primary illuminant s/
xGreen, yGreen, /* Green primary illuminant */
zBlue, yBlue, /* Blue primary illuminant s/
xWhite, yWhite; /* White point =/

public:

CIEColourSystem (string c_name,double c_zRed,double z_yRed,double c_zGreen,double
c_yGreen,double c_zBlue,double c_yBlue,double c_zWhite,double c_yWhite)
{

name = c_name;
zRed = c_xRed;
yRed = z_yRed;
zGreen = c_xGreen;
yGreen = c_yGreen;
xBlue = c_xBlue;
yBlue = c_yBlue;
xWhite = c_xWhite;
yWhite = c_yWhite;

}

void zyz_to_rgb(double zc,double yc,double zc,double xr, double *g, double xb);
static bool inside_gamut(double r,double g, double b);
bool constrain_rgb(double xz,double xy,double xz, double *r,double xg, double *b, bool
interpwp = false);
protected:
static double clamp(double v,double [, double h)
{
return (v <1)?1:((v>h)? h:v); /* Constrain [<v < h x/
}
b
extern CIEColourSystem NTSCsystem, EBUsystem, SMPTFEsystem, HDTVsystem, CIEsystem;
/* Predefined standard colour systems s/

834 COLOUR CIE COLOUR SYSTEMS 23

34. xyz_to_rgb: Given an additive tricolour system defined by the CIE x and y chromaticities of its
three primaries (z is derived trivially as 1 — (z + y)), and a desired chromaticity (z.,ye., z.) in CIE space,
determine the contribution of each primary in a linear combination which sums to the desired chromaticity.
If the requested chromaticity falls outside the Maxwell triangle (colour gamut) formed by the three primaries,
one of the r, g, or b weights will be negative. Use inside_gamut to test for a valid colour and constrain_rgb
to desaturate an outside-gamut colour to the closest representation within the available gamut.

(Colour systems 17) +=
void CIEColourSystem ::zyz_to_rgb(double zc,double yc,double zc,double r, double g, double

*b)
{

double zr, yr, zr, zg, yg, zg9, xb, yb, 2b;
or = zRed;

yr = yRed;

zr =1— (ar + yr);

zg = xGreen;

yg = yGreen;

29 =1— (29 +yg);
b = zBlue;

yb = yBlue;

2b =1— (zb + yb);

w17 = (—xg * yc * zb + xc * yg * zb + xg * yb * zc — xb * yg * z¢ — xc * yb * zg + xb * yc * zg)/(xr * yg *
zb — g * yr * zb — xr * yb * zg + xb * yr * zg + xg * yb * 2r — xb * yg * 2r);

kg = (@r « yc x zb — xc x yr * zb — xr * yb * zc + xb * yr x zc + xe x yb x zr — xb * yc *x zr) [(ar * yg * zb —
xg * yr *« 2b — xr x yb * 29 + xb * yr x zg + xTg * yb * 2r — b * yg * 2r);

kb = (T1 * Yg * 2¢ — TG * Yr * 2¢ — TT * YC * 2 + TC * Yr * 2g + TG * Yyc * 2r — xc x yg * 2r) [/ (xr * yg * zb —
xg * yrx 2zb — xr * yb x 29 + xb * yr x zg + xg * yb * 2r — xb * yg * 2r);

¥

35. inside_gamut: Test whether a requested colour is within the gamut achievable with the primaries of
the current colour system. This amounts simply to testing whether all the primary weights are non-negative.

(Colour systems 17) +=
bool CIEColourSystem :inside_gamut(double r,double g, double b)
{

return (r > 0) A (g > 0) A (b>0);

}

24 CIE COLOUR SYSTEMS COLOUR §36

36. constrain — rgb: If the requested RGB shade contains a negative weight for one of the primaries, it
lies outside the colour gamut accessible from the given triple of primaries. Desaturate it by mixing with
the white point of the colour system so as to reduce the primary with the negative weight to zero. This
is equivalent to finding the intersection on the CIE diagram of a line drawn between the white point and
and the requested color and the edge of the Maxwell triangle formed by the three primaries. If interpwp is
nonzero, the white point defined by the sum of the three primary illuminants is used instead of the colour
system’s actual white point. While indefensible from the standpoint of colour theory, this produces much
better looking charts on computer monitors, since the white points of most colour systems are well to the
blue of the white defined by the R=G =B =1.
(Colour systems 17) +=
bool CIEColourSystem : constrain_rgb(double xx,double xy,double xz,double *r, double
*g, double xb, bool interpwp)
{ /* Is the contribution of one of the primaries negative ? s/
if (—inside_gamut (xr,*g, xb)) {
double par, wr, wg, wb, zw, yw;
/* Determine the white point used in interpolating out of gamut colours. If interpwp is set, the
colour system’s white point is used. Otherwise, the white defined by an equal mix of the three
illuminants is taken as the origin of the interpolation line drawn to the out of gamut colour. =/

if (interpwp) {

xw = xWhite;
yw = yWhite;
else {

2w = (zRed + xGreen + zBlue)/3;
yw = (yRed 4+ yGreen + yBlue)/3;
} /* Yes. Find the RGB mixing weights of the white point (we assume the white point is in the
gamut!). =/
zyz_to_rgb (2w, yw,1 — (zw + yw), &wr, &wg, &wd);
/* Find the primary with negative weight and calculate the parameter of the point on the vector
from the white point to the original requested colour in RGB space. x/
if (vr <xg Asr < xb) {
par = wr [(wr — *r);

else if (xg < xr Axg < xb) {
par = wg /(wg — *g);

else {
par = wb /(wb — *b);
} /x Since XYZ space is a linear transformation of RGB space, we can find the XYZ space
coordinates of the point where the edge of the gamut intersects the vector from the white
point to the original colour by multiplying the parameter in RGB space by the difference
vector in XYZ space. */
xx = clamp (zw + par x (xx — 2w), 0,

0,1);
xy = clamp (yw + par * (xy — yw), 0,1

();
xz = clamp (1 — (xx + *y), 0, 1); /* Now finally calculate the gamut-constrained RGB weights. */
w1 = clamp (wr + par * (xr — wr),0,1);
xg = clamp (wg + par * (xg — wg),0,1);
xb = clamp (wb + par x (xb — wd),0, 1);
return true; /+ Colour modified to fit RGB gamut =/

}

return false; /* Colour within RGB gamut x/

}

837 COLOUR CIE COLOUR SYSTEMS 25

37. CIE colour matching functions.

The following table gives the CIE colour matching functions Z(X), (), and Z()), for wavelengths A at 5
nanometre increments from 380 nm through 780 nm. This table is used in conjunction with Planck’s law for
the energy spectrum of a black body at a given temperature to plot the black body curve on the CIE chart.

{ Colour system data tables 37) =
static double cie_colour_match[][3] = {{0.0014,0.0000,0.0065}, /* 380 nm x/
{0.0022,0.0001,0.0105}, {0.0042,0.0001, 0.0201}, {0.0076, 0.0002, 0.0362}, {0.0143, 0.0004, 0.0679},
{0.0232,0.0006, 0.1102}, {0.0435,0.0012, 0.2074}, {0.0776, 0.0022, 0.3713}, {0.1344, 0.0040, 0.6456 },
{0.2148,0.0073,1.0391}, {0.2839,0.0116, 1.3856 }, {0.3285, 0.0168, 1.6230}, {0.3483, 0.0230, 1.7471},
{0.3481,0.0298, 1.7826}, {0.3362, 0.0380, 1.7721}, {0.3187, 0.0480, 1.7441}, {0.2908, 0.0600, 1.6692},
{0.2511,0.0739, 1.5281}, {0.1954,0.0910, 1.2876 }, {0.1421, 0.1126, 1.0419}, {0.0956, 0.1390, 0.8130},
{0.0580,0.1693,0.6162}, {0.0320, 0.2080, 0.4652}, {0.0147, 0.2586, 0.3533}, {0.0049, 0.3230, 0.2720},
{0.0024, 0.4073,0.2123}, {0.0093, 0.5030, 0.1582}, {0.0291, 0.6082,0.1117}, {0.0633, 0.7100, 0.0782},
{0.1096,0.7932, 0.0573}, {0.1655, 0.8620, 0.0422}, {0.2257,0.9149, 0.0298}, {0.2904, 0.9540, 0.0203},
{0.3597,0.9803,0.0134}, {0.4334,0.9950, 0.0087}, {0.5121, 1.0000, 0.0057}, {0.5945, 0.9950, 0.0039 },
{0.6784,0.9786,0.0027}, {0.7621,0.9520,0.0021}, {0.8425, 0.9154, 0.0018}, {0.9163, 0.8700, 0.0017},
{0.9786,0.8163,0.0014}, {1.0263,0.7570,0.0011}, {1.0567,0.6949, 0.0010}, {1.0622, 0.6310, 0.0008 },
{1.0456, 0.5668, 0.0006}, {1.0026, 0.5030, 0.0003}, {0.9384, 0.4412, 0.0002}, {0.8544, 0.3810, 0.0002},
{0.7514,0.3210, 0.0001}, {0.6424, 0.2650, 0.0000}, {0.5419, 0.2170, 0.0000}, {0.4479, 0.1750, 0.0000},
{0.3608, 0.1382,0.0000}, {0.2835,0.1070,0.0000}, {0.2187,0.0816, 0.0000}, {0.1649, 0.0610, 0.0000},
{0.1212,0.0446, 0.0000}, {0.0874, 0.0320, 0.0000}, {0.0636, 0.0232, 0.0000}, {0.0468, 0.0170, 0.0000},
{0.0329,0.0119, 0.0000}, {0.0227,0.0082, 0.0000}, {0.0158, 0.0057,0.0000}, {0.0114, 0.0041, 0.0000},
{0.0081, 0.0029, 0.0000}, {0.0058, 0.0021, 0.0000}, {0.0041, 0.0015, 0.0000}, {0.0029, 0.0010, 0.0000},
{0.0020,0.0007, 0.0000}, {0.0014, 0.0005, 0.0000}, {0.0010, 0.0004, 0.0000}, {0.0007, 0.0002, 0.0000},
{0.0005, 0.0002, 0.0000}, {0.0003, 0.0001, 0.0000}, {0.0002, 0.0001, 0.0000}, {0.0002, 0.0001, 0.0000},
{0.0001, 0.0000, 0.0000}, {0.0001, 0.0000, 0.0000}, {0.0001, 0.0000, 0.0000}, {0.0000, 0.0000, 0.0000}
/+ 780 nm x/
¥
See also sections 38 and 39.

This code is used in section 2.

26 CIE COLOUR SYSTEMS COLOUR §38

38. Spectral chromaticity co-ordinates.

The following table gives the spectral chromaticity co-ordinates x(A) and y(A) for wavelengths in 5
nanometre increments from 380 nm through 780 nm. These co-ordinates represent the position in the
CIE z-y space of pure spectral colours of the given wavelength, and thus define the outline of the CIE
“tongue” diagram.

{ Colour system data tables 37) +=

static double spectral_chromaticity[81][3] = {{0.1741, 0.0050}, /* 380 nm */

{0.1740,0.0050}, {0.1738,0.0049}, {0.1736,0.0049}, {0.1733,0.0048}, {0.1730, 0.0048}, {0.1726, 0.0048},
{0.1721,0.0048},{0.1714,0.0051}, {0.1703,0.0058}, {0.1689, 0.0069}, {0.1669, 0.0086}, {0.1644,
0.0109}, {0.1611,0.0138}, {0.1566,0.0177},{0.1510, 0.0227}, {0.1440, 0.0297}, {0.1355,0.0399 },
{0.1241,0.0578}, {0.1096, 0.0868}, {0.0913,0.1327}, {0.0687,0.2007}, {0.0454, 0.2950}, {0.0235,
0.4127},{0.0082,0.5384}, {0.0039, 0.6548}, {0.0139, 0.7502}, {0.0389, 0.8120}, {0.0743, 0.8338},
{0.1142,0.8262}, {0.1547,0.8059}, {0.1929, 0.7816}, {0.2296, 0.7543}, {0.2658, 0.7243}, {0.3016,
0.6923},{0.3373,0.6589}, {0.3731,0.6245}, {0.4087,0.5896 }, {0.4441, 0.5547},{0.4788, 0.5202},
{0.5125,0.4866}, {0.5448, 0.4544}, {0.5752,0.4242}, {0.6029, 0.3965}, {0.6270, 0.3725}, {0.6482,
0.3514}, {0.6658,0.3340}, {0.6801, 0.3197}, {0.6915, 0.3083}, {0.7006, 0.2993}, {0.7079, 0.2920},
{0.7140, 0.2859}, {0.7190, 0.2809}, {0.7230, 0.2770}, {0.7260, 0.2740}, {0.7283,0.2717}, {0.7300, 0.2700},
{0.7311,0.2689}, {0.7320,0.2680}, {0.7327,0.2673}, {0.7334, 0.2666 }, {0.7340,0.2660}, {0.7344, 0.2656 }
{0.7346,0.2654},{0.7347,0.2653}, {0.7347,0.2653 }, {0.7347,0.2653}, {0.7347,0.2653}, {0.7347,0.2653 },
{0.7347,0.2653}, {0.7347,0.2653}, {0.7347,0.2653 }, {0.7347,0.2653}, {0.7347,0.2653}, {0.7347,0.2653},
{0.7347,0.2653}, {0.7347,0.2653}, {0.7347,0.2653}, {0.7347,0.2653}, {0.7347,0.2653}, {0.7347,0.2653 }

/x 780 nm */

b

39. Standard colour system definitions.
The following define the white point chromaticities for the NTSC, EBU, and SMPTE colour systems.

#define IlluminantC' 0.3101,0.3162 /* For NTSC television */
#define IlluminantD65 0.3127,0.3291 /* For EBU and SMPTE x/

(Colour system data tables 37) +=
CIEColourSystem NTSCsystem ("NTSC",0.67,0.33,0.21,0.71,0.14, 0.08, IlluminantC'),
EBUsystem ("EBU,, (PAL/SECAM) ", 0.64, 0.33,0.29, 0.60, 0.15, 0.06, IlluminantD65),
SMPTEsystem ("SMPTE", 0.630, 0.340,0.310, 0.595, 0.155, 0.070,
LHlluminantD65), HDTVsystem ("HDTV",0.670,0.330,0.210,0.710,0.150, 0.060, IlluminantD65),
ClEsystem ("CIE",0.7355,0.2645,0.2658,0.7243, 0.1669, 0.0085, 0.3894, 0.3324);

840 COLOUR TEST PROGRAM 27

40. Test program.

(colour_test.c 1) 4=
('Test program include files 43);
(Show how to call test program 42);

int main(int argc, char xargv|])
{
extern char xoptarg; /* Imported from getopt */
extern int optind;
int opt;
(Process command-line options 41);
return 0;

}

41. We use getopt to process command line options. This permits aggregation of options without
arguments and both -darg and -d arg syntax.

(Process command-line options 41) =
while ((opt = getopt(arge, argv, "nu-:")) # —1) {
switch (opt) {

case ’u’: /* —u Print how-to-call information x/
case ’7’: usage();
return 0;
case ’-’: /* -- Extended options x*/
switch (optarg[0]) {
case ’c’: /+ —-copyright x*/
cout < "This jprogramis_in the_ public domain.\n";
return 0;
case ’h’: /% —=help */
usage ();
return 0;
case ’v’: /* —-version x/

cout < PRODUCT < "," < VERSION < "\n";

cout < "Last revised: " < REVDATE < "\n";

cout < "The latest version,is always available\n";

cout < "at http://www.fourmilab.ch/eggtools/eggshell\n";
return 0;

}
}
}

This code is used in section 40.

28 TEST PROGRAM COLOUR

42. Procedure usage prints how-to-call information.

(Show how to call test program 42) =

static void usage(void)

{
cout < PRODUCT < " ,——_uAnalyse eggsummary files. ,Call:\n";
cout < " Luuuuuuuuuuoun < PRODUCT <« " [OptiODS] ulinfile] [outfile]\n" ;
cout < "\n";
cout < "Options:\n";
cout < "Luuuuuuuuuu——copyright uuuuuuPrintcopyright information\n";
cout < "Luuuuuuuuuu—g, u——helpuuuuuuuPrint this message\n";
cout < " uLuuuuuuuu—-versiony uuuuuuuPrint version number\n";
cout < "\n";
cout < "by_John Walker\n";
cout < "http://www.fourmilab.ch/\n";

}

This code is used in section 40.

43. We need the following definitions to compile the test program.

(Test program include files 43) =
#include "config.h" /+ Our configuration */ /* C++ include files */
#include <iostream>
#include <exception>
#include <stdexcept>
#include <string>

using namespace std;
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#ifdef HAVE_GETOPT
#ifdef HAVE_UNISTD_H
#include <unistd.h>

#endif

#else

#include "getopt.h" /* No system getopt—use our own x*/
#endif

#include "colour.h" /+ Class definitions for this package */

This code is used in section 40.

§42

844 COLOUR INDEX 29

44. Index. The following is a cross-reference table for colour. Single-character identifiers are not
indexed, nor are reserved words. Underlined entries indicate where an identifier was declared.

ab: 22, 24, 26. csDeviceColour: 12, 14, 15, 16, 17, 18, 19, 20,
ag: 22, 24, 26. 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31.

ai: 21, csMonochromaticColour: 8.

aPb: 25 csSpectralBlack: 9.

|l\'>
ot

aPr: csSpectralColour: 7, 8, 9, 10, 11.
aq: 21. csSpectralWhite: 10.
ar: 22, 24, 26. EBUsystem: 33, 39.
arge: 40, 41. erp: 11.
argv: 40, 41. fr 17,
asCMY: 14, 31. false: 7,9, 10, 11, 33, 36.
asCMYK: 13. fluz: 11,
asGreyScale: 13. g: 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
asHLS: 14, 31. 27, 28, 31, 33, 34, 35, 36.
asHSV: 14, 31. ge: 18, 19.
asRGB: 13, 14, 31. getIntensity: 7, 8, 9, 10, 11.
assert: 17_ getopt: 40, 41.
asSMPTE: 14, 31. getTemperature: 11.
asYIQ: 14 ’? o getWavelength: 8.
asYUV: 14, 31. h: 14, 15, 17, 18, 19, 20, 31, 33.
au: 23. - HAVE_GETOPT: 43.

. oo HAVE_UNISTD_H: 43.
av: 23.

HDTVsystem: 33, 39.

i 21, 23, 25
a“ = hls_rgb: 15, 20.

b: 13, L) 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

R ws e

be: 18, 19. HSV RGB. 17,

¢ 13, 14, 15, 27, 28, 29, 30, 3L. hsvrgh: 15, 17,

c-name: —3 hue_: 15, E(; -

c_rBlue: _3 i 14, 15, 17, 21, 22, 31.
c-xGreen:w_d. HlluminantC: 39.

C'IREdf 33. HlluminantD65: 39.
cxWhite: 33. imaz: 18, 19.

c_yBlue: 33. imin.: 1_8, 19.

c_yGrefm: 33. inside_gamut: 33, 34, 35, 36.
c_yWhite: 33. interpwp: 33, 36.
cie-colour-match: 37. isMonochromatic: 7, 8, 9, 10, 11.
CIEColourSystem: 33, 34, 35, 36, 39. k: 13, 15, 29, 30.
ClEsystem: 33, 39. I: 14, 15, 19, 20, 31, 33.
clamp: 33, 36. m: 13, 14, 15, 27, 28, 29, 30, 31,
emy-cmyk: 15, 29. main: 40.

cmy-rgb: 15, 28. maz: 18, 19, 22, 24, 26.
CMY_RGB: 28. min: 18, 19, 22, 24, 26, 29.
cmyk_cmy: 15, 30. m1: 20.
COLOUR_HEADER_DEFINES: 3. m2: 20.

colourSystemName: 6, 8, 9, 10. name: 33.

constrain: 306. NTSCsystem: 33, 39.
constrain_rgh: 33, 34, 30. nl: 15, 20.

cout: 41, 42. n2: 15, 20.

csBlackBody: 11. oc: 15, 29, 30.

csColour: 6, 7, 12. of: 6, 8, 11.

30 INDEX COLOUR §44

ok: Ev E wl: u

om: 15, 29, 30. wr: 36.

opt: 40, 41. writeParameters: 6, 8, 11.

optarg: 40, 41. x: 33, 36.

optind: 40. x_yRed: 33.

ostream: 0, &, xb: 34.

oy: 15, 29, 30. zBlue: 33, 34, 306.

p: 17, xc: 33, 34.

par: 36. xzg: 34

Pb: 14, 15, 25, 26, 31. xGreen: 33, 34, 306.

Pr. 14, 15, 25, 26, 31. xr: 34.

PRODUCT: 41, 42. zRed: 33, 34, 36.

q: 14, 15, 17, 21, 22, 31. zw: 36.

ri 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, ~ @White: 33, 36.
27, 28, 31, 33, 34, 35, 36. xyz_to_rgb: 33, 34, 30.

re: 18, 19. y: 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28,

REVDATE: 1, 41. 29, 30, 31, 33, 36.

rgb: 30. yb: 34

rgb_cmy: 15, 27, 31. yBlue: 33, 34, 36.

RGB_CMY: 27. ye: 33, 34.

rgb_hls: 15, 19, 31. yg: 34

RGB_HLS: 19. yGreen: 33, 34, 306.

rgb_hsv: 15, 18, 31. YIQ_RGB: 22.

RGB_HSV: 8. yiq-rgb: 15, 22.

RGB_SMPTE_204M: 25, 26. yr: 34

rgb_smpte_204M: 15, 25, 31. yRed: 33, 34, 30.

RGB_YIQ: 21, 22. yuv_rgb: 15, 24.

rgb_yiq: 15, 21, 31. YUV_RGB: 24.

RGB_YUV: 23. yw: 36.

rgbyuv: 15, 23, 24, 31. yWhite: 33, 306.

s 14, 15, 17, 18, 19, 20, 31. z 33, 36.

setTemperature: 11. zb: 34

setWavelength: 8. zer 33, 3.

smpte_204M_rgb: 15, 20. “g: &

SMPTE_204M_RGB: 26. zr: 34.

SMPTEsystem: 33, 39.

spectral_chromaticity: 38.

std: 3, 43.

string: 6, 8, 9, 10, 33.
t: 17,

temp: 11.

temperature: 11.

totalFlux: 11.

true: 7, 8, 36.

u: 14, 15, 23, 24, 31.

usage: A1, 42.

v 14, 15, 17, 18, 23, 24, 31, 33.
VERSION: 41.

waveLength: 7, 8, 9, 10, 11.
wavelength: 8.

wb: 306.

wg: 30.

COLOUR NAMES OF THE SECTIONS 31

(Application include files 4) Used in section 2.

(Class definitions 6, 7, 8,9, 10, 11, 12, 33) ~ Used in section 3.

(Class implementations 5) Used in section 2.

(Colour system data tables 37, 38, 39) Used in section 2.

{ Colour systems 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36) Used in section 5.
(Device colour derived methods 14) Used in section 12.

(Device colour fundamental methods 13) Used in section 12.

(Device colour system conversion utilities 15) Used in section 12.

(Process command-line options 41) Used in section 40.

(Show how to call test program 42) Used in section 40.
(Test program include files 43) Used in section 40.
(colour.h 3)
(colour_test.c 1,40)

COLOUR

Section Page

Introduction 1
Program global context 2
Colour system parent class: csColour 6
Spectral colour systems parent class: csSpectralColour 7
Monochromatic spectral colour systems: csMonochromaticColour 8

Black: csSpectralBlack 9

White: csSpectralWhite 10
Planckian black body: csBlackBody 11

Device colour systems parent class: csDeviceColour 12
Colour system conversion utilities 16

Colour system conversion methods i 31
Perceptual colour systems 32
CIE cOloUr SYSEEINS . .ottt ettt e et 33
Standard colour system definitions 39

Test Program 40
Index .. 44

N OO Tt W N

N NN N
N OO = OO ©

[\
Nej

	Introduction
	Program global context
	Colour system parent class: csColour
	Spectral colour systems parent class: csSpectralColour
	Monochromatic spectral colour systems: csMonochromaticColour
	Black: csSpectralBlack
	White: csSpectralWhite
	Planckian black body: csBlackBody

	Device colour systems parent class: csDeviceColour
	Colour system conversion utilities
	Colour system conversion methods

	Perceptual colour systems
	CIE colour systems
	Standard colour system definitions

	Test program
	Index
	Names of the sections
	Application include files
	Class definitions
	Class implementations
	Colour system data tables
	Colour systems
	Device colour derived methods
	Device colour fundamental methods
	Device colour system conversion utilities
	Process command-line options
	Show how to call test program
	Test program include files
	colour.h
	colour_test.c

