§1 ETSET

1. Introduction.

ETSET
Typeset an Electronic Text

by John Walker
This program is in the public domain.
#define PRODUCT '"etset"

#define VERSION "3.0"
#define REVDATE "2001-09-25"

INTRODUCTION

1

http://www.fourmilab.ch/

2 COMMAND LINE ETSET §2

2. Command line.

ETSET is invoked with a command line as follows:
etset options input_file output_file

where options specify processing modes as defined below and are either long names beginning with two
hyphens or single letter abbreviations introduced by a single hyphen. If no input_file is specified, or “-” is
given for its name, input is read from standard input. Similarly, output is written to standard output if
output_file is omitted or “-” is specified. When generating HTML, an output_file name must be specified; it
is the “base name” used to generate the various HTML files making up the document tree, which are created
in the current directory.

83 ETSET OPTIONS 3

3. Options.

Options are specified on the command line prior to the input and output file names (if any). Options may
appear in any order. Long options beginning with “--” may be abbreviated to any unambiguous prefix;
single-letter options introduced by a single “~” may be aggregated.

--ascii-only
Check for the presence of any characters not part of the 7-bit ASCII set (for example, ac-
cented letters belonging to the ISO 8859-1 set), and generate warning messages identifying

them.

--babel lang
Use the IATEX babel package for language lang.

check Check text for publication. Report any invalid characters or formatting errors to standard

€rTor.

--clean
Clean up text for publication: expand tab characters to spaces, remove trailing blanks
from lines.

--copyright

Print copying information.

--debug-parser file
Write parser debugging information to file. Each line in the body of the text is labeled
with the identification assigned it by the parser.

--dos-characters
Translate MS-DOS Code Page 850 character set to ISO 8859-1 and remove carriage returns

from the ends of lines.

--flatten-iso
ISO 8859-1 8-bit characters are replaced with their closest 7-bit ASCII equivalent (for

example, accented letters are changed to unaccented characters). This is a destructive
transformation, and should be performed only when a text must be displayed on a device
which cannot accept 8-bit characters.

--french-punctuation
Insert nonbreaking spaces around punctuation as normally done when typesetting French.

Guillemets, colons, semicolons, question marks, and exclamation points are set off from
the adjoining text by a space. This mode is unnecessary when typesetting French with
the “--babel francais” option.

--help, -u
Print how-to-call information including a list of options.

--html, -h
Generate HTML output. By default, a document tree is generated with an index document
which links to individual chapter documents, each of which contains navigation links. If
the —-single-file option is specified, a single HTML document containing the entire
text is generated. HTML files are written to the current directory.

--latex, -1
Generate a IATEX file to typeset the document. If the document is in a language other than
English, you may also wish to use the —-babel option to invoke formatting appropriate
for the language.

--palm, -p

Generate a file in Palm Markup Language to create a document for Palm Reader on
handheld platforms.
--save-epilogue file
The document epilogue is written to the designated file.
--save-prologue file
The document prologue is written to the designated file.

4 OPTIONS

--single-file

--special-strip

--verbose, -v

--version

ETSET §3

Generate a single HTML file containing all chapters, as opposed to the default of a
document tree with a separate file for each chapter.

Remove all format-specific special commands from the document, and blank lines following
special command if they would result in consecutive blank lines in the document. This
option may be used in conjunction with the --clean option when preparing a text for
publication in “Plain ASCII” format.

Print information regarding processing of the document, including the number of lines
read and written.

Print program version information.

§4 ETSET INPUT FORMAT 5

4. Input format.
Beautifully Typeset Etexts

Plain Vanilla Etexts don’t have to be austere and typographically uninviting. Most literature (as opposed
to scientific publications, for example), is typographically simple and can be rendered beautifully into type
without encoding it into proprietary word processor file formats or impenetrable markup languages. Etexts
may be encoded in a form which permits them to be both read directly (Plain Vanilla) and typeset in a form
virtually indistinguishable from printed editions of the work.

To create “typographically friendly” Etexts, observe the following rules:

1. Characters follow the 8-bit ISO 8859/1 Latin-1 character set. ASCII is a proper subset of this character
set, so any “Plain ASCII” file meets ths criterion by definition. The extension to ISO 8859/1 is required
so that Etexts which include the accented characters used by Western European languages may continue
to be “readable by both humans and computers”.

2. No white space characters other than blanks and line separators are used (in particular, tabs are expanded
to spaces).

3. The text bracket sequence:
OISO LIOLIIOLIOLILOLILISILOLILIOLIOLILIOLOLSLOLIILSOLOLOLIOLOLSOLOLSLOLOL>

appears both before and after the actual body of the Etext. This allows including an arbitrary prologue
and epilogue to the body of the document.

4. Normal body text begins in column 1 and is set ragged right with a line length of 70 characters. The
choice of 70 characters is arbitrary and was made to avoid overly long and therefore less readable lines in
the Plain Vanilla text.

5. Paragraphs are separated by blank lines.

6. Centring, right, and left justification is indicated by actually so-justifying the text within the 70 character
line. Left justified lines should start in column 2 to avoid confusion with paragraph body text.

7. Block quotations are indented to start in column 5 and set ragged right with a line length of 60 characters.

8. Preformatted tables begin with a line which starts in column 3 and contains at least one sequence of three
or more spaces between nonblanks. The table is formatted verbatim until the next blank line.

[13b

9. Text set in italics is bracketed by underscore characters, “_.”. These must match.

10. Footnotes are included in-line, bracketed by “[1”. The footnote appears at the point in the copy where
the footnote mark appears in the source text. Footnotes may not be nested and may consist of only a
single paragraph.

11. The title is defined as the sequence of lines which appear between the first text bracket “<><><>...” and

“ 7

a centred line consisting exclusively of three or more equal signs “====".

12. The author’s name is the text which follows the line of equal signs marking the end of the title and precedes
the first chapter mark. This may be multiple lines.

13. Chapters are delimited by a three line sequence of centred lines:
Chapter number
Chapter name
The line of minus signs must be centred and contain three or more minus signs and no other characters
apart from white space. Chapter “numbers” need not be numeric—they can be any text.

14. Dashes in the text are indicated in the normal typewritten text convention of “--”. No hyphenation of
words at the end of lines is done.

6

15.
16.

17.

INPUT FORMAT ETSET §4
Ellipses are indicated by “...”; sentence-ending ellipses by “....”.
Greek letters and mathematical symbols are enclosed in the brackets “\ (” and “\)” and are expressed as

their character or symbol names in the ITEX typesetting language. For example, write the Greek word
for “word”: Advyos as:

\(\lambda \acute{o} \gamma o \varsigma \)
and the formula for the roots of a quadratic equation as:

\(C x_{1,2} = \frac{-b \pm \sqrt{b"2 - 4ac}}{2a} \)
I acknowledge that this provision is controversial. It is as distasteful to me as I suspect it is to you. In
its defence, let me treat the Greek letter and math formula cases separately. Using I¥TEX encoding for
Greek letters is purely a stopgap until Unicode comes into common use on enough computers so that we
can use it for Etexts which contain characters not in the ASCII or ISO 8859/1 sets (which are the 7- and
8-bit subsets of Unicode, respectively). If an author uses a Greek word in the text, we have two ways to
proceed in attempting to meet the condition:

The etext, when displayed, is clearly readable, and does not contain characters other
than those intended by the author of the work, although.. ..

The first approach is to transliterate into Roman characters according to a standard table such as that
given in The Chicago Manual of Style. This preserves readability and doesn’t require funny encoding, but
in a sense violates the author’s “original intent”—the author could have transliterated the word in the
first place but chose not to. By transliterating we're reversing the author’s decision. The second approach,
encoding in IXTEX or some other markup language, preserves the distinction that the author wrote the
word in Greek and maintains readability since letters are called out by their English language names, for
the most part. Of course IWTEX helps us only for Greek (and a few characters from other languages). If
you're faced with Cyrillic, Arabic, Chinese, Japanese, or other languages written in non-Roman letters,
the only option (absent Unicode) is to transliterate.

I suggest that encoding mathematical formulas as INTEX achieves the goal of “readable by humans” on the
strength of IXTEX encoding being widely used in the physics and mathematics communities when writing
formulas in E-mail and other ASCII media. Just as one is free to to transliterate Greek in an Etext, one
can use ASCII artwork formulas like:

1,2 2a

This is probably a better choice for occasional formulas simple enough to write out this way. But to produce
Etexts of historic scientific publications such as Einstein’s “Zur Elektrodynamik bewegter Korper” (the
special relativity paper published in Annalen der Physik in 1905), trying to render dozens of complicated
equations in ASCII is not only extremely tedious but in all likelihood counter-productive; ambiguities
in trying to express complex equations would make it difficult for a reader to determine precisely what
Einstein wrote unless conventions just as complicated (and harder to learn) as those of INTEX were adopted
for ASCII expression of mathematics. Finally, the choice of IXTEX encoding is made not only based on its
existing widespread use but because the underlying software that defines it (TEX and IXTEX) are entirely
in the public domain, available in source code form, implemented on most commonly-available computers,
and frozen by their authors so that, unlike many commercial products, the syntax is unlikely to change in
the future and obsolete current texts.

Other punctuation in the text consists only of the characters:
, 7t () {rr =/ x0# 8L | <>
In other words, the characters:
_ 1N

are never used except in the special senses defined above.

84 ETSET INPUT FORMAT 7

18. Quote marks may be rendered explicitly as open and close quote marks with the sequences ‘single quotes’
or “double quotes”. As long as quotes are balanced within a paragraph, the ASCII quote character ‘"’
may be used. Alternating occurrences of this character will be typeset as open and close quote characters.
The open/close quote state is reset at the start of each paragraph, limiting the scope of errors to a single
paragraph and permitting “continuation quotes” when multiple paragraphs are quoted.

8 PROGRAM GLOBAL CONTEXT ETSET 85

5. Program global context.

(Preprocessor definitions)
(System include files 145)
(Program implementation 6)

6. The following classes are defined and their implementations provided.

(Program implementation 6) =
(Global variables 48)
(Global functions 147)
(Class definitions &)

(Main program 141)

This code is used in section 5.

7. The following definitions describe the formatting of input body copy. Note that column numbers cited
below assume the first column of a line is 0.

#define FormatWidth 70 /+ Format width of original text =/
#define RaggedRightIndent 1 /* Indentation for ragged right copy =/
#define PreformattedTableIndent 2 /+ Indentation for preformatted tables x/
#define Quotelndent 4 /* Indentation for block quotes x/
#define TitleMarkerCharacter °=’ /* Character identifying document title/author sequences */
#define ChapterMarkerCharacter =’ /* Character identifying chapter number /title sequences s/
#define MarkerMinimumLength 3 /+ Minimum length of title and chapter markers =/
F#define SpecialMarker "<><><>" /* Special text line marker (start and end of line) */
#define SpecialPrefir (SpecialMarker "Special:") /* Special text line prefix */
#define PUNCTUATION ("?!:;"RIGHT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK)
/* Punctuation set after a space in French text processed with the -f option =/
#define Iabs(z) (((z) <0)7? (—(x)): (x)) /* Absolute value */

88 ETSET TEXT PROCESSING COMPONENTS 9

8. Text processing components.
The textComponent class is the abstract superclass of all of the text source, sink, and filter classes. A
source is simply a filter whose input is not a component, and a sink a filter whose output is not a component.

(Class definitions &) = /* This ought to be a static member of textComponent, but I'll be damned if
I can figure out how to make it work as one. */
static const string fTypeName[4] = {"Undefined", "Source","Filter", "Sink"};
class textComponent {

protected:
textComponent *output; /* Next filter in chain */
textComponent *xsource; /* Source at head of pipeline */
int lineNumber; /+ Output line number =/

enum filterType {
UndefinedType = 0, Source Type = 1, FilterType = 2, SinkType = 3

h
filterType fType;

public:
textComponent ()
{
output = A;
source = A;

lineNumber = 0;
fType = Undefined Type;
}
virtual string componentName(void) = 0; /* Return name of filter =/
virtual void put(string s) = 0; /x Write string to filter */
(Connect components in pipeline 9);
(Emit output to next component in pipeline 10);
(Handle end of file notification 11);

textComponent *getSource(void)

{

assert (source # A); /* Filter not wired to a source */
return source;

}

int getLineNumber(void)

{ /* Output line number of this filter */
return lineNumber;

}

int getSourceLineNumber(void)

{ /* Line number of ultimate source */
return getSource()~getLineNumber ();
} /* Issue message tagged with source line number x/

virtual void issueMessage (string msg, ostream &of = cerr)

{
of < getSourceLineNumber() < ":," < msg < "\n";
} /+ Write description to stream of #/

virtual void writeDescription (ostream &of)

{

of < fTypeName[fType] < ":," < componentName() < "\n";

10 TEXT PROCESSING COMPONENTS ETSET 68

b
See also sections 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 27, 28, 42, 44, 45, 46, 47, 51, 52, 62, 63, 64, 66, 67, 68, 69, 76, 77, 90,
91, 92, 102, 103, 105, 112, 113, 114, 115, 116, 117, 119, 120, 127, 128, 129, and 140.

This code is used in section 6.

9. Every text processing pipeline must start with a source (fType of SourceType) and terminate with a
sink (fType of SinkType). Any number of filters (fType of FilterType) may be interposed between these
ends. Successive components in a pipeline are connected to one another by calling the setOutput method of
each component, starting with the source, in the order in which they appear in the pipeline, giving the next
component as the argument. The sink at the end of the pipeline delivers the result to the ultimate output,
so setOutput is not called for it.

For example, suppose you have a three component pipeline consisting of a source named faucet, a filter
strainer, and a sink sewer. To plumb these three components into a pipeline, you could make the following
function calls:

faucet.setOutput (strainer) ;
strainer.setOutput (sewer) ;

We overload the | operator to allow connecting pipelines in a less verbose fashion, one familiar to users of
UNIX shell commands. Using this operator, the three component pipeline can be connected with the single
expression:

faucet | strainer | sewer;

Each component in a pipeline contains a link back to the first (SourceType) component. The source
component points to itself, and the link to the start of the pipeline is propagated as each additional component
is added. To obtain the source link, use the getSource method of any component in the pipeline. This is
frequently used when a downstream component wishes to label a diagnostic message with the line number
of the original source line from which the text it’s processing was derived. This is needed so frequently, in
fact, that the getSourceLine Number method is provided to directly obtain this value.

(Connect components in pipeline 9) =
virtual void setOutput (textComponent & ofilt)

{
output = &ofilt;
ofilt .source = source; /* Propagate source to output s/

}

textComponent &operator|(textComponent &dest)

{

setOutput (dest);
return dest;

}

This code is used in section 8.

810 ETSET TEXT PROCESSING COMPONENTS 11

10. Each component in the pipeline receives lines through its get method, performs whatever processing
is in order, then passes them down the pipe to the next component with the emit method, which also keeps
track of the number of lines generated by this component. For the textSource component at the start of the
pipeline, this automatically counts lines in the input stream.

Output from a component is normally emitted to the next component in the pipeline, designated by
output, but may be directed to another component by supplying a pointer to it as the second argument.
This permits components to have multiple outputs and hence forks in pipelines. Note that the line Number
in the component counts all lines emitted, regardless of the destination.

(Emit output to next component in pipeline 10) =
virtual void emit(string s, textComponent xdestination = A)
{
if (destination = A) {
destination = output;
}

if (destination = A) {
throw (invalid_argument("void, destination in emit()"));
}
lineNumber ++;
destination-put(s);

}

This code is used in section &.

11. When the source at the head of the pipeline reaches the end of the input to be processed, it performs
whatever end of file processing is appropriate and passes an end of file notification down the pipeline. The
default mechanism for handling this is the eof method defined in the superclass, which does nothing except
forward the notification onward.

If a component needs to perform local cleanup at end of file (for example, if it’s buffered look ahead data
which needs to be flushed out), it should override the default eof method with one which does whatever
local processing is needed, then calls eof in its parent class to pass the notification down the pipe.

(Handle end of file notification 11) =
virtual void eof (void)

{

output-eof ();

}

This code is used in section &.

12 SOURCE COMPONENTS ETSET 812

12. Source components.
The head end of a filter pipeline must be a textSource. It obtains its input from some external source and

passes it to the next component in the pipeline. A source drives the pipeline when send is called; this reads
successive lines from the source and passes them to the next item in the pipeline.
(Class definitions 8) +=
class textSource : public textComponent {
protected:
virtual bool get(string &s) = 0; /* Get next string from source */
public:
textSource()

{
fType = SourceType;
source = this; /* A source is its very own source, of course */

}
void put(string s)

{

throw (invalid_argument("cannot, put to_a source"));

}

virtual void send(void)
{ /* Send lines from source to next in chain =/
string s;
while (get(s)) {
emit(s);

eof (); /* Notify downstream components of end of file */

}
b

8§13 ETSET STREAM SOURCE 13

13. Stream source.
The streamSource is a source which reads text lines from an input stream. The setStripEOL method may
be used to set a mode which causes MS-DOS carriage returns left on the ends of lines to be removed.

(Class definitions 8) +=
class streamSource : public textSource {
private:
istream xi;
bool strip;
protected:
bool get(string &s)

{

return getline (xi, s);
}
public:
string componentName (void)

{

return "streamSource";

}

void openFile(string pathName) /+ Bind an input file to the stream source */
{
if (pathName = "-") {
i = &cin;
}
else {

1 = new ifstream (pathName.c_str (), i0s ::in);
if (—(xi)) {
throw (invalid_argument ("Cannot_open_ input file \"" + pathName + "\"."));
}
}
}

streamSource (istream &is = cin)
/x Construct a stream source from an existing input stream x*/
{
1= &is;
strip = false;
}
streamSource(string pathName)
/* Construct a stream to read from specified pathName; “-” denotes standard input x/

{

openFile(pathName);
strip = false;
}
void setStripEOL(bool dostrip)

{

strip = dostrip;

}
bool getStripEOL(void)

{

return strip;

}

14 STREAM SOURCE ETSET §13

virtual void emit(string s, textComponent xdestination = A)

if (strip) {

if (s[s.length() — 1] =’\r’) {
s.erase(s.length() — 1,1);

}

}

textSource :: emit (s, destination);

}
%

§14

14.
A

ETSET SINK COMPONENTS 15

Sink components.
textSink forms the tail of a filter pipeline. It consumes lines from the pipeline and writes them to the

ultimate destination.

(Class definitions 8) +=
class textSink : public textComponent {
public:

textSink ()

{
fType = SinkType;

}

void setOutput (textComponent &ofilt)

{

throw (invalid_argument ("cannot_setOutput of a sink"));

}

virtual void put(string s)
/* Default put method keeps track of lines output to sink destination. x*/

{

lineNumber ++;
}
virtual void eof (void) /+ Default end of file action for a sink is to do nothing, as there’s no
component downstream to receive the EOF notification. =/

{}

16

15.
A

STREAM SINK ETSET §15

Stream sink.
streamSink writes output sent it to an output stream. Two constructors permit you to create a

streamSink to write to an already open ostream or to a specified file name or standard output.

(Class definitions 8) +=
class streamSink : public textSink {
private:

ostream xo;

public:

h

string componentName (void)

{

return "streamSink";

}

streamSink (ostream &os)
/* Construct a stream sink that writes to an existing output stream x/

{

o= &os;
}

streamSink (string pathName)

/x Construct a stream sink that writes to a named pathName; “-” denotes standard output */
{
if (pathName = "-") {
o = &cout;

}

else {
o = new ofstream (pathName.c_str(), ios:: out);
}

}

void put(string s)

if (&s#A) {
*0 < s < "\n";
textSink :: put(s); /* Call parent to update line counter =/
}
}

8§16 ETSET HEAT SINK 17

16. Heat sink.

A heatSink discards all data sent to it. As the process of erasing its input is necessarily dissipative; heatSink
thermalises the information content it receives, increasing the entropy of the universe. See: Bennett, C.H.
“The Thermodynamics of Computation—a Review”. Int. J. Theor. Phys. 21:905-940 (1982).

You can use heatSink as the final component in a pipeline where the desired output is a side effect of an
earlier component, for example, the diagnostic messages produced by auditFilter. On a UNIX system you
could use streamSink with a destination of /dev/null for this purpose, but that will not work on other
operating systems.

(Class definitions 8) +=

class heatSink : public textSink {

public:
string componentName (void)

{

return "heatSink";

}
void put(string s)

{1

18 FILTER COMPONENTS ETSET §17

17. Filter components.
Each filter receives its input through its put method and delivers output to the next item in the pipeline
by calling the put method of its designed output.
(Class definitions 8) +=
class textFilter : public textComponent {
public:
textFilter()

{
fType = FilterType;
}
b

18. Trim filter.
A trimFilter removes any blank space from the end of strings which pass through it.

(Class definitions 8) +=
class trimFilter : public textFilter {
public:
string componentName (void)

{

return "trimFilter";

}

void put(string s)

while (s.length() > 0 A isspace (x(s.end () — 1))) {
s.erase(s.end () — 1);

}

emit(s);
}
b

819 ETSET TAB EXPANDER FILTER 19

19. Tab expander filter.
A tabEzpanderFilter replaces tab characters with spaces to align to the specified tabInterval. We assume
tab stops are set at uniform intervals.

(Class definitions 8) +=
class tabExpanderFilter : public textFilter {
private:
int tabInterval;

public:
string componentName (void)

{

return "tabExpanderFilter";

}

tabExpanderFilter (int interval = 8)

{

setTabInterval (interval);

}

void setTabInterval (int interval)

{

tabInterval = interval;

}

void put(string s)

{
if (s.find(’\t?) # string ::npos) {

(Expand tabs in text line 20);

}
assert(s.find (>\t’) = string :: npos);
emit(s);

}

%

20. Given a string s which may contain horizontal tab characters, replace the tabs with spaces to achieve
the same alignment, assuming tab stops are set every tabInterval columns.

(Expand tabs in text line 20) =
string os;
string ::iterator p;
int n = 0;
for (p = s.begin(); p # s.end(); p++) {
if (xp=-\t’) {
do {
0S +:)u);
n++;
} while ((n % tabInterval) # 0);
}
else {
08 += %*p;
nA++;
}
}

s = 0s;

This code is used in section 19.

20 FLATTEN ISO CHARACTERS FILTER ETSET §21

21. Flatten ISO characters filter.

A flattenISOCharactersFilter replaces ISO-8859/1 characters with their closest 7-bit ASCII representation.
This butchers any text containing accented characters, but if the user asks for it, ya gotta do what ya gotta
do.

(Class definitions 8) +=

class flattenISOCharactersFilter : public textFilter {

public:
string componentName (void)

{

return "flattenISOCharactersFilter";

}

void put(string s)

(Flatten ISO 8859 characters to 7-bit ASCII 22);
emit(s);

h

22. Given a string s which may contain ISO-8859/1 characters with codes between #*A0-#FF, return a
string with all such characters replaced by the closest ASCII equivalents.

(Flatten ISO 8859 characters to 7-bit ASCII 22) =
string os;
string ::iterator p;
int ¢;
for (p = s.begin(); p # s.end(); p++) {
¢ = (xp) & #FF;
if ((¢ > #A0) A (¢ < #FF)) {
0s += flattenISO [c — #A0];
}
else {
0s +=¢;
}
}
s = o0s;

This code is used in section 21.

623 ETSET CONVERT FOREIGN CHARACTER SET TO ISO FILTER 21

23. Convert foreign character set to ISO filter.

A convertForeignCharacterSet ToISOFilter converts characters in a foreign character set to ISO 8859-1.
It is driven by a conversion table provided when the filter is instantiated or set by the setConversionTable
method.

(Class definitions 8) +=
class convertForeignCharacterSetToISOFilter : public textFilter {
private:
unsigned char *conversionTable;
public:
void setConversionTable(unsigned char xtbl)

{

conversionTable = tbl;

}

convertForeignCharacterSet ToISOFilter (unsigned char xtbl)

{

setConversionTable (tbl);
}

string componentName (void)

{

return "convertForeignCharacterSetToISOFilter";

}
void identity Transform (void)

{
int 7;
conversionTable = new unsigned char[256];
for (i = 0; i < 256; i++) {
conversionTable[i] = i

}
}

unsigned char convert(unsigned char from)

{

return conversionTable|from];

}

void setTranslation (unsigned char from,unsigned char to)

{

conversionTable[from] = to;
}
void put(string s)
{ string ::iterator p;
for (p = s.begin(); p # s.end(); p++) {
xp = convert((xp) & #FF);
}
emit(s);
}
b

22 SECTION SEPARATOR SQUID ETSET 624

24. Section separator squid.

An Etext is divided into three sections, the prologue, body, and epilogue, delimited by the sectionSep
marker which consists of a 68 character line filled with the sequence <><><>...<><><>. The section separator
processes lines of the input stream in sequence, testing each against the section separator. Lines prior to
the first section separator are emitted to the prologueProcessor component, lines within the body to the
regular output of the component, and lines following the separator at the end of the body (if any) to the
epilogueProcessor component. If the prologueProcessor or epilogueProcessor pointers are A, output for the
corresponding section will be discarded.

This is, thus, a component with one input and multiple outputs, creating a three-way fork in the pipeline,
permitting arbitrary components to be attached to each output. In the spirit of UNIVAC 1004 plugboard
wiring, this is referred to as a squid.

#define sectionSep "<><>K>LOLOLOLDOOIIIIIILILOLOD OO LILOLOLDODO LSOOI
(Class definitions 8) +=

class sectionSeparatorSquid : public textFilter {

private:

textComponent xprologueProcessor, xepilogueProcessor, xcurrentOutput;
int nsep;

public:
sectionSeparatorSquid (textComponent #proP = A, textComponent xepiP = A)

{

prologueProcessor = proP;
epilogueProcessor = epiP;

nsep = 0;

currentOutput = prologueProcessor;

}

string componentName (void)

{
}

void setPrologueProcessor (textComponent proP)

{

return "sectionSeparatorSquid";

assert (prologueProcessor = A A currentOutput = A);
currentOutput = prologueProcessor = proP;

}

void setEpilogueProcessor (textComponent xepiP)
{

assert (epilogueProcessor = A);

epilogueProcessor = epiP;

}

(Section separator squid end of file handling 26);
void put(string s)
{
if (s.compare(sectionSep) = 0) {
(Handle section separator 25);

if (currentOutput # A) {
emit (s, currentOulput);
}
}
%

http://www.fourmilab.ch/documents/univac/

§25 ETSET SECTION SEPARATOR SQUID 23

25. The section separator squid is rather flexible in the ways it permits you to direct contents of the
sections, and this makes for a modicum of complexity when we see a section separator and wish to redirect
the incoming stream. First of all, any of the three output branches—prologue, body, or epilogue—may be
discarded by directing them to a A component pointer. Further, you may specify the same component as
output for more than one branch; for example, if you wish to concatenate the prologue and epilogue into
one file.

We need to provide the conventional end of file notification by calling our output components’ eof methods
after they’ve received the last line of output, but since a component may be attached to more than one branch,
when we’re switching branches we only want to call eof when the component does not appear in a subsequent
branch.

(Handle section separator 25) =
switch (nsep) {
case 0:
nsep ++; /* Advance to body */
if ((currentOutput # A) A (currentOutput # output) A (currentOutput # epilogueProcessor)) {
currentQutput~eof ();
}

currentOutput = output; /* Direct output to main component output */
return; /* Discard section separator x/
case 1:
nsep ++;
if ((currentOutput # A) A (currentOutput # epilogueProcessor)) {
currentQutput~eof ();
}

currentOutput = epilogueProcessor; /* Direct output to epilogue processor */
return; /x Discard section separator */

case 2: /+ Extra sectionSep in epilogue. Treat as part of epilogue. */
break;

¥

This code is used in section 24.

24 SECTION SEPARATOR SQUID ETSET §26

26. Our much-vaunted “flexibility” in output arrangements also has consequences for end of file processing.
When we receive an end of file notification, we can be in any of the three sections, emitting or discarding
output, and with potentially identical destinations for sections subsequent to the one which contained the
end of file. We thus need to guarantee that not only the current section destination is notified of the end of
file (unless it’s A), but also that destinations for subsequent sections which will never receive any lines are
notified unless they are the same as the destination for an earlier section which has been notified.

(Section separator squid end of file handling 26) =
void sectionSeparatorSquid :: eof (void)

if (currentOutput # A) { /* Notify current destination unless it’s A */
current Qutput-eof ();

switch (nsep) {
case 0: /* In prologue. Notify body of eof unless it’s A or the same destination as prologue. If the
epilogue destination is the same as that of the prologue, A it out so it isn’t notified twice. =/
if ((currentOutput # output) A (output # A)) {

output-eof ();
if (epilogueProcessor = currentOutput) {
epilogueProcessor = A; /* eof already sent x*/

}
}

currentOutput = output;
/* Wheeelll Fall-through... =/
case 1: /* End of file encountered in the body. Notify the epilogue destination it’s not going to be
getting any output unless it’s A or the same destination as the body, which has already been
notified. */
if ((currentOutput # epilogueProcessor) A (epilogueProcessor # A)) {
epilogueProcessor—eof ();
}
case 2: /* End of file in the epilogue. No special handling is required. s/
break;
}

}

This code is used in section 24.

827 ETSET TEE SQUID 25

27. Tee squid.
The tee squid makes a simple fork in a pipeline. It copies everything it receives to both the component
next in the pipeline and the component designated as its secondDestination.

(Class definitions 8) +=
class teeSquid : public textFilter {
private:
textComponent *xsecondDestination;
public:
teeSquid (textComponent xsecP)

{

secondDestination = secP;

}

string componentName (void)

{
return "teeSquid";
}
void eof (void)
{

secondDestination~eof ();
textFilter ::eof ();

}
void put(string s)
{
emit (s, secondDestination);
emit(s);
}
I

26 ETEXT BODY PARSER FILTER ETSET §28

28. [Etext body parser filter.

This filter processes the body of an Etext (if the source document contains a prologue and epilogue, this
filter should be placed downstream of a sectionSeparatorSquid), identifying components in the text and
passing them down the pipeline tagged with their type. The body parser is implemented as a state machine,
driven by the lines of body copy if receives through its put method.

(Class definitions 8) +=

class etextBodyParserFilter : public textFilter {

private:
bodyState state; /* Current state of parser */

queue (string) lg; /* Queue for lines during look-ahead */
string specialFilter; /* Filter special commands ? */
void emits(bodyStates,char bracket,string text = "")

{ /+ Emit coded line */
string bracks = "";

bracks += bracket;
emit(EncodeBodyState(s) + bracks + text);

}

void emitQueuedLines(bodyStates); /+ Emit lines in lg with bracketed state s */

public:
etextBodyParserFilter()

{

state = BeginText;
specialFilter = "";

}

virtual ~etextBodyParserFilter()

{}
string componentName (void)

{

return "etextBodyParserFilter";

}

void setSpecialFilter (string f)

{

specialFilter = f;
}

string getSpecialFilter (void)

{
return specialFilter;

}

void eof (void)

{
emits (EndOfText, Void);
textFilter:: eof ();

}

void put(string s)
{
bodyStatelineClass = classifyLine(s);
if (specialFilter # "x") {
if (isLineSpecial(s)) {
if (special Type(s) # specialFilter) {

628 ETSET ETEXT BODY PARSER FILTER 27

return,; /* Discard special line not matching filter x/

}
}
}
(Parser state machine 29);
}

static bodyState classifyLine (string s); /* Classify line by justification type */

static bool isLineSpecial (string s); /* Test for special command =/
static string special Type (string s); /* Extract type of special command s/
static string specialCommand (string s); /* Extract body of special command x/

h

29. We enter the parser state machine with two pieces of information: the current state of the machine and
the lineClass of the line just passed to the put method. The state machine consists of a switch statement
with cases for each possible state, wrapped in an endless loop which permits cycling the machine with the
same input line after a state change with a simple continue statement. This means, of course, that we need
to break out of the machine explicitly when we’ve consumed the input line, but this is simply accomplished
with a break at the bottom of the loop.

(Parser state machine 29) =
while (true) {
switch (state) {
(BeginText state 30);
(BeforeTitle state 31);
(Declarations state 32);
(PossibleTitle state 33);
(TitleMarker state 34);
(Author state 35);
(BetweenParagraphs state 36);
(Within aligned paragraph state 37);
(Within preformatted table state 38);
(PossibleChapterNumber state 39);
(ChapterMarker state 40);
(ChapterName state 41);
default: cerr < "Internal error: state \"" < stateNames|state] <
"\"_not_handled, in ,etextBodyParserFilter.\n";
exit(1);
}
break;

}

This code is used in section 28.

30. The state machine starts in BeginText state. All we do is emit the corresponding marker to identify
the start of the text and drop into BeforeTitle state to process the line.
(BeginText state 30) =
case BeginText: emits(BeginText, Void);
state = BeforeTitle;
continue;

This code is used in section 29.

28 ETEXT BODY PARSER FILTER ETSET §31

31. Once we've output the BeginText marker we arrive in this state. At this point we're waiting to
encounter either the title and author sequence or the start of document body if no such sequence exists.

(BeforeTitle state 31) =
case BeforeTitle:
if (lineClass # BetweenParagraphs) { /* Discard blank lines before title/start of text */
if (isLineSpecial(s)) {
emits (Declarations, Begin);
state = Declarations;
continue;

if (lineClass = InCentred) {
state = PossibleTitle;
lg.push(s);
break;

if (lineClass = TitleMarker) { /* Weird—title marker with no title x/
state = TitleMarker; /* Set state to accept author */
emits (DocumentTitle, Void); /* Indicate no document title */
break;

}
/* Anything else is start of document with no title or author specified */
emits (DocumentTitle, Void);
emits (Author, Void);
state = BetweenParagraphs;
continue; /* Re-parse line in BetweenParagraphs state x/

}
break;

This code is used in section 29.

32. One or more format-specific special commands may appear before the document title. These are
generally used for document-wide declarations which need to appear before the body of the text. They are
returned in a Declarations block consisting of all consecutive special commands which appear before the
title. If you separate blocks of declarations by blank lines, multiple declarations blocks will be returned; this
is generally a dopey thing to do.
(Declarations state 32) =
case Declarations:
if (isLineSpecial(s)) {
emits(Declarations, Body, s);
break;
¥
emits (Declarations, End);
state = BeforeTitle;
continue;

This code is used in section 29.

833 ETSET ETEXT BODY PARSER FILTER 29

33. We have seen a centred line at the start of the document. This may be a title, or it may simply be
centred text which happens to be at the start of a document with no title. We save centred lines in the lg
queue until we either encounter a line which isn’t centred or a title marker.

(PossibleTitle state 33) =
case PossibleTitle:
if (lineClass = TitleMarker) { /# Title marker—lines saved were the title! =/
emitQueuedLines(DocumentTitle);
state = TitleMarker;
break;

if (lineClass = InCentred) {
lq.push(s); /* Another centred line-save it */
break;
¥
if (lineClass = ChapterMarker) { /* Chapter marker—it was a chapter! */
/* We get here if the document doesn’t have a title specification but begins with a chapter marker.
We need to emit a void title and author, then output the centred lines in the queue as a chapter
number. x/
emits (DocumentTitle, Void);
emits (Author, Void);
emitQuevedLines (ChapterNumber);
state = ChapterMarker;
break;

/* Anything else means the lines in the queue are just centred text at the start of the document.
Emit a void title and author, then the lines as a centred sequence. x/

emits (Document Title, Void);

emits (Author, Void);

emitQueuedLines (InCentred);

state = BetweenParagraphs;

continue;

This code is used in section 29.

34. We have seen and processed a title marker. Subsequent centred lines are the author specification
and will be output as such. The author sequence is terminated by any non-centred line, but blank lines are
permitted between the title marker and the first line of the author specification.

(TitleMarker state 34) =
case TitleMarker:
if (lineClass = InCentred) {
emits (Author, Begin);
emits (Author, Body, s);
state = Author;
break;

if (lineClass = BetweenParagraphs) {
break; /* Discard blank line after title marker =/
} /* No author specification. Emit void author and process as text x/
emits (Author, Void);
state = BetweenParagraphs;
continue;

This code is used in section 29.

30 ETEXT BODY PARSER FILTER