Generic Software Acquisition     Understanding AMIX

Why Cellular Automata?

I met Rudy Rucker at the Hackers' Conference in 1987. I'd read most of his books, but I didn't know he'd gotten into computers. He brought a PC with a CAM-6 board, a hardware cellular automata simulator, and showed some amazing demos. After I got back from Hackers' I thought more and more about cellular automata, which I'd basically ignored since the game of Life craze in 1970. I wondered if whether a software-only CA simulator could be made sufficiently general and fast to eliminate the need for a $1,500 CAM-6 board.

In November 1988, Rudy Rucker came to work at Autodesk full-time and began working with me on such a product. In June of 1989, we shipped “Rudy Rucker's Cellular Automata Lab,” the first title in the Autodesk Personal Science series. The product received excellent reviews and was profitable, despite receiving essentially no resources for promotion and being ignored by the sales organisation. It was terminated on November 30, 1993.

The following, from Chapter 1 of the CA Lab manual, are Rudy's and my explanations of why cellular automata are interesting and important to the future of computing.

Rudy's Answer

The remarkable thing about CAs is their ability to produce interesting and logically deep patterns on the basis of very simply stated preconditions. Just as the Mandelbrot set arises from the repeated iteration of the simple equation Z = Z² + C, iterating the steps of a CA computation can produce fabulously rich output. A good CA is like an acorn which grows an oaktree, or more accurately, a good CA is like the DNA inside the acorn, busily orchestrating the protein nanotechnology that builds the tree.

I feel that science's greatest task in the late twentieth century is to build living machines: intelligent artificial life, known as a-life for short. In Cambridge, Los Alamos, Silicon Valley and beyond, this is the computer scientist's Great Work as surely as the building of the Nôtre Dame cathedral on the Ile de France was the Great Work of the medieval artisan.

There are two approaches to the problem of creating a-life: the top/down approach, and the bottom/up approach.

The top/down approach is associated with AI (artificial intelligence), the bottom/up with CA (the study of cellular automata). Both approaches are needed for intelligent artificial life, and I predict that someday soon chaos theory, neural nets and fractal mathematics will provide a bridge between the two. What a day that will be when our machines begin to live and speak and breed—a day like May 10, 1869, when the final golden spike completed the U.S. transcontinental railroad! The study of CAs brings us ever closer to the forging of that last golden link in the great chain between bottom and beyond. If all goes well, many of us will see live robot boppers on the Moon.

A heckler might say, “Sure that's fine, but why are CAs needed? Why have a bottom/up approach at all? What do mindless colored dots have to do with intelligent artificial life?”

For all humanity's spiritual pretensions, we need matter to live on. And CAs can act as the “matter” on which intelligent life can evolve. CAs provide a lively, chaotic substrate capable of supporting the most diverse emergent behaviors. Indeed, it is at least possible that human life itself is quite literally based on CAs.

How so? View a person as wetware: as a protein factory. The proteins flip about like John Holland's genetic programs or like A. K. Dewdney's flibs; generating hormones, storing memories. Looking deeper, observe that the proteins' nanotech churning is a pattern made up of flows and undulations in the potential surfaces of quantum chemistry. These surfaces “smell out” minimal energy configurations by using the fine fuzz of physical vacuum noise—far from being like smooth rubber sheets, they are like pocked ocean swells in a rainstorm. The quantum noise obeys local rules that are quite mathematical; and these rules are in fact very well simulated by CAs.

Why is it that CAs are so good at simulating physics? Because, just as in physics, cellular automaton computations are i) parallel, ii) local, and iii) homogeneous. In both physics and in CAs, i) the world is happening in many different places at once, ii) there is no action at a distance,[Footnote] and iii) the laws of nature are the same everywhere.

Whether or not the physical world really is a cellular automaton, the point is that CAs are rich enough that a “biological” world could live on them. We human hackers live on language games on biology on chemistry on physics on mathematics on—something very like the iterated parallel computations of a CA. Life needs something to live on, intelligence needs something to think on, and it is this seething information matrix which CAs can provide. If AI is the surfer, CA is the sea.

That's why I think cellular automata are interesting: A-life! CAs will lead to intelligent artificial life!

Rudimentary CA a—life already exists in the form of Brain's haulers, Vote's oscillators, and such classic Life patterns as Gosper's glider gun.

In the 1970s, Berlenkamp, Conway, and Guy proved that putting a lot of these objects together can make a universal serial computer, such as a PC. Any serial computation can be done by a CA, and any CA computation can in turn be done by a serial computer—in support of this last point, note that all the programs on this disk are serial programs written in C, Pascal, BASIC, and/or 8086 assembly language.

Many computations can be done much more rapidly and efficiently by a succession of massively parallel CA steps. And one does best to use the CA intrinsically, rather than simply using it as a simulation of the old serial mode—emulating an Intel chip by using a galaxy—sized array of blocks and glider guns is not the way to go. No, when we use CAs best, we do not use them as limpware animations of circuit diagrams. While behaviors can be found in top/down expert-system style by harnessing particular patterns to particular purposes, I think by far the more fruitful course is to use the bottom/up freestyle surfing CA style summed up in the slogan:

Seek Ye The Gnarl!

New dimensional CA hacks are possible, new and marketable techniques of parallel programming are lying around waiting to be found, both in the form of individual CA structures and in the form of wholly different rules.

CA structures are labile and breedable in three senses: one can collide and interface different local patterns within the framework of a fixed CA rule, one can combine globally different CA rules (or ideas about them) to produce wholly new ecologies, or one can “gene-splice” the logic of successful rules. Then, like Alexander von Humboldt in the Americas, one botanizes and zoologizes and mineralizes, looking for whatever artificially alive information structures can be found in the new worlds. As always both top/down and bottom/up approaches are viable. We use bottom/up to find new ecologies and their flora and fauna. We use top/down to seed a given instance of a particular ecology with the sort of gene-tailored computer agents we want to breed.

In my own bottom/up searches I begin simply by hoping that my programs will display interesting output for a long time. Then I begin to hope that my programs will be robust under varying initial conditions, and that they will be reactive in anthropomorphizable ways. Once the program is, at this very rudimentary level, artificially alive, I may cast about for applications in some practical domain.

I think the most productive near-term applications of CAs are to image generation and image processing. A cycle or two of Vote, for instance, can be used for easy image cleanup, munching down all stray “turd bits”. This technique, known as “convolution” in the literature, is used every day by NASA's massively parallel computer in Beltsville, Maryland, to process terabyte arrays of satellite photo data. Present-day designers of the newest commercial paint and graphics packages for the VGA will be putting CA rules into their image processor toolboxes. (Look, for instance, at what Border does to Dr. Tim's face.)

In the area of original image generation, I predict that one of the next big commercial computer graphics fads will be CAs. How about a logo that instead of being chrome is matte and luminous, with a smooth curved surface made of tiny moving mosaics of light, lightbits that form the crawling dirty haulers of Brain or the psychedelic shudder of Rug? These are what the expressive “flickercladding” skins of the robots look like in my two a-life science fiction novels, Software and Wetware.

Many simulation applications exist as well. The idea is to find a CA rule that looks like something you want to model. If you are lucky there will be some common underlying mathematics between the two. The Rug rules, for instance, are difference method solutions of the same differential equation, the Laplacian heat equation:

Laplacian heat equation: \frac{\partial ^2 Q}{\partial x^2}+\frac{\partial ^2 Q}{\partial y^2} = 0

This means, e.g., that a fine-grained Rug rule inside a fixed circular boundary set may serve as a viable model of a vibrating drumhead!

A last current application of CAs is to encryption. Either a CA can serve as a cheap source of “essentially random” encryption bits, or the whole message can be fed to a reversible CA. Stephen Wolfram claims actually to have patented the one-dimensional rule with Wolfram code #30 as part of an encryption scheme.[Footnote]

But to recapitulate, the real reason for studying CAs is to promote artificial life. The most important use for cellular automata will be as “universes” or “arenas” in which to evolve better fractals, flibs, core-warriors, neural nets and expert agents, using gene-splicing, mutation, and our own “divine interventions” to achieve a rapid and dramatic evolution in these parallel processes. CA workers need your help in accomplishing the manifest destiny of mankind: to pass the torch of life and intelligence on to the computer. There are no more than a few hundred active workers in the CA field today;[Footnote] twenty-first century technology will need thousands more!

© 1989 Rudy Rucker — Reprinted by permission.

John's Answer

Physics is local. The two great pillars of Twentieth Century science, general relativity and quantum mechanics, can be viewed as supplanting the mysticism of “action at a distance” and “force fields,” by such mundane, self-evident, and intuitive mechanisms as the Riemann curvature tensor, virtual gluons, and the Higgs field. Both of these theories describing the universe in the large and the very small (albeit in mathematically incompatible ways), tell us that all the complex fabric of events we observe are consequences of individual particles locally responding to conditions directly affecting them, whether moving along geodesics in curved spacetime or undergoing interactions through particle exchange. Both theories have withstood all experimental tests to date, including many thought impossible when they were originally propounded.

A cellular automaton (CA) is a mechanism for modeling systems with local interactions. A cellular automaton is a regular lattice of cells with local state, which interact with their neighbors subject to a uniform rule which governs all cells. The neighborhood (the set of cells whose state can affect a given cell at one instant) can be classified by the dimensionality of the automaton (most experimentation is done with one- or two-dimensional automata), and by the geometric fashion in which cells are interconnected.

The rule is the “program” that governs the behavior of the system. All cells apply the rule, over and over, and it is the recursive application of the rule that leads to the remarkable behavior exhibited by many cellular automata. When experimenting with cellular automata, one is primarily engaged in defining new rules which lead to interesting or useful behavior. The programs in the Rudy Rucker CA Lab from Autodesk are tools for the person engaged in such experiments. Our programs allow you to create a rich set of rules and experiment with their behavior without requiring the purchase of expensive special-purpose hardware.

Cellular automata appear to be abstract and devoid of practical applications, much as was said of computer graphics not long ago. If you want to model a universe which seems to be made up of particles which interact locally, there are two basic ways to go about it. The first is to create a huge array of numbers that represents the interacting items, then find the biggest number cruncher you can lay your hands on and set it gnawing away at the problem. The supercomputer boom, fueled by applications of this approach to weather prediction, computational fluid dynamics in the transonic and hypersonic regimes, plasma dynamics, and an almost endless list of other applications testifies to the effectiveness of this approach.

But maybe there's another way. Until recently, cellular automata were primarily a theoretical tool. The price of a cellular automaton with uniform edge size increases as the nth power of its size, where n is the dimensionality of the cellular automaton. This gets out of hand rapidly, even if you're only working with two dimensional cellular automata. Therefore, although they may be the way the universe is really assembled and therefore worthy of study, no one would consider building one!

Hardware realizations of cellular automata, such as the CAM-6 board, have been built. The CAM-6 is not a true cellular system; it emulates one by using a fast RAM array and a look-up table, but it permits exploration of a rich set of cellular automata with performance adequate to study their behavior in detail. The CAM-6 is a highly effective tool, but it is, at $1,500, an expensive one. It's priced out of the reach of many creative people who should be exploring cellular automata. It was the desire to make cellular automata experimentation available at a low price to a large number of people that spurred the development of this product.

For cellular automata need only to find a concrete, compelling application to a real-world problem to burst into silicon and totally change the way we think about computing. Consider this: inside the computer you're using now are ranks and ranks of RAM chips. A 256K × 1 static RAM chip has a memory cell consisting of four to six transistors, connected in rows and columns to circuitry on the periphery of the chip. Even when the computer is running flat-out, you're using precisely one cell at a time. This is the classic bottleneck in the von Neumann computer architecture (John von Neumann was very aware of this problem; in fact, he and Stanislaw Ulam invented cellular automata precisely as a tool for modeling complex systems), which has led to proposals such as Backus' functional programming, neural systems, and many other architectural proposals, such as SIMD machines, which seem to be more effective in generating Ph.D.s than numbers.

If a two-dimensional cellular automaton with 256K cells were realized in silicon, it could compute 262,144 times faster than a serial processor accessing data bit-by-bit from a memory array. Yet, engineered for volume production, made in comparable volumes, and given time to slide down the learning curve, it need cost no more than a RAM chip. This is the potential of cellular automata. The beauty of two-dimensional cellular automata is that they map perfectly into our semiconductor manufacturing technology: they need the things it does best as opposed to, say, neural systems where the number of connections exceeds the capability of two layers of metal.

If there is merit in Edward Fredkin's suggestion that the fine-grain structure of the universe is really a cellular automaton, then cellular automata machines will play the role of particle accelerators in exploring this level of reality.

Some of the brightest minds of our century have been involved with cellular automata because they comprehended what cellular automata can do. John von Neumann, Stanislaw Ulam, John Horton Conway, Stephen Wolfram, and Edward Fredkin do not spend their time on nonsense. With the Rudy Rucker CA Lab from Autodesk, you can begin to explore the potential that attracted those men to create and research this new way to compute. And perhaps you will discover something that will add your name to the list.

There's plenty to discover. Rudy's semitotalistic 16-state RC program permits you to create 16(16×9) different rules for cellular automata. This is a number slightly larger than 10176. My more general 256-state CA program lets you program 256216 distinct CA rules, which is a number larger than 10157826. These numbers are “effectively infinite”. Roughly 1017 seconds are thought to have elapsed since the big bang ushered in the universe. If you had been around since then, creating, testing, and evaluating one rule per second, you still wouldn't have made a dent in this number, anymore than a buck makes a dent in a trillion dollars. Take away one dollar and you still have about a trillion. Even with enough time, you'd have a lot of trouble writing down the results of your exhaustive search for rules, as the universe is believed only to have on the order of 1080 particles in it, so you'd run out of places to make notes even if you turned the entire universe into a cosmic all-encompassing Post-it™ note. If the still-unconfirmed Grand Unified Theories are correct, by the time 1040 seconds have passed, more than half of the protons will have evaporated into little poofs of energy and leptons, taking with them the fruits of your labors, and leaving what's left of you with 10157826 bottles of beer on the wall.

So get started, people! The human mind works a lot better than blind search (one imagines a middle manager reporting, “Nothing much yet—we need more monkeys, more typewriters.”). CA Lab unleashes your creativity in a virtually infinite domain, where your discoveries may be not only interesting or rewarding, but may create a whole new world. The challenges in cellular automata are clear: how to realize them in hardware, how to apply them to useful tasks, and how to make money doing it. You now possess a tool for exploring all three.

Generic Software Acquisition     Understanding AMIX