
ClassWar
Class Language Application Support System Within AutoCAD. Really!

An Atlast Application

An embedded object oriented programming environment implements user-
defined entities in AutoCAD. Both objects and methods are completely
portable. Optionally, methods can be implemented in C to protect pro-
prietary algorithms or maximise performance.

by John Walker
May 6th, 1990

The world is divided into two classes, those
who believe the incredible, and those who do
the improbable.

Oscar Wilde, 1893

S TARTING with the original prototype of Auto-
Lisp in 1984, we’ve been moving toward providing
general user-defined entities in AutoCAD. Even though

the goal was clear, we knew that much groundwork would
be necessary before AutoCAD could provide its users such
a facility. We needed a high performance programming
language, since AutoLisp was far too slow for applica-
tions more computationally intense than macro language
usage, and we needed a memory architecture that would
provide the storage required by a compiled language. We
needed to extend our original ASCII attributes for blocks
to allow efficient binary storage of arbitrary attributes on
any entity. We needed to permit applications to create
AutoCAD objects far more efficiently than by submit-
ting commands. And finally, we needed a way to embed
object definitions within an AutoCAD database so user-
defined entities would be just as transportable as block
definitions.

During the development of Release 11, essentially all of
the long-term goals we’ve been working toward for so long
have been accomplished. The development of AutoCAD
386 and AutoCAD for OS/2 have made large memory ar-
chitectures readily accessible to the overwhelming major-
ity of our customer base, freeing us of the extensibility and
performance shackles of the original MS-DOS memory ar-
chitecture (all other AutoCAD implementations are, and
have been since inception, large memory architectures).
With adequate storage at hand, ADS provided access to
AutoCAD facilities from compiled C code, eliminating the
interpretive overhead of AutoLisp. Extended Entity Data
(entity attributes) allowed applications to attach a wide
variety of application data to database objects, data auto-
matically adjusted by AutoCAD when the object under-
goes affine transformations. The ads_entmake() facility,

along with its ability to dynamically create anonymous
geometry blocks, provides a high performance way for
applications to add objects to an AutoCAD database.

The realisation that these features enabled applications
to extend the basic entity repertoire of AutoCAD in a
coherent, almost seamless way, led to the original Eagle
integrated solid modeling prototype project, which has
resulted in the development of the AME solid modeling
package now scheduled for shipment with AutoCAD Re-
lease 11. Several subsequent projects to add more power-
ful modeling and analysis capabilities to AutoCAD, such
as NURBS, a constraint manager, and 2D CSG and FEM,
also exploit these facilities to extend AutoCAD.

These projects have demonstrated that AutoCAD is ex-
tensible through the addition of C coded applications that
embody the calculation code for their speciality, but store
their data in an AutoCAD database and rely on Auto-
CAD for user interface and for common geometrical op-
erations. While this has gone a long way toward our
original goals for user-defined objects, some desiderata re-
main undone. To extend AutoCAD’s philosophy of open
architecture fully into the domain of application-defined
objects, we need to adopt many of the principles which
have become the goals of “object oriented programming,”
embodying them in the structure we encourage (but do
not require) application developers to use. By providing
this framework we can promote interoperability among
applications, allow users to build upon applications just
as they have done with the primitives provided by Auto-
CAD, eliminate the penalty for objects defined outside
the “AutoCAD core,” and hence avert the need for it to
grow in size and complexity through time. We can allow
developers to draw the line between the open and pro-
prietary parts of their applications at will—governed by
their strategy and the norms of the marketplace rather
than by a rigid set of rules laid down by our implemen-
tation.

1

ClassWar (Class Language Application Support System
Within AutoCAD, Really!) is an attempt to achieve all of
these goals, to fuse the methodologies of object oriented
programming with those of geometric modeling, to create
an application environment of reusable pieces where users
and developers can easily create customised modeling en-
vironments by selecting and combining components, and
to avert the chaotic and bewildering consequences that
seem inevitable were hundreds of mutually incompatible
applications to emerge. Building upon the new AutoCAD
facilities in Release 11 and incorporating many of the soft-
ware components I’ve been developing for the last several
years against this day, ClassWar provides a true object
oriented framework for AutoCAD applications, one that
will automatically and compatibly benefit from the inter-
nal restructuring of AutoCAD along object oriented lines
anticipated in the next several major releases.

In the large, ClassWar can be seen as a unifying frame-
work for all AutoCAD applications, bestowing the bene-
fits of interoperability and user extensibility upon all that
conform to its standards. In the small, ClassWar is an
ADS application which can be shipped in either binary or
source code form with AutoCAD Release 11 which allows
simple user-defined entities to be created, manipulated,
and exchanged among users. These views describe the
same piece of software; the distinction is one of percep-
tion, strategy, and consequent market positioning. I am
confident enough in the wisdom of our users that I’m sure
that regardless of how much or how little fanfare accom-
panies the delivery of ClassWar into their hands, they
will rapidly determine its true value and apply it accord-
ingly.

ClassWar Overview

Note: To those experienced with conventional Auto-
CAD applications, or familiar with object oriented pro-
gramming languages but not AutoCAD, the concepts of
ClassWar may seem alien and difficult to master. Class-
War is a system in which much of the power is im-
plicit in its programmability and the ability to build on
previously-defined components. Like most such systems
it may be difficult to come up to speed in its use from
a description of its commands and language features. To
assist in mastering the system, I produced a 90 minute
video demonstration titled “ClassWar—The Video.”
An NTSC/VHS copy of this tape is available in the Au-
todesk technical library in Sausalito. Notwithstanding
the tacky production values and crashingly boring dra-
matic merits of this opus, I highly recommend you view
it before reading this document.

Basic concepts

Classes. ClassWar defines and manipulates user-defined
entities which are stored in the AutoCAD database. Each
of these entities is an instance of a class. The entity con-
sists of an AutoCAD anonymous block definition and a
single insertion of it; the block definition contains the
(possibly void) geometrical object specified by this in-
stance. Attached to the insertion of the block are ex-
tended entity data which contain the instance variables
specifying the object. The definition of these variables,
the relationship between them and the geometry of the
object, and all operations which manipulate them are
given in the class definition. The class definition is spec-
ified by a block in the same drawing that contains in-
stances of it. The class definition can either contain the
actual ClassWar source code defining the class, or can
reference a definition of the class given in an ASCII text
file. A class definition consists of declarations of its in-
stance variables, which specify the properties of a specific
instance, its class variables, which store data common to
all instances of the class, and method definitions: exe-
cutable ClassWar code specifying the operations that
manipulate instances of the class.

Methods. Method definitions can either be given as
source code within the class definition or can be exter-
nal methods, implemented in other ADS applications and
called with ads_invoke(). Methods, however specified,
can be invoked from within other ClassWar programs
or, if declared as command methods, can be called as
an AutoCAD command with the method’s name. Meth-
ods can have arguments which are passed on the Atlast
stack when they’re invoked within programs and obtained
by prompting the user when the method is used as an
AutoCAD command. Any number of different class defi-
nitions may define methods with the same name; Class-
War automatically executes the correct method based on
the class an object belongs to. Methods used as AutoCAD
commands may be applied to selection sets containing ob-
jects of different classes, and ClassWar will obtain the
information from the user required by the union of the
argument lists of the method definitions for all objects in
the selection set, combining identical argument requests
to avoid duplication, and then run the correct method for
each selected object, passing it the arguments it expects.

Variables. Class and instance variables may be either
primitive data types, which include all the data types rep-
resentable as AutoCAD entity attributes (such as real
numbers, integers, strings, distances, locations in 3-space,
orientation vectors, scale factors, etc.), or instances of

2

other classes. The ability to include class instances within
other class definitions allows assembling composite ob-
jects from previously defined pieces. When an instance is
included within another class definition, all of its public
methods may be applied to it by methods of the class
including it.

Inheritance. Class definitions may inherit (or, in other
words, be derived from), previously defined classes. When
a class inherits the properties of another, it contains all
the instance and class variables, and methods of its parent
class, although some of these may not be directly accessi-
ble if declared private in the parent class definition. Pro-
tected methods and data are accessible to classes derived
from the parent, but not to those that simply include in-
stances of the class—they may use only public items. A
derived class inherits all the methods of the parent class,
but may redefine, or overload, any of them with a method
of its own, should the derived class wish a different ac-
tion for that method. Even if a method is overloaded, the
parent’s method with the same name may still be called
by explicitly specifying invocation of that method. A de-
rived class may either allow all the methods of the parent
to “show through,” in which case the class is considered
publicly derived, or may encapsulate (hide) them, being
then deemed privately derived.

Constructors. A class definition may specify a class
constructor or newclass method, executed when the class
is initially defined; this method is frequently used to ini-
tialise class variables. In addition, an instance construc-
tor, or new method, can be specified. It is executed when-
ever a new instance of the class is created and typically
sets instance variables to default values for new objects
of that class. If a class definition contains an acquire
method, an AutoCAD user can create instances of the
class simply by entering the class name as an AutoCAD
command. The acquire method normally prompts the
user for information that defines the instance.

Geometry. Most class instances will have a geometri-
cal representation that is visible and manipulable with
AutoCAD (although this is not required). A class defini-
tion specifies the geometry that represents it in its draw
method, automatically invoked when an instance of the
class is created or modified. The draw method can create
AutoCAD geometry using three distinct facilities, or any
combination thereof. The most basic mechanism provides
direct access to the ads_entmake() facilities of ADS. A
set of Atlast definitions collectively referred to as the
Atlast ADS bindings allow method code to assemble

result item chains and enter them in the database. The
ADS bindings are derived from, and essentially compat-
ible with, the mechanisms introduced for manipulating
DXF information in DXFIX. The ADS binding package
allows access to all objects in AutoCAD’s repertoire and
precise control over the entities created, but requires cor-
responding care on the user’s part to achieve the desired
results. A higher level of abstraction is provided by the
second geometric definition facility, the SGLIB binding.
This package provides Atlast definitions for all the func-
tions of my C language Simple Graphics Library, provid-
ing both comprehensive three dimensional linear algebra
and geometric facilities, plus tools for generating vectors,
faces, meshes, and commonly used objects including all
the regular polyhedra and spheres. The linear algebra
components of the SGLIB package can be used to calcu-
late components for the lower level ADS package as well.
The highest level of geometry creation is embodied in the
turtle geometry package. Based upon the turtle proce-
dure notation given in the book Turtle Geometry,1 but
extended to three dimensions along the guidelines given
in that book, one or more turtles can be used to con-
struct arbitrary geometric features, “leaving tracks” as
they draw either in the form of ephemeral vectors that
disappear on the next REDRAW, Lines, Polylines, or polyg-
onal faces traced out by the turtle as closed polygons.
The turtles provided by ClassWar are neither teenage,
mutant, nor Ninja.

Using ClassWar

Installing ClassWar in your AutoCAD environment and
using it is relatively simple; the power of ClassWar
comes from the classes you create using it, not from its
built in commands. To activate ClassWar, use the
AutoCAD command:

(xload "class")

to load the application. If you want ClassWar automat-
ically loaded whenever you run AutoCAD, add it to the
list of standard applications in your acad.ads file. After
ClassWar is loaded, it immediately reads configuration
information and the definition of the “object superclass”
from the files config.cls and object.cls respectively.
These files are supplied with ClassWar and should not
be modified as they interact intimately with the class
application (substantial parts of ClassWar are written
in its own programming language and are contained in
these files). The config.cls and object.cls files may

1Harold Abelson & Andrea diSessa, Turtle Geometry, MIT Press:
Cambridge (Mass), 1980, 1986.

3

be placed anywhere on AutoCAD’s search path, and are
normally kept with other support files such as acad.pat
and acad.lin.

ClassWar stores class definitions in a temporary mem-
ory area called the “heap.” The heap must be sufficiently
large to simultaneously hold all the class definitions used
by a drawing. If the heap is too small, ClassWar will
run out of memory attempting to compile the class defini-
tions and will disable all class commands for the duration
of that drawing editor session. The heap is specified in
terms of items, each 4 bytes in length. The default heap
size of 5000 items (20K bytes) is adequate for most simple
class definitions. You can specify the heap size by defin-
ing the environment variable “CLASSHEAP” as the desired
heap size in items. To determine how much heap is used
by the classes referenced by a drawing, enter the com-
mand “/ MEMSTAT” at the AutoCAD command prompt
after all classes have been loaded. Be sure to include the
blank after the slash in this command. Class definitions
are stored in a very compact form, so large amounts of
heap are rarely required except for classes that contain
large amounts of floating point co-ordinate data.

Loading classes

You can define classes interactively within the AutoCAD
drawing editor or import their definitions from text files
prepared with your favourite text editor. Classes can be
stored either within the AutoCAD drawing file or exter-
nally in text files.

The CLASSDEF command

The CLASSDEF command defines a class whose definition
is stored within the AutoCAD drawing file. If all class
definitions used by a drawing are embedded within it,
and you send the .dwg file to another AutoCAD user
who’s installed ClassWar, that user can perform all the
operations defined by the embedded classes.

To define an embedded class, enter the CLASSDEF com-
mand. AutoCAD presents you with an attribute editing
window. Enter the class name in the first line of this win-
dow; the class name must not duplicate the name of any
other class in the drawing, and should conform to Auto-
CAD’s conventions for object names (such as layer, line
type, and block names).

You can either directly type the class definition in to this
window, using the ClassWar programming language de-
scribed later in this document, or import a class definition

in that language from an external text file. To load a text
file, enter:

<filename

as the first line of the class definition. When you pick OK,
the class definition will be loaded from the named file.
If no explicit path is specified in filename, it is searched
for using the same search path AutoCAD uses for block
insertions. If no extension is given .cls is used. Files
loaded with this mechanism may use any of the end of
line conventions accepted by AutoCAD for text files it
reads.

The CLASSFILE command

Classes defined with CLASSDEF are stored within the Auto-
CAD drawing file. While this makes the drawing self-
contained and easy to interchange with other users, it
may prove inefficient if lengthy class definitions are in-
cluded in a large collection of drawings. In addition, in
some environments users may want to maintain a stan-
dard library of class definitions in a central repository so
updates to the master set of classes immediately affect
any drawing that uses one of them.

The CLASSFILE command defines a class used within a
drawing but defined in an external text file. Every time
the drawing is edited, the class definition is loaded from
the text file. If the class definition file cannot be located
when the drawing is edited (for example, you’ve sent the
drawing to another user but forgotten to include one of
the class definitions it uses), normal AutoCAD commands
will be able to manipulate objects of that class but all
object-specific commands defined in the class definition
will be unavailable.

To declare a class defined in a text file, enter the CLASSFILE
command. AutoCAD presents you with an attribute edit
box requesting the class name and the file where it is de-
fined. Enter the class name, which must be a valid Auto-
CAD symbol name not used by any previously-defined
class, and the file name containing the class definition. If
you leave the file name blank, the class will be loaded from
a file with the same name as the class with the default
extension of .cls appended, located using the AutoCAD
search path. If a file name is given, the AutoCAD search
path is used to find it unless an explicit path is speci-
fied. Class definition files may use any of the end of line
conventions accepted by AutoCAD.

4

Editing classes: the CLASSEDIT command

The CLASSEDIT command allows you to modify the def-
inition of any class embedded within a drawing (defined
with CLASSDEF), or direct a class definition in an exter-
nal text file to load a different file. Enter the CLASSEDIT
command, and AutoCAD will prompt you:

Select class instance, or CR to name class:

The easiest way to specify which class you wish to edit is
just to pick an object of that type on the graphics screen.
If you’d rather specify the class by name (for example, no
object of the desired class is visible, or none is present in
the drawing), just press Return and you’ll be asked:

Class name or ?:

Enter the class name as specified by CLASSDEF or CLASSFILE.
You can list the classes present in the drawing by entering
“?”, after which you’re re-prompted to select a class to
edit.

Once the class has been specified, an attribute editing box
appears containing the actual class definition (if created
with CLASSDEF), or the class name and file that defines
it (if loaded with CLASSFILE). Make whatever modifica-
tions you like to the class definition and pick the OK box.
ClassWar will recompile the class definition and update
all objects of that class to conform to the new class defi-
nition. Picking Cancel discards all changes made to the
class definition.

If the class is defined in an external file, CLASSEDIT only
allows you to change the file name defining the class,
but not the actual class definition. If the class defini-
tion has changed since it was last loaded (for example,
you’ve edited it in another window of a multitasking sys-
tem), picking OK will cause the new version to be used
within the drawing, even if the file name hasn’t changed.

The CLASSUPD command

If you modify a class definition in an external text file
while the drawing editor is running (by editing it in an-
other window of a multitasking system), the changes are
not normally applied until AutoCAD reloads the class
the next time the drawing is edited. To immediately load
the updated class definition, you can use CLASSEDIT on
the updated class as described above, or just enter the
CLASSUPD command. CLASSUPD causes all externally de-
fined classes to be reloaded and recompiled and guaran-
tees that AutoCAD is using the most recent versions. Un-

like CLASSEDIT, however, CLASSUPD does not regenerate
existing instances of the classes it reloads.

Examining objects

Once you’ve created objects that are instances of classes
you’ve loaded, you normally manipulate them with the
methods defined by those classes. A standard set of com-
mands, INSPECT, INSPCLASS, SPY, and SPYCLASS, which
operate on all objects created with ClassWar, allow in-
teractive examination and modification of the variables
that define the properties of an object.

INSPECT—Examine instance variables

The INSPECT command allows you to examine and, if you
wish, change any of the public instance variables defined
by a class. When you enter INSPECT you’re asked to pick
an instance. A dialogue box appears which displays the
public instance variables of that instance. If you’d like to
change any of them, just enter the new values in the dia-
logue box and pick OK. To leave the variables unchanged,
pick Cancel. If you pick OK, the object will be regenerated
to reflect the changes you’ve made.

Since INSPECT operates directly upon the instance vari-
ables, bypassing all consistency checking that may be
done in methods of the class, it violates the fundamen-
tal principle of encapsulation of data that’s key to object
oriented programming. Hence INSPECT should be viewed
largely as a debugging feature; it is extremely convenient
when developing new classes.

INSPCLASS—Examine class variables

INSPCLASS works precisely like the INSPECT command,
but examines and modifies class variables rather than in-
stance variables. You specify the class to be inspected by
selecting an instance of it, even though a particular in-
stance isn’t relevant to the class variables. If a change to a
class variable should affect all objects of that class, it does
not automatically get applied. Your class should define
methods for such operations and not rely on INSPCLASS
to change such variables.

SPY—Snoop on instance variables

The INSPECT command only lets you see and change vari-
ables declared PUBLIC: in their class definitions. Since

5

such variables are normally accessible as fields in pro-
grams that use objects of the class, changing them is gen-
erally considered safe. SPY behaves identically to INSPECT,
but also lets you examine and change PRIVATE: and PROTECTED:
variables. SPY is provided entirely for the convenience of
developers debugging class definitions and should not be
used in the normal operation of applications.

SPYCLASS—Snoop on class variables

SPYCLASS is the snoopy analogue of INSPCLASS; it behaves
identically but lets you examine and change PRIVATE:
and PROTECTED: class variables as well those declared
PUBLIC:.

External classes: CLASSTOC

A simple ClassWar class definition is contained entirely
in the drawing or the text file named with CLASSFILE.
Complicated applications that perform computationally
intense tasks that would be too slow if implemented in
Atlast, or proprietary applications that developers don’t
want to release in source code form, can consist of a
ClassWar class definition that links to one or more con-
currently loaded ADS applications that implement exter-
nal methods of the class.

The interface between ClassWar and the external method
is mediated by definitions in a C language header file au-
tomatically generated by ClassWar from the class defi-
nition. To create the linkage definition for a class, enter
the CLASSTOC command. You’re prompted to select the
class either by pointing to an instance of it or by entering
its name in the same manner used by the CLASSEDIT com-
mand. You’re then asked for the file name into which the
definitions should be written; this defaults to the same
name as the class, in the current directory. Here’s an
example of the CLASSTOC command.

Command: classtoc
Select class instance, or CR to name class:
Class name or ?: mountain
C header file name <mountain.h>:
Command:

Details of how the interface file created by CLASSTOC is
used to implement external methods appear later in this
document.

Embedded Atlast

Since ClassWar is an Atlast application it can provide
direct access to the underlying facilities of Atlast within
the AutoCAD drawing editor. You can interactively “talk
to” the Atlast interpreter by entering the command:

ATLAST

The Atlast interpreter prompt (extended to show the
current stack depth in brackets) appears, and you can
enter any Atlast program you like. Entering a blank line
returns to the AutoCAD command prompt. For example,
here a user employs Atlast as a desk calculator to solve
a trigonometry problem.

Command: atlast
Atlast[0]-> : dtr 180.0 f/ pi f* ;
Atlast[0]-> 90.0 dtr f. cr
1.5708
Atlast[0]-> 60.0 dtr sin 12.5 f* f. cr
10.8253
Atlast[0]->
Command:

If you only want to enter a single line of Atlast text,
you can use the “/” command, which silently accepts a
line terminated by a carriage return and executes it as an
Atlast program. For example, using the dtr definition
we’ve previously entered, we calculate another trigono-
metric quantity.

Command: / 30.0 dtr sin 24.0 f* f.
12
Command:

Class Definition Programming

To define a ClassWar class, you write a program that
declares variables which specify the properties of objects
of that class, and executable code for the methods that
operate on the objects. You can use objects of other
classes as members of new classes you define, or derive
classes from preexisting classes, inheriting their variables
and methods into the new class.

ClassWar is built on top of the Atlast programming
language and shares its notation and built-in primitives.
This manual assumes you have a rudimentary knowledge
of Atlast and does not repeat information given in the

6

Atlast documentation. Please refer to that manual for
details of Atlast concepts and programming.

Preliminary tour

Before we wade into the plethora of minuscule details that
characterise any programming language, it’s worth walk-
ing through a simple program to get our bearings. The
following is a definition of a simple ClassWar class: one
that implements a regular polygon object.

(Polygon class definition)

PUBLIC:
(Total polygons in drawing)
STATIC INTEGER polycount
(Radius of circumscribed circle)
REAL size
(Number of sides)
INTEGER nsides

PRIVATE:
(Unique sequence number)
INTEGER polyseq

TEMPORARY:
(Angle increment)
REAL anginc
POINT kp
1.0 2.0 0.0 kp POINT!

: deg2rad
Pi f* 180.0 f/

;

PUBLIC:

method draw
{

360.0 nsides @ float f/ 2dup anginc 2!
penup

nsides @ 1 and 0= if
2dup 2.0 f/ 90.0 f+ 2dup right
size 2@ forward left

else
90.0 2dup right size 2@ forward
anginc 2@ 2.0 f/ f+ left

then
pendown
deg2rad cos 1.0 f- fnegate size 2@
2dup f* 2.0 f* f* sqrt
nsides @ 0 do

2dup forward anginc 2@ left
loop
2drop

}

PRIVATE:

(Class constructor)

method newclass
{

1000 polycount !
}

PROTECTED:

variable dnsides 3 dnsides !
2variable dsize 1.0 dsize 2!

method acquire
{

integer "Number of sides"
dnsides default arg
0<> if false return then nsides !

distance "Edge size"
dsize default arg
0<> if false return then size 2!

1 polycount +! polycount @ polyseq !
(Save last acquisition parameters as
defaults for the next)

nsides @ dnsides !
size 2@ dsize 2!
true

}

PUBLIC:

command method grow
{

1.5 size 2@ f* size 2!
}

command method shrink
{

2.0 3.0 f/ size 2@ f* size 2!
}

command method more
{

1 nsides +!
}

command method less
{

nsides @ 3 > if
-1 nsides +!

then
}

(Instance constructor)

method new
{

7

8 nsides !
0.5 size 2!
10 polyseq !

}

Now let’s scrutinise this class definition, pointing out fea-
tures of interest along the way. This should give you a
general feel for ClassWar programming, and give you a
framework on which to hang all the concepts to be de-
scribed in the sections that follow.

(Polygon class definition)
ClassWar shares the syntactic conventions of Atlast, including its com-

ment delimiters.

PUBLIC:
This declares the following variables as public—accessible to all users

of the class, and by the INSPECT command.

(Total polygons in drawing)
STATIC INTEGER polycount

The word STATIC at the start of the declaration marks this variable

as a class variable. A single copy of it is shared by all instances of the

class. INTEGER declares a 32 bit integer variable with the name that

follows.

(Radius of circumscribed circle)
REAL size

This declaration isn’t STATIC, so it’s an instance variable. Each object

of this class has its own private copy of this variable, declared as a

double precision floating point number.

(Number of sides)
INTEGER nsides

Here’s an INTEGER instance variable.

PRIVATE:
The preceding variables were public: generally accessible. The variables

that follow are private. They are visible only within this class definition

itself.

(Unique sequence number)
INTEGER polyseq

We’ve declared the polygon sequence number (a unique identifier we’ll

attach to every polygon we create in the drawing) to be a private

instance variable: stored with each polygon, but visible only within

this class definition.

TEMPORARY:
The variables that follow are temporary variables that retain their val-

ues only during the drawing editor session; they’re not stored in either

the instance or the class. Temporary variables are normally used for

intermediate results calculated within methods.

(Angle increment)
REAL anginc
POINT kp

The formal variable declarations end here. All non-TEMPORARY vari-

able declarations must precede the executable code of the class defini-

tion.

1.0 2.0 0.0 kp POINT!
The following Atlast definition converts degrees to radians. Since Atlast

underlies ClassWar, you can use all of its facilities in class definitions.

: deg2rad
Pi f* 180.0 f/

;

The following methods are PUBLIC, callable by any user of the class.

You don’t have to group public, private, and protected items together;

you can switch modes as often as you like.

PUBLIC:

This is the DRAW method for the polygon class. Every class that has

a geometric representation must have a draw method to generate it.

This draw method uses the turtle to trace out the polygon.

method draw
{
Calculate the angle to turn between polygon sides.

360.0 nsides @ float f/ 2dup anginc 2!
Getting the polygon in the right place is more complicated than drawing

it! We raise the pen and move to the calculated starting point of the

first polygon edge.

penup
nsides @ 1 and 0= if

2dup 2.0 f/ 90.0 f+ 2dup right
size 2@ forward left

else
90.0 2dup right size 2@ forward
anginc 2@ 2.0 f/ f+ left

then
pendown

Now to draw the polygon, all we need to do is take the number of

steps given by the number of sides, turning the turtle left the calculated

amount between sides.

deg2rad cos 1.0 f- fnegate size 2@
2dup f* 2.0 f* f* sqrt
nsides @ 0 do

2dup forward anginc 2@ left
loop
2drop

}

The following method is private—accessible only within this definition.

PRIVATE:

(Class constructor)

A NEWCLASS method, if defined, is called just once: when the class

is initially defined within the drawing; this is referred to as the class

constructor. We use a NEWCLASS method to initialise the sequence

number class variable to 1000.

method newclass
{

1000 polycount !
}

The following method is protected. It can be accessed from within this

definition and in classes derived from this class, but not in code that

declares instances of the class.

PROTECTED:

8

Regular Atlast variable definitions can be used as temporary variables.

They are always considered temporary and private, regardless of where

declared in the class definition.

variable dnsides 3 dnsides !
2variable dsize 1.0 dsize 2!

If an ACQUIRE method is defined by the class, an AutoCAD com-

mand with the same name as the class is defined to create objects of

the class. The acquire method is responsible for prompting the user,

if appropriate, for the properties of the object and storing them in the

instance variables of the object. The draw method is called automati-

cally once the acquire method is done.

method acquire
{
The ARG primitive is used here to obtain the polygon’s number of

faces and size. Each argument request specifies its type, the user

prompt, and the default value if none is entered by the user. The ARG

mechanism is very flexible—used both within methods and to obtain

arguments for methods activated through selection sets of objects.

integer "Number of sides"
dnsides default arg
0<> if false return then nsides !

distance "Edge size"
dsize default arg
0<> if false return then size 2!

We increment the POLYCOUNT class variable and use it to assign

a unique sequence number to the polygon. The change to the class

variable is automatically saved in the database by ClassWar.

1 polycount +! polycount @ polyseq !
The user specifications for this polygon are saved in temporary vari-

ables and become the defaults for the next time. Since these are tem-

poraries, they’re retained only for the current drawing editor session. If

we’d made them class variables (STATIC), they would be remembered

from session to session.

(Save last acquisition parameters as
defaults for the next)

nsides @ dnsides !
size 2@ dsize 2!

The ACQUIRE method leaves a status on the stack indicating whether

the object was successfully acquired. This method leaves TRUE to

indicate success. If it leaves FALSE on the stack, the AutoCAD acqui-

sition command terminates with no action.

true
}

The following methods are public.

PUBLIC:

This method is declared as a “COMMAND METHOD”. This means

that in addition to being used within ClassWar code, it can be invoked

as an AutoCAD command. When a command method is entered, a

selection set is requested, the objects in are sorted by class, and the

appropriate method is invoked for each object in the selection set.

command method grow
{
Our GROW method just multiplies the size by 1.5. ClassWar auto-

matically stores the change to the instance variable with the entity and

calls the draw method to update the geometry on the screen.

1.5 size 2@ f* size 2!

}

Similarly, the SHRINK method sets the side to 2/3 of its former size.

command method shrink
{

2.0 3.0 f/ size 2@ f* size 2!
}

Our MORE method just increments the number of sides.

command method more
{

1 nsides +!
}

And the LESS method decrements the number of sides, unless the

figure is already a triangle.

command method less
{

nsides @ 3 > if
-1 nsides +!

then
}

(Instance constructor)

A NEW method, if present, is the instance constructor. The instance

constructor is called whenever a new instance of the class is created,

whether by an AutoCAD command invoking the ACQUIRE method,

or by the declaration of an instance of this class within another class

definition.

method new
{

8 nsides !
0.5 size 2!
10 polyseq !

}

This the entire definition of the polygon class, as sup-
plied in the file POLY.CLS in the ClassWar distribution.
When this class is loaded, the following commands be-
come available:

POLY. Draws a polygon. The user is asked for the
number of sides and the size of the polygon. The polygon
is centred around the insertion point.

GROW. The polygon is increased in 50% in size.

SHRINK. The polygon is reduced to 2/3 of its former
size.

MORE. The number of sides of the polygon is increased
by one.

9

LESS. The number of sides of the polygon is reduced
by one, unless the polygon is already a triangle.

This definition, then, is the complete specification of a
new entity for AutoCAD and the commands that oper-
ate on it. All the standard AutoCAD commands such
as MOVE, COPY, ERASE, ROTATE, etc., will also work as ex-
pected with the new object.

Deriving a class

Much of the power of object oriented programming stems
from the ability to create derived classes, which inherit
variables and methods from a parent class, allowing meth-
ods in the parent class to be redefined (or overloaded),
and new data and methods to be added. To complete our
overview of ClassWar definitions, let’s walk through an
example of a derived class. The following definition is
supplied on the ClassWar distribution as DPOLY.CLS.

This class implements polygons that behave just like those
of its parent class, POLY, but with each polygon labeled
at its centre with the number of sides it contains. Rather
than duplicating the entire definition of POLY, we imple-
ment this new object with the following derived class def-
inition.

(Labeled polygon class definition)

Here is where we inherit the properties of the POLY class. The word

“:poly” is the name of the POLY class (as opposed to “poly,” which

is the declaring word used to declare instances of that class). The

PUBLIC specification causes variables and methods declared PUBLIC:

and PROTECTED: to retain those attributes in the derived class. Were

PUBLIC not specified here, the inherited components would be consid-

ered PRIVATE: in this class. DERIVED declares the class as derived.

All the non-PRIVATE variables and methods of the parent class are

defined within this class.

:poly PUBLIC DERIVED

A little utility Atlast definition to add a new group to the text entity

and set its value from the stack.

: tack
dup addgroup setgroup

;

This temporary string (declared as a simple Atlast string) is used to

edit the number of sides in the polygon.

10 string ns

PUBLIC:

All of the methods of the existing POLY class can be used as-is, except

for the DRAW method. We want this class to include text to label the

polygon with its number of sides. Consequently, we redefine the DRAW

method to include the text. We use the direct ADS binding primitives

to assemble a group list for the Text entity and add it to the database.

method draw
{

clearitem
"TEXT" 0 tack
xcor ycor zcor 10 tack
xcor ycor zcor 11 tack
size 2@ 4.0 f/ 40 tack
nsides @ "%ld" ns strform ns 1 tack
4 72 tack

Add the newly-assembled text entity to the database.

ads_entmake drop

Now that the text that labels the polygon has been generated, we need

to draw the polygon itself. Rather than physically copying the draw

code from the POLY method, we just use the DRAW method of the

parent class to get the job done. If, however, we just used DRAW,

we’d recursively call this very DRAW method, recursing until a stack

overflow abruptly brought the festivities to an end. The following line

uses THIS, which places the current instance on the stack, then uses

the construction “DRAW <-”, which causes the parent class’ DRAW

method to be called instead.

this draw <- drop
}

Variable declarations

The first section of a class declaration defines the class
variables (one copy shared by all members of the class)
and instance variables (one copy per object) used in the
class. In addition, temporary variables used within the
class declaration but not saved in the drawing may be
declared in a compatible fashion. All variable declarations
must appear before the first method definition.

Simple variable types

The data types available as ClassWar variables cor-
respond directly to those provided by AutoCAD’s ex-
tended entity data facilities. Several data types share the
same storage allocation and representation (for example,
real numbers and distances) but behave differently when
transformed by AutoCAD commands. Consequently, it’s
important to declare the correct type and not indiscrimi-
nately use variables of the same generic type. Otherwise,
objects of your class will misbehave when moved, rotated,
or scaled with AutoCAD’s built in commands.

The standard variable types are as follows:

INTEGER A 32 bit signed integer. Not transformed by
AutoCAD commands.

10

REAL A 64 bit floating point number. Not transformed
by AutoCAD commands.

SCALEFACTOR A 64 bit floating point number. Adjusted
when the object is scaled.

DISTANCE A 64 bit floating point number. Adjusted when
the object is scaled.

TRIPLE A triple of 64 bit floating point numbers. Not
transformed by AutoCAD commands.

POINT A triple of 64 bit floating point numbers repre-
senting a location in three dimensional world co-
ordinate space. Adjusted by AutoCAD when the
object is moved, scaled, rotated, or mirrored.

DISPLACEMENT A triple of 64 bit floating point numbers
representing a displacement vector in space. Ad-
justed by AutoCAD when the object is rotated, mir-
rored, or scaled.

DIRECTION A triple of 64 bit floating point numbers rep-
resenting a unit length direction vector in space.
Adjusted by AutoCAD when the object is rotated
or mirrored.

n CHARACTERS A character string with maximum length
n−1. Not transformed by AutoCAD commands.

POINTER A character string containing an AutoCAD database
handle. Transformed when the object is inserted
into another drawing with handles.

A variable is declared simply by giving its variable type
and the name of the variable. The variable type must be
repeated for each variable you declare; it’s not possible to
declare a list of variables in a single statement. Here are
some simple variable declarations.

POINT centre
DISTANCE radius
DIRECTION normal
82 CHARACTERS label

Instances of classes

You can declare variables which are instances of any previously-
loaded class definition. These instances are initialised by
running the constructor of their class, and you can access
any public field and run any public method of the vari-
able’s class. For example, if we’ve loaded the POLY and
DPOLY classes shown above in the introduction, we could
declare instances of them within another class as:

POLY wannacracker
DPOLY mydpoly

Access modes

Variables and methods can be declared with one of four
access modes. The access mode of a variable is given by
the most recent access mode specification, or private if
none has been declared. The access mode specifiers and
their interpretations are as follows.

PRIVATE: A private variable is accessible only within the
class definition. A private variable is stored with the
instance or class but can be examined and changed
only by methods of the class. Private variables pro-
vide the data hiding which is an essential part of
object oriented programming.

PUBLIC: A public variable is generally accessible. It can
be referenced within the class definition, by classes
derived from it, or from other classes that declare
instances of the class. Public data are not hidden
and the class definition must be wary of incorrect
manipulation of public variables by other programs.

PROTECTED: A protected variable is accessible from within
the class that defines it and by any class derived
from that class, but not by other classes that de-
clare instances of the class.

TEMPORARY: Temporary variables are private and are not
stored with either the class or the instance. They
retain their values only for the current AutoCAD
drawing editor session and are normally used as a
scratchpad for calculations within the methods of
the class.

The following set of declarations illustrates the various
access modes. Note that an access mode declaration ap-
plies to all variables (and methods) declared until the
next access mode is specified.

PUBLIC:
POINT centre
DISTANCE radius

PROTECTED:
DIRECTION normal

PRIVATE:
82 CHARACTERS label

TEMPORARY:
INTEGER numsides
REAL tempang

11

Class variables

Most variables in class definitions are instance variables—
one copy per object of the class. For some purposes, for
example assigning unique sequence numbers to every ob-
ject of the class, you want a variable common to all mem-
bers of the class. Such a variable is called a “class vari-
able,” and is declared by preceding its declaration with
the word “STATIC.” The STATIC specification causes only
the next variable declared to become a class variable; sub-
sequent variables will be instance variables unless also
preceded by STATIC. In the following declarations:

PUBLIC:
POINT centre
DISTANCE radius
STATIC 20 CHARACTERS classid

PROTECTED:
DIRECTION normal

PRIVATE:
82 CHARACTERS label
STATIC INTEGER seqnumber

TEMPORARY:
INTEGER numsides
REAL tempang

variables “classid” and “seqnumber” are class variables;
all the rest are instance variables or temporaries.

Method definitions

After the variables, the methods of the class are defined.
The methods contain the procedural code that operates
upon objects of the class, implementing their repertoire
of behaviour. Some methods, such as those that initialise
the class and instance variables, draw the object when
it is created or modified, and obtain the parameters for
a new object from the user, have predefined names and
functions. Most methods, however, are specific to the
class, implementing operations peculiar to objects of that
class.

Any number of classes may have methods with the same
name. ClassWar automatically calls the correct method
by examining the type of the object being operated upon
and selecting the method with the specified name for ob-
jects of its class. Methods may be called from within
ClassWar programs, given the object on which they are
to operate on the stack or, if declared as command meth-
ods, invoked as AutoCAD commands that operate upon
objects selected by AutoCAD’s entity selection mecha-
nism. Methods can have arguments (parameters). A

method with arguments obtains its arguments from the
Atlast stack. When a command method with argu-
ments is run, ClassWar obtains the arguments by prompt-
ing the AutoCAD user for them, combining requests for
identical arguments requested by different methods ref-
erenced by objects in a selection set. Then, when the
command method is run for a selected object, ClassWar
places the arguments it expects on the stack. Thus, the
same method can be used both within ClassWar pro-
grams and as an AutoCAD command; this makes meth-
ods readily reusable when new classes are built upon ex-
isting ones.

Methods are declared using the following syntax, where
items in [brackets] are optional.

[COMMAND] METHOD name [((arguments))]
{

… method implementation…
}

The name is the name of the method. If “COMMAND” pre-
cedes the declaration, this will be the name of an Auto-
CAD command that invokes the method as well as its in-
ternal name within ClassWar programs. If the method
has arguments, they are declared within an argument list
enclosed in double parentheses. Note that spaces must
separate these tokens, as they are actually Atlast defi-
nitions. If a method has no arguments, the argument list
delimiters should be omitted.

The Atlast code that implements the method is enclosed
in braces. The implementation code is written as a reg-
ular Atlast program, but has access to the variables
declared in the class definition and all the additional ge-
ometric primitives of ClassWar.

Variables declared in the class definition are referenced
by name; as with a normal Atlast variable this places
a pointer to the variable on the stack. You can load or
store the value in the variable using that pointer. When
you reference a variable, ClassWar determines whether
it is an instance, class, or temporary variable and gives
you a pointer to the correct area automatically. Since
variable offsets are calculated at compilation time, access
to variables of a class definition is very efficient.

You normally leave a method by executing off the end
of the definition. If you want to exit from the method
within its body (for example, to bail out if an error is
detected), use the RETURN primitive. You must not use
the Atlast EXIT primitive; it does not perform essential
cleanup required when leaving a method. For example,
a method might respond to the user canceling a variable

12

editing dialogue box as follows.

THIS OBJECT.INSPECT
0= IF

RETURN (User hit Cancel)
THEN
Method code continues…

Method arguments

Method arguments are declared in an argument list sur-
rounded by the delimiters “((” and “))”. To enable
ClassWar to obtain arguments from the AutoCAD user
when a command method is invoked, arguments must be
declared in a precisely specified way. Methods may have
as many arguments as desired.

Each argument declaration begins with the data type of
the argument, either one of the simple data types previ-
ously described for use in variable declarations (INTEGER,
REAL, POINT, etc.), or one of the following argument-only
data types.

ANGLE A 64 bit floating point number representing a rel-
ative angle in radians.

ORIENTATION A 64 bit floating point number representing
an absolute bearing angle in radians.

CORNER A triple of 64 bit floating point numbers repre-
senting the corner of a box in space.

KEYWORD A string containing the keyword entered by the
user, chosen from a keyword list specified for the
argument.

Next in the argument declaration is the prompt to be
issued to the AutoCAD user when the argument is re-
quested. The prompt is specified as a constant string
which should consist just of the description of the datum
requested. The default (if any), and the balance of the
prompt is provided by ClassWar.

Following the prompt and preceding the word ARG, one or
more options can be specified. We’ll discuss the options
in more detail in a moment. First, consider the following
simple class definition, which we’ll refer to as “SPROINK.”

PUBLIC:
DISTANCE size
INTEGER nsides

COMMAND METHOD modpoly ((
DISTANCE "New size" ARG
INTEGER "New number of sides" ARG))

{
nsides !
size 2!

}

When this method is run as an AutoCAD command,
ClassWar conducts the following dialogue with the user:

Command: modpoly
Select objects: 1 selected, 1 found
Select objects:

New size: 3.2
New number of sides: 3

Command:

The arguments obtained are passed to the method’s im-
plementation code on the stack, in the order the argu-
ments were declared (the last argument in the list will
be on the top of the stack). Integer and floating point
arguments are placed directly on the stack; points and
other co-ordinate triples and string arguments are passed
as pointers to a temporary storage area containing the
argument value.

When the method is invoked in ClassWar code rather
than as an AutoCAD command, the argument declara-
tions are ignored and arguments are obtained directly
from the stack. This is how ClassWar allows the same
methods to serve as programming language constructs
and AutoCAD commands.

For example, here’s a class definition that includes an
object of class SPROINK and uses its modpoly method from
within one of its own methods.

PUBLIC:
INTEGER icount
SPROINK fiddle

COMMAND METHOD clearit
{

0 icount !
3.2 3 fiddle modpoly

}

In the clearit method we set our icount variable to
zero, then use the modpoly method to set the size and

13

nsides variables of the SPROINK object named fiddle to
the values we passed on the stack: 3.2 and 3.

Since the size and nsides variables were declared PUBLIC:
in the definition of the SPROINK class, we could have set
them directly in the clearit method, as follows:

COMMAND METHOD clearit
{

0 icount !
3.2 fiddle size 2!
3 fiddle nsides !

}

When a public variable name is used as a method, it
places the address of the selected instance or class variable
on the stack, allowing access to it with normal Atlast
facilities.

As noted above, several options can be specified to control
argument acquisition. The following paragraphs describe
these options.

Default values. You can specify a default value for an
argument by supplying a pointer to a temporary variable
containing the default and the DEFAULT keyword. For
example, if we’d declared the MODPOLY method of SPROINK
as follows:

TEMPORARY:
DISTANCE dsize
INTEGER dnsides

1.0 dsize 2!
3 dnsides !

PUBLIC:

COMMAND METHOD modpoly ((
DISTANCE "New size"

dsize DEFAULT
ARG
INTEGER "New number of sides"

dnsides DEFAULT
ARG))

{
nsides !
size 2!

}

the dialogue with the AutoCAD user would have been:

Command: modpoly
Select objects: 1 selected, 1 found
Select objects:

New size <1.0000>: 3.2
New number of sides <3>: 3

Command:

Had the user entered a blank line to either of these prompts,
the specified default value would have been passed to
the method. Defaults are specified as pointers to vari-
ables containing the default value to allow methods to
change the default values where appropriate. For exam-
ple, many AutoCAD commands use the last values en-
tered as the defaults for the next invocation of the com-
mand. A ClassWar command method can implement
this simply by storing its arguments into the correspond-
ing default variables. Note that defaults must be stored
in temporary variables; you cannot use the contents of
an instance or class variable as a default. Since Auto-
CAD obtains all arguments needed to process objects in
a selection set in advance, the specific variable settings
of the individual objects are unavailable when arguments
are obtained.

Acquisition modes. AutoCAD input processing pro-
vides a rich set of input validation checks. All of these can
be used when obtaining ClassWar arguments. These
modes are requested by computing the sum of the re-
quested modes, then enabling them with the ARGMODES
keyword. The available modes are:

ARG_nonull Null input prohibited.
ARG_nozero Zero input prohibited.
ARG_noneg Negative input prohibited.
ARG_nolim Don’t check drawing limits.
ARG_dashed Use dashed rubber band line.
ARG_cronly End string input with Return only.

Here is a version of the MODPOLY method that rejects neg-
ative size specifications and zero or negative inputs for
the number of sides.

COMMAND METHOD modpoly ((
DISTANCE "New size"

dsize DEFAULT
ARG_noneg ARGMODES

ARG
INTEGER "New number of sides"

dnsides DEFAULT
ARG_noneg ARG_nozero + ARGMODES

14

ARG))
{

nsides !
size 2!

}

Now AutoCAD will enforce the required modes for the
arguments, as illustrated below.

Command: modpoly
Select objects: 1 selected, 1 found
Select objects:

New size <1.0000>: --23
Value must be positive.
New size <1.0000>: 23
New number of sides <3>: 0
Value must be positive and nonzero.
New number of sides <3>: --11
Value must be positive and nonzero.
New number of sides <3>: 6
Command:

Base points. ANGLE, CORNER, DIRECTION, DISPLACEMENT,
DISTANCE, ORIENTATION, POINT, and TRIPLE arguments
may be specified either by typing the value on the key-
board or by graphically entering it with the pointing de-
vice. Graphical specifications are often relative to a base
point known at argument acquisition time. For example,
a distance argument used as the radius of a circle can
be specified as a vector from the centre of the circle to
a point on its circumference. If no base point is speci-
fied, the user would have to enter two points to define
the distance; supplying the base point in the argument
definition not only relieves the user of having to enter the
first point, it permits AutoCAD to draw a rubber band
line that dynamically shows the value being specified.

We can modify the acquisition of the polygon size in
MODPOLY to use a base point of (0, 0, 0) as follows. This
allows the user to draw the new size on the screen as a
vector from the origin.

TEMPORARY:
POINT bpoint
0.0 0.0 0.0 bpoint POINT!

PUBLIC:

COMMAND METHOD modpoly ((
DISTANCE "New size"

dsize DEFAULT

bpoint BASEPOINT
ARG_noneg ARGMODES

ARG
INTEGER "New number of sides"

dnsides DEFAULT
ARG_noneg ARG_nozero + ARGMODES

ARG))
{

nsides !
size 2!

}

Keyword lists. Finally, you can supply a list of key-
words that can be entered, either as the sole form of input
(argument type KEYWORD), or as alternatives for one of the
numeric or co-ordinate argument types. (You cannot re-
quest keywords as options on string input; any text may
be entered as a string argument so keywords cannot be
recognised there.)

Keyword lists are specified as strings, usually constant,
naming the keywords recognised by the command. You
can accept abbreviated forms of keywords by capitalising
the letters of the minimum prefix recognised as the key-
word or, alternatively, by suffixing the abbreviation to
the keyword after a comma. When a keyword is declared
for an argument, ClassWar passes the method either
the numeric value followed by a zero integer or, if a key-
word was entered, the full keyword given in the keyword
string (even if the user entered an abbreviation) followed
on the stack by a nonzero integer. The integer flag per-
mits the method to determine whether the keyword was
entered and take appropriate action.

Suppose, for example, we’d like to further extend our
much hacked MODPOLY method to accept “Triangle” and
“Square” as well as numeric input for the number of sides
argument. To accomplish this, we can modify the decla-
ration as follows.

COMMAND METHOD modpoly ((
DISTANCE "New size"

dsize DEFAULT
ARG_noneg ARGMODES

ARG
INTEGER "New number of sides"

dnsides DEFAULT
ARG_noneg ARG_nozero + ARGMODES
"Triangle Square" KEYWORDS

ARG))
{

if
"Triangle" strcmp 0= if

15

3
else

4
then

then
nsides !
size 2!

}

The first IF statement in the method tests the status word
indicating whether a keyword was entered for the second
argument. If so, it tests which one (since there are only
two keywords, if it isn’t “Triangle” it must be “Square.”
If the status is zero, the user entered a number which we
use as before. We can use this method as follows:

Command: modpoly
Select objects: 1 selected, 1 found
Select objects:

New size <1.0000>: 2
New number of sides <3>: Squ
Command:

Since the “S” of “Square” was capitalised, we can abbre-
viate the keyword to as little as the initial letter.

Procedural arguments

The same syntax used to specify arguments within method
argument lists can be used within the body of a method
to obtain arguments from the AutoCAD user when the
method runs. Although the syntax and semantics of the
argument acquisition are identical, obtaining a procedural
argument within a method is a very different operation,
and it’s important to understand the distinction.

When processing a collection of objects chosen with an
AutoCAD selection set, ClassWar asks for the argu-
ments requested by their methods, as declared in argu-
ment lists, only once. Identical argument requests, even if
declared in argument lists of methods of entirely different
classes, are merged into the minimum number of requests
to the user. After the user enters all required arguments,
the methods are applied to the objects in the selection set
without user intervention.

When a procedural argument is requested within a method,
the user is immediately asked for the argument. A pro-
cedural argument is never automatically provided on the
stack—the user must always enter it. Procedural argu-

ments are consequently primarily useful in object acqui-
sition methods where one is specifying the initial proper-
ties of a new object, or for handling error conditions that
may arise while processing objects. We could replace the
argument list of our MODPOLY method with procedural ar-
guments as follows:

COMMAND METHOD modpoly
{

DISTANCE "New size"
dsize DEFAULT
ARG_noneg ARGMODES

ARG
-1 = if return then
INTEGER "New number of sides"

dnsides DEFAULT
ARG_noneg ARG_nozero + ARGMODES
"Triangle Square" KEYWORDS

ARG
dup -1 = if return then
1 = if

"Triangle" strcmp 0= if
3

else
4

then
then
nsides !
size 2!

}

We’ve added extra status checking because procedural
argument acquisition always leaves a status word on the
stack regardless of whether a keyword was specified or
not. The status is 0 if a normal argument was entered, 1
if a keyword was entered, and −1 if the user canceled the
input with Control C.

As long as we select a single entity as the object of the
MODPOLY command, this method will behave as before. If,
however, we select several objects of class SPROINK, the
prompts for the new size and number of sides will appear
for each individual object. This is rarely what’s desired,
so procedural arguments should be used only where ap-
propriate.

Special purpose methods

The meaning of most methods is entirely up to the cre-
ator of the class, but ClassWar reserves the names of
several methods for predefined purposes. If a class def-
inition contains methods with these names, ClassWar

16

will automatically invoke it at the proper times and will
assume it conforms to the guidelines given below.

DRAW method. A DRAW method, if present, is exe-
cuted whenever an object is initially created or any of its
instance variables change (regardless of how the change
came about). The DRAW method is invoked with no argu-
ments and is responsible for generating the geometrical
representation of the object in the AutoCAD database.
The DRAW method may create the geometry using the
turtle, with SGLIB, or by assembling entities with the
ADS bindings and adding them to the database with
the ADS_ENTMAKE primitive. When the DRAW method re-
ceives control, the turtle has been RESET to its default
parameters, then set to generate Polyline entities with “1
LEAVETRACKS.” The SGLIB current transformation is set
to the identity transform upon entry to the DRAW method.
The instance variables of the object being generated may
be accessed simply by referring to their variable names.
The object should be generated relative to the world co-
ordinate system origin, (0, 0, 0); ClassWar automati-
cally translates and rotates it to the correct orientation
in space. If the DRAW method generates no geometry for
the object, the user will not be able to pick it on the
AutoCAD screen but the object will still be stored in the
database.

ACQUIRE method. If an ACQUIRE method is defined
within a class, an AutoCAD command with the same
name as the class is defined to create new objects of
that class. For example, if we’ve created a class named
“SPIRAL,” entering SPIRAL at the AutoCAD command
prompt will invoke the ACQUIRE method of that class.
The task of ACQUIRE is simple: to initialise the instance
variables for the new object. This is usually accomplished
by conducting a dialogue with the user, often employing
procedural argument requests, to obtain the values for
each variable. The ACQUIRE method is expected to leave
a status on the stack indicating whether it succeeded in
obtaining the instance variable values. If it returns TRUE,
the new object will be created. If FALSE is left on the
stack (as it might do, for example, if the user canceled
one of the input requests), no object is created.

An ACQUIRE method can present the user with a dialogue
box for specifying the properties of the new object simply
by storing whatever default values are desired in the in-
stance variables and executing “THIS OBJECT.INSPECT.”
This executes the OBJECT.INSPECT method (defined for
all ClassWar objects as part of the superclass “object”
inherited implicitly by all class definitions) of the current
object (THIS), presenting an INSPECT dialogue and re-

turning TRUE if the user picks OK and FALSE if Cancel is se-
lected. The MOUNTAIN.CLS class definition uses OBJECT.INSPECT
in this manner.

NEW method. The NEW method is the instance con-
structor of the class. Whenever a new object of the class
is created, the NEW method is run (if defined). Its job
is usually to store default values into the instance vari-
ables appropriate to newly-created objects of the class. It
may, however, do anything it wishes; it is a fully general
method. Don’t confuse the NEW method with the ACQUIRE
method. Whenever an object is created, whether by being
declared as a component of another class or as an Auto-
CAD database object, the NEW method is run. It is non-
interactive. The ACQUIRE method is invoked only when
the class name is entered as an AutoCAD command, af-
ter running the NEW method (if any). An ACQUIRE method
may rely on the NEW method to store default values for
the instance variables, but its main job is to interactively
query the user for the properties of this specific object.
If no NEW method is defined, instance variables of newly
created objects will be set to standard defaults: zero for
numbers, the null string for strings.

NEWCLASS method. The NEWCLASS method is re-
ferred to as the class constructor. It is invoked just once;
when the class is first defined within a drawing. The
NEWCLASS method is responsible for setting class variables
to their initial values. If no NEWCLASS method is defined,
class variables will be set to standard defaults: zero for
numbers, the null string for strings.

Derived classes: inheritance

You can create new classes by defining them from scratch,
only using primitive ClassWar objects, by building upon
existing classes by including them in the classes you de-
fine, or by deriving new classes from previously defined
classes, allowing them to inherit the variables and meth-
ods of their parent class, adding whatever additional vari-
ables and classes are required and redefining any methods
of the parent class that are unsuitable to the derived class.

To create a derived class, simply include the statement:

:parent [PUBLIC] DERIVED

as the first line of the derived class definition. The parent
name specifies the name of the parent class. This name
is preceded by a colon to denote the name of the par-
ent class itself, as opposed to the declaring word used

17

to create instances of the class. If “PUBLIC” is speci-
fied before “DERIVED,” variables and methods declared
PROTECTED: and PUBLIC: in the parent class will retain
those attributes in the derived class. If PUBLIC derivation
is not specified, all variables and methods inherited from
the parent class are considered PRIVATE: in the derived
class.

When a derived class is created, all PROTECTED: and PUBLIC:
variables and methods of the parent class are included by
reference in the derived class. They can be referenced
in the same way as if declared within the derived class.
If you declare a method that duplicates the name of a
method of the parent class, it is overloaded; the method
in the derived class supplants the parent class’ method.

Please examine the example in the introduction of a la-
beled polygon class defined by derivation from a simple
polygon class for details on how a derived class is defined.

Constructors and derived classes

When classes are created by derivation from existing classes,
variables in the parent class are incorporated into the de-
rived class. The class and instance constructors (NEWCLASS
and NEW methods) of the parent class are automatically
invoked when new objects of the derived class are cre-
ated. If a class is defined by several levels of derivation,
the constructors are called with the topmost class con-
structor first, the constructor for the class derived from
it second, and so on with the constructor for the bottom
class last. Constructors in derived classes are free to over-
ride defaults set by parent class constructors as long as
they have access to the variables they wish to initialise (in
other words, the variables are PUBLIC: or PROTECTED:).

The virtualise operator: <-

When classes are built by derivation from existing classes
or by incorporating instances of other classes, cases arise
where names used in one class clash with the names of
another. Variables of a class definition can be referenced
within that definition just by giving their name; this com-
piles an efficient reference to the class, instance, or tem-
porary variable. Similarly, methods defined within a class
definition may be called by other methods of the same def-
inition with the same speed as invoking any other Atlast
definition. There are cases where this action is inappro-
priate and ClassWar must use the general definition of
the name as a method applicable to objects of a variety
of classes. You can force the general interpretation of a

name by following it with the “<-” operator (pronounced
“send to”).

This operator was used in the example of a derived class
given at the start of this section. The DRAW method of
the derived class wanted to use the DRAW method of its
parent class to draw the outline of the polygon. Had the
method simply performed:

THIS draw

which pushes the current object on the stack and calls
the DRAW method, an infinite recursive call on the DRAW
method of the derived class would have ensued. Instead,
it specified:

THIS draw <-

Following “draw” with “<-” forces ClassWar to use the
parent class DRAW method, accomplishing the desired re-
sult.

You can also use the “<-” operator to access variables of
classes that duplicate the names of variables defined in
the current class. You normally reference variables in the
current class just by giving their name. This is convenient
and efficient, but causes a problem if you want to access
a variable with the same name from a component class.
In the following class definition, including an instance of
our SPROINK class:

PUBLIC:
REAL size
SPROINK fiddle

COMMAND METHOD clearit
{

1.0 size 2!
3.2 fiddle size <- 2!
3 fiddle nsides !

}

we have a potential problem because the size variable
in our class duplicates the name of the size variable in
SPROINK. By following the reference to “size” with the
“<-” operator, we inform ClassWar to use the most
general, or virtual definition of size—a definition that
examines the object on the top of the stack and returns
the correct variable from it depending on which class it
belongs to.

18

Drawing Facilities

Three separate drawing facilities are provided for DRAW
methods to add geometry to the AutoCAD database.
These facilities can be used separately or in conjunction
with one another. The facilities consist, from the lowest
to the highest level, of Atlast bindings for ADS func-
tions to assemble result buffer lists and create entities
with ads_entmake(), a comprehensive Atlast binding
for SGLIB, and a complete turtle geometry package that
can generate a variety of AutoCAD objects.

The ADS binding

The ADS binding primitives provide facilities that allow
you to assemble result buffer lists representing AutoCAD
entities and add them to the database. Key to under-
standing the ADS primitives is the current item. The
ADS primitives are always working on one entity. This
current item is implicitly referenced by all of the ADS
binding primitives.

Item primitives

The item primitives operate upon entire items (lists of
groups representing entire entities in the AutoCAD database.)

ADS ENTMAKE. The entity described by the cur-
rent item is added to the AutoCAD database. The status
from the operation is left on the stack; it will be positive
if the object was added successfully, negative in case of
error.

ADS ENTMOD. The entity described by the current
result item is modified in the AutoCAD database to re-
flect the values given in the result item. The ADS status
is left on the stack: positive if the object was successfully
modified, negative otherwise.

CLEARITEM. All groups of the current item are deleted.
You’d only use this if you intended to build a new item
from scratch using ADDGROUP. The stack is not affected.

PRINTITEM. All groups of the current item are printed
on the AutoCAD text screen. For example, if an Arc is
the current entity, the statement:

PRINTITEM

might generate the following output:

0: "ARC"
8: "0"

10: (3, 2, 0)
40: 1
50: 0
51: 90

Group primitives

The group primitives provide access to the individual data
fields that make up an item. In the following descriptions
of primitives, assume that the current item is a Line entity
on layer 0, from co-ordinates (1, 1, 0) to (2, 2, 0). This
item would be displayed by “PRINTITEM” as:

0: "LINE"
8: "0"

10: (1, 1, 0)
11: (2, 2, 0)

Groups within an item can be identified either by group
code or by their position within the item. Regular Auto-
CAD item fields are always unique and may be identified
simply by their group codes. Extended entity data, how-
ever, uses the same group code for all fields of a given
type, so group codes are not necessarily unique. A pos-
itive number used to designate a group chooses the first
occurrence of that group code in the current item. A
negative number of the form −(10000+n), where n spec-
ifies the position of the group within the item (with the
first group numbered zero), selects the nth group in the
chain of groups composing the item and may be used to
uniquely specify extended entity groups that appear more
than once in an item.

PRINTGROUP. The group identified by the second
item on the stack is printed on the AutoCAD text screen.
For example:

Command: atlast
Atlast[0]-> 10 printgroup
10: (1, 1, 0)

Atlast[0]-> -10001 printgroup
8: "0"

Atlast[0]->
Command:

19

GROUPCOUNT. Places the number of groups in the
current item on the top of the stack.

Atlast[0]-> groupcount .
4

GROUP?. If the group with group code given by the
top of the stack is present in the item, −1 is placed on
the top of the stack. If the group does not appear in the
item, 0 is returned.

Atlast[0]-> 10 group? .
-1
Atlast[0]-> 40 group? .
0

DELGROUP. The group on the top of the stack is
deleted from the item, if present. If the specified group is
not present, DELGROUP is simply ignored.

Atlast[0]-> printitem
0: "LINE"
8: "0"
10: (1, 1, 0)
11: (2, 2, 0)

Atlast[0]-> 8 delgroup
Atlast[0]-> printitem

0: "LINE"
10: (1, 1, 0)
11: (2, 2, 0)

GROUP. The value of the specified group, in whatever
form is appropriate for it, is placed on the top of the stack.
Integers are stored as single stack items; real numbers and
angles as pairs of stack items representing their floating
point values; co-ordinates as triples of pairs, each giving
a floating co-ordinate with Z at the top of the stack, Y
next, and then X; strings as the address of a temporary
string buffer containing the text; and binary chunks as a
length, in bytes, on the top of the stack and the address
of the chunk data, stored in a temporary string buffer,
next on the stack.

Atlast[0]-> 10 group f. f. f.
0 1 1

ADDGROUP. A group with the type given by the top
of the stack is added to the end of the item. The value

field of the group is cleared to zero, and may be then set
with SETGROUP.

Atlast[0]-> 62 addgroup
Atlast[0]-> printitem

0: "LINE"
10: (1, 1, 0)
11: (2, 2, 0)
62: 0

SETGROUP. Sets the value of the group specified
by the top of the stack to the values below it (in the
same form as the results returned by GROUP). Removes
the group specification and the values from the stack.

Atlast[0]-> 3 62 setgroup
Atlast[0]-> 3.0 4.0 5.0 10 setgroup
Atlast[0]-> printitem

0: "LINE"
10: (3, 4, 5)
11: (2, 2, 0)
62: 3

The SGLIB binding

The SGLIB-based drawing facilities are implemented as a
collection of Atlast primitives that provide access to the
linear algebra, geometric, and object creation facilities of
SGLIB, the Simple Graphics Library.

Co-ordinate systems

All geometric objects generated by the library are multi-
plied by a 4× 4 transformation matrix before being out-
put. This matrix is initialised to the identity matrix,
defining the world co-ordinate system. At any point there
is a current co-ordinate system in effect and all geometry
is transformed by it. Co-ordinate systems may be pushed
and popped on a co-ordinate system stack, limited only
by the amount of memory available to save them.

When a transformation is specified, it is composed with
the current transformation by premultiplying it with the
current transformation. If C is the current transformation
matrix, then the new matrix is given by C ← TnewC.
This concatenates the transform into the viewing pipeline
chain. If you wish to restore the earlier transform, push
it before concatenating the new transformation, then pop
the transformation stack when you want it back.

20

Drawing functions

Several functions may be used to draw objects. All co-
ordinates passed to these functions are passed through the
current co-ordinate system transform before being emit-
ted to AutoCAD. Typical models do not use these func-
tions very frequently—most models are built from the
graphics primitives described in the next section, but the
drawing functions are the most fundamental operations in
the library, and are therefore important to understand.

Draw vector

p1 p2 DRAWVEC

Draws a vector from p1 to p2, both POINTs. The line is
created with the colour given by the variable OBJECT.DRAWCOL.
The default colour is “by block,” which causes geometry
created to take on the overall colour of the object that
contains it.

Draw polygonal face

n p1 p2 p3 p4 visbit DRAWFACE

Draws an AutoCAD 3Dface object with n sides (which
must be either 3 or 4) bounded by the four vertices,
which must be specified in the order one would encounter
them walking around the face. If n is 3, the p4 argu-
ment must still be specified, but may simply be a dupli-
cate of p3. This primitive generates a 3Dpoly entity if
OBJECT.WIREFRAME has been set to TRUE. The visbit ar-
gument specifies visibility of the edges of the generated
face. If the 2i bit in visbit is nonzero, the edge beginning
with vertex pi+1 will be invisible. All objects are created
with the AutoCAD colour currently set in the variable
OBJECT.DRAWCOL, which defaults to “by block.”

Draw ground plane

To draw a ground plane (co-ordinate system reference),
use:

fancy GPLANE

If fancy is zero a ground plane of lines is drawn. If fancy
is nonzero you’ll get a snazzy ground plane made up of
faces which will appear in shaded images. The regular
ground plane is very handy, as it provides a co-ordinate
system reference within AutoCAD, then disappears from
the shaded image when you render the model.

Draw cube

CUBE

Draws a cube of edge length 2, centred around the ori-
gin. Why 2? Because that makes the vertex co-ordinates
(±1,±1,±1), which lends itself nicely to clean examples.
Note that one uses the transformations to move, scale,
and rotate this primitive cube as needed to get the figure
you want in the model. This is how one works with this
package, and it’s a very expressive way to build models
when you get used to it.

Draw sphere

SPHERE

Draws a unit radius sphere centred around the origin.
The sphere is normally drawn as a mesh of 64 faces, but if
the variable OBJECT.WIREFRAME is set nonzero, the sphere

21

is represented as three mutually orthogonal circles. Note
that the wireframe presentation of a sphere will disappear
in shaded renderings. You can set the number of faces in
the mesh representation of the sphere by changing the
variable OBJECT.CNSEGS. The default value of 8 specifies
8 longitudinal and 8 latitudinal tabulations, or a total of
64 faces.

Draw tetrahedron

TETRAHEDRON

A tetrahedron with edge size 1 is drawn at the origin of
the current co-ordinate system. This operation modifies
the point database.

Draw octahedron

OCTAHEDRON

An octahedron with edge size 1 is drawn at the origin of
the current co-ordinate system. This operation modifies
the point database.

Draw dodecahedron

DODECAHEDRON

A dodecahedron with edge size 1 is drawn at the origin of
the current co-ordinate system. This operation modifies
the point database.

Draw icosahedron

ICOSAHEDRON

An icosahedron with edge size 1 is drawn at the origin of
the current co-ordinate system. This operation modifies
the point database.

Draw polygon

A polygon is defined by storing the vertices in a “point
database,” and then enumerating the vertex indices for
one or more polygons. This form of specification, used
in many of the classics of computer graphics such as the
teapot and the Volkswagen, is compact, fast, and easy to
use. Since one tends to use points over and over again in

describing a complex surface as polygons, this representa-
tion tends to reduce the bulk of such definitions. Geome-
try defined this way may be output as AutoCAD rat nest
mesh entities, minimising the database space required to
store the object.

Points are placed in the point database with:

x y z n PNT

where n is the point number, starting with 1, and x, y,
and z are the floating point co-ordinates of the point.
Points need not be specified in sequential order, nor need
they form a contiguous sequence of point numbers. They
remain in the point database until a subsequent point
is stored with the same point index. Since the point
database is an array, very large point numbers should
be avoided. The point database array is automatically
acquired on the first reference, and is expanded automat-
ically as needed in a tasteful and efficient manner.

Once points have been stored in the point database, you
may draw polygons which use them as vertices with calls
on:

0 v1 v2 … vn POLY

This primitive accepts a variable number of arguments,
with the list terminated by the initial zero (this is why
point numbers must start with 1). The v1, v2, through vn
arguments are point numbers which reference the points
previously stored in the point database. Using points in a
call on POLY leaves them unchanged in the point database
so they may be used to define any number of polygons.

Polygons may have “invisible edges.” If a vertex index is
negative then the edge that begins with the point in the
point database with index equal to the absolute value of
the specified index will not appear in the drawing. If the
last index is negative, the segment that closes the polygon
by connecting the last vertex to the first will be invisible.

Normally, each POLY reference generates an individual
AutoCAD 3DFace entity. You can collect all the point
and polygon references into a single AutoCAD rat nest
mesh by invoking the RATON primitive before the first PNT
of the object, and the RATOFF primitive after its last POLY.

22

If the floating point variable OBJECT.STELLATION is set
nonzero, polygons are generated with “stellated faces.”
These faces are defined by taking the arithmetic mean of
all of the co-ordinates of the vertices, then measuring a
distance equal to the value of OBJECT.STELLATION mul-
tiplied by the length of the first edge of the polygon in a
direction along a vector normal to the plane defined by
the vertices bounding the first two edges of the polygon (if
OBJECT.STELLATION is negative, the distance is measured
in the direction opposite the normal), then drawing trian-
gles whose bases are the edges of the polygon and whose
third vertices are the point arrived at by the process just
described.

Setting OBJECT.STELLATION nonzero is primarily useful
in conjunction with regular polyhedra. It may, however,
be used when any polygon is generated as a “special ef-
fect”. Be sure to remember to reset OBJECT.STELLATION
to zero after generating a stellated object to avoid unan-
ticipated results in subsequent calls on poly().

Transformation functions

These functions compose transformations with the cur-
rent transformation matrix and provide facilities to save
and restore transformation matrices.

Translation

tz ty tz XTRANS

Composes a translation by the specified displacements.

This is accomplished by:

C ←


1 0 0 0
0 1 0 0
0 0 1 0
tx ty tz 1

C

Scaling

sx sy sz XSCAL

Composes a scale factor transformation with the current
transformation. Note that the scale factor may be nonuni-
form (this permits transforming the CUBE primitive into
an arbitrary box, and the SPHERE into a general ellipsoid,
and permits mirroring by specification of negative scale
factors). Thus:

C ←


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

C

Rotation

You may rotate about the X, Y , or Z axes with the call:

theta axis XROT

where theta is the angle to rotate, in radians, and axis is
the axis to rotate about: 0 for the X axis, 1 for the Y
axis, 2 for the Z axis. Specification of a positive direction
generates clockwise rotation when viewed in the direction
of the designated co-ordinate axis.

This composes one of three matrices with the current
transformation. If we define:

s = sin theta

c = cos theta

then, if axis is 0 (X),

C ←


1 0 0 0
0 c −s 0
0 s c 0
0 0 0 1

C

If axis is 1 (Y),

C ←


c 0 s 0
0 1 0 0
−s 0 c 0
0 0 0 1

C

23

and if axis is 2 (Z),

C ←


c −s 0 0
s c 0 0
0 0 1 0
0 0 0 1

C

Perspective

You can introduce perspective distortion with the call:

alpha zn zf XPERS

Where alpha specifies the field of view in radians (to simu-
late the eye, use 26.0 180.0 f/ PI f*), zn specifies the
distance from the eye to the near clipping plane (i.e. the
projection plane), and zf specifies the distance from the
eye to the back clipping plane. Note that the clipping
plane specifications are used only to calculate the pro-
jection; no clipping is done, and if objects outside this
volume are projected, strange output will occur. The
transformation assumes that the eye is at the origin, look-
ing down the positive Z axis—to achieve this, you should
compose the required rotations and translations after call-
ing PERS to establish the perspective transformation.

The perspective transformation is composed by defining:

s = sin alpha/2

c = cos alpha/2

q =
s

1− zn/zf

Then,

C ←


c 0 0 0
0 c 0 0
0 0 q s
0 0 −q × zn 0

C

Note: the perspective transformation is included for com-
pleteness and because it belongs in any transformation
library. In building models for use with AutoCAD and
AutoShade, you will rarely need it, as you normally build
a model in world co-ordinates and use the viewing facili-
ties of AutoCAD and AutoShade to examine the model.
Once a model has been processed by a perspective trans-
formation, it is distorted to simulate viewing, but it can-
not be correctly processed by code that counts on three di-
mensional spatial relationships, such as AutoCAD’s hid-
den line code or AutoShade’s obscuration tests. There-
fore, you can use the perspective transformation to make
models that correctly represent perspective when viewed
in plan view by AutoCAD, but if you try to HIDE them,
you’ll get grossly incorrect results.

Arbitrary orientation

You can compose an arbitrary orientation matrix with
the current transformation with the call:

a b c d e f p q r XORIE

This function is most often used to specify an arbitrary
rotation, but can be used to specify skew transformations,
as there’s no checking of the values supplied.

C ←


a d p 0
b e q 0
c f r 0
0 0 0 1

C

Saving a transformation

XPUSH

Pushes the current transformation on the transformation
stack.

Restoring a transformation

XPOP

Restores the most recently pushed transformation from
the transformation stack. The current transformation in
effect at the time of the XPOP is lost.

Reset transformation

XRESET

Resets the current transformation to the identity trans-
formation and discards all transformations saved on the
transformation stack.

Beginning a new transformation

When building three dimensional models, many transfor-
mations are built, used for a subassembly, then discarded.
To make code that generates such models more readable,
the primitive:

XTHEN

is provided. This is identical in effect to the sequence:

24

XPOP XPUSH

and allows one to define a new co-ordinate system based
on the previously active co-ordinate system.

Vector operations

These functions operate on 4-element row vectors, which
are usually interpreted as points in homogeneous co-ordinates.

Declare vector

A 4 element vector is declared with the statement:

4VECTOR name

4VECTORs are defined only as temporary objects; they can-
not be saved as instance or class variables.

Get vector

x y z v VECGET

Creates a homogeneous co-ordinate vector
[x y z 1]

and stores it into 4VECTOR v.

Put vector

v VECPUT → x y z

Stores rescaled co-ordinates from a homogeneous vector
v on the stack as x, y, and z. If v is [Xv Yv Zv Wv]
then:

x ← Xv/Wv

y ← Yv/Wv

z ← Zv/Wv

Copy vector

v vo VECCOPY

Copies 4VECTOR v to vo.

Transform vector

v m vo VEXCMAT

The 4VECTOR v is transformed by multiplying it by the
matrix m, and the resulting 4VECTOR is stored into vo.

vo ← vm

Print vector

v VECPRINT

Prints the 4VECTOR v on the AutoCAD text screen.

Vector algebra

These functions operate on 3-element row vectors, stored
in the data type POINT. You can pass data of type 4VECTOR
to these functions, but only the first three elements will
be processed.

Get point

x y z p POINTGET

Sets the co-ordinates of point p to (x, y, z).

Copy point

p po POINTCOPY

Copies point p to point po.

Dot (inner) product

a b VECDOT → p

Computes the dot product of the 3-vectors a and b, and
returns the result as a REAL p.

p← a · b

Cross (vector) product

a b o VECCROSS

25

The vector product of the 3-vectors a and b is computed
and stored into o. The result vector may be the same as
either of the input vectors.

o← a× b

Add vectors

a b o VECADD

Vectors a and b are added and the sum is stored in vector
o. The result vector may be the same as one of the vectors
added.

o← a+ b

Subtract vectors

a b o VECSUB

Vector b is subtracted from vector a and the difference
vector is stored into o. The result vector may be the
same as one of the vectors subtracted.

o← a− b

Scalar product

a s o VECSCAL

Vector a is multiplied by the scalar value s and the result
is stored in vector o. Vectors a and o may be the same
vector.

o← as

Magnitude of vector

a VECMAG → m

The magnitude (absolute length) of vector a is returned
on the stack as a floating point value m.

m← |a|

Normalise vector

a o VECNORM

The vector a is normalised by scaling it so that its mag-
nitude is 1. The resulting vector is stored in o. Vectors a

and o may be the same vector.

o← a/|a|

General matrix operations

These functions implement operations on 4× 4 matrices.

Declare matrix

A 4× 4 matrix is declared with the statement:

MATRIX name

MATRIX variables are defined only as temporary objects;
they cannot be saved as instance or class variables.

Multiply matrices

a b o MATMUL

Matrix a is multiplied by matrix b and the result is stored
in matrix o.

o← ab

Identity matrix

m MATIDENT

Sets m to the identity matrix:

m←


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Copy matrix

a o MATCOPY

Copies matrix a to matrix o.

Print matrix

m MATPRINT

Prints the matrix on the AutoCAD text screen.

26

Transformation matrix functions

These functions construct matrices which perform the
various geometric transformations. These functions gen-
erate the primitive matrices which the transformation
functions compose with the current co-ordinate transfor-
mation, but simply store the matrix for the transforma-
tion into a matrix given on the stack. The transforma-
tion parameters are identical to those of the correspond-
ing transformation function, which description you should
examine for additional information.

Translation matrix

tx ty tz m MATTRAN

m←


1 0 0 0
0 1 0 0
0 0 1 0
tx ty tz 1



Scaling matrix

sx sy sz m MATSCAL

m←


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1



Rotation matrix

You may create a matrix to rotate about the X, Y , or Z
axes with the call:

theta axis m MATROT

where theta is the angle to rotate, in radians and axis is
the axis to rotate with 0 denoting the X axis, 1 the Y
axis, and 2 the Z axis.

s = sin theta

c = cos theta

If axis is X:

m←


1 0 0 0
0 c −s 0
0 s c 0
0 0 0 1


If axis is Y:

m←


c 0 s 0
0 1 0 0
−s 0 c 0
0 0 0 1


If axis is Z:

m←


c −s 0 0
s c 0 0
0 0 1 0
0 0 0 1



Perspective matrix

alpha zn zf m MATPERS

Where alpha specifies the field of view in radians (to simu-
late the eye, use 26.0 180.0 f/ PI f*), zn specifies the
distance from the eye to the near clipping plane (i.e. the
projection plane), and zf specifies the distance from the
eye to the back clipping plane.

s = sin alpha/2

c = cos alpha/2

q =
s

1− zn/zf

Then,

m←


c 0 0 0
0 c 0 0
0 0 q s
0 0 −q × zn 0



Arbitrary orientation

a b c d e f p q r MATORIE

m←


a d p 0
b e q 0
c f r 0
0 0 0 1



27

ClassWar Software Drawing Turtles

The turtle graphics package implements a superset of the
Turtle Procedure Notation given in the book “Turtle Ge-
ometry.” The extensions allow turtles to move in three-
dimensional space and to generate both linear paths and
closed planar polygons with edges traced out by the tur-
tle’s motion. The turtle graphics package can be used
either interactively or within compiled class definitions.
When used interactively (after entering the Atlast inter-
preter with the ATLAST command), a turtle icon is drawn
on the screen at the active turtle’s present position (unless
suppressed with HIDETURTLE).

Moving the turtle

To move the turtle forward, use:

distance FORWARD

where distance is the floating point distance you want the
turtle to travel. Note that the distance must be specified
as a floating point number. A common error is specifying
an integer constant; this will result in a stack underflow
when FORWARD attempts to remove a two item floating
point value from the stack. The distance can be positive
or negative; if negative the turtle backs up.

You can also make the turtle back up with:

distance BACK

This is precisely the same as FORWARD of −distance.

You can make the turtle “jump” to an absolute position
with:

x y z SETPOSITION

where x, y, and z are the floating point co-ordinates to
which the turtle should move.

The pen

As the turtle moves, it can “leave tracks” in a variety of
forms. The turtle has a pen which, if lowered, traces out
the path taken by the turtle. When the turtle icon is
visible, the pen is drawn as a short vector normal to the
plane of the turtle at its current position. (The pen will
appear as a dot when the turtle is seen in plan view.)

The pen is initially down, so turtle movement draws lines.

To raise the pen, use:

PENUP

To lower it:

PENDOWN

Turning the turtle

You can change the turtle’s pointing direction (orienta-
tion) in a variety of ways. The turtle is a general three di-
mensional object and can assume any orientation in space.
Because navigation in the plane is much simpler than ar-
bitrary three dimensional positioning, distinct pointing
primitives are provided which are suited to both dimen-
sionalities.

To turn the turtle to the left (counterclockwise), use:

degrees LEFT

where degrees is the floating point angle, in degrees, you
wish the turtle to turn. Note that the angle is always
specified in degrees, unlike other angles in Atlast (an-
gles in degrees are used by tradition in turtle geometry;
requiring conversion to radians would make existing al-
gorithms much harder to convert and more difficult to
read). The angle must be specified as a floating point
number, with a trailing “.0” even if it’s an integral num-
ber of degrees. Specifying an integer will result in a stack
underflow.

You can turn the turtle to the right (clockwise) either by
using a negative angle with LEFT or, equivalently:

degrees RIGHT

The absolute orientation (bearing) of the turtle in the
plane can be set with:

degrees SETHEADING

where 0 degrees denotes the positive X axis and angles
increase counterclockwise (hence 90 would point the tur-
tle along the positive Y axis). SETHEADING is meaningless
if the turtle is not parallel to the X–Y plane.

The turtle can be moved out of the X–Y plane with the
PITCH, ROLL, and YAW primitives. To make the turtle pitch
up (rotate around its local X axis) use:

degrees PITCH

To roll the turtle about its local Y axis,

28

degrees ROL

(This primitive is named “ROL” to avoid conflict with the
Atlast stack manipulation primitive “ROLL.”) Finally,
you can rotate the turtle within its current plane, turning
about its local Z axis with:

degrees YAW

This is a synonym for LEFT, provided for consistency. The
degrees specified in any of these rotation primitives may
be negative in which case the direction of rotation is re-
versed.

Turtle tracks

When the turtle moves with the pen down, “tracks” are
left on the drawing screen. The nature of these tracks is
set by:

type LEAVETRACKS

where type is an integer from 0 to 3. If 0 (the default),
ephemeral vectors are drawn using ads_grdraw() which
will disappear the next time the screen is redrawn. If 1, a
three dimensional Polyline is generated, with a new Poly-
line automatically begun whenever raising and lowering
the pen creates a break in the turtle’s path. If 2, pla-
nar faces (expressed as AutoCAD rat nest mesh entities)
are generated with the edges traced out by the turtle. If
3, individual Line entities are generated for each motion
made by the turtle.

For any setting of LEAVETRACKS, the colour of the ob-
jects drawn may be set by storing the desired AutoCAD
colour number in the variable OBJECT.DRAWCOL. The de-
fault colour is “by block,” which causes objects generated
within DRAW methods to take on the overall colour of the
object created and change if its colour is subsequently
modified. If Polyline or Line entities are being gener-
ated, their line type can be set by storing the name of
a pre-loaded AutoCAD line type into the string variable
OBJECT.DRAWLTYPE. The default line type is “BYBLOCK.”

Disappearing turtles

When you’re at the interactive Atlast command prompt,
the turtle is shown on the screen at its present position
and orientation as a triangular icon with a normal vector
representing the pen extending upward from the current
location. To make this icon disappear, use:

HIDETURTLE

To restore it:

SHOWTURTLE

You can adjust the size of the turtle icon by changing the
settings of the floating point variables TURTLE.HEIGHT,
TURTLE.WIDTH, and TURTLE.DEPTH which control, respec-
tively, the height of the triangle (default 0.5), the width
of its base (default 0.4), and the length of the normal
vector (default 0.25).

Multiple turtles

Most turtle programs use only the single predefined turtle
(like all turtles, it has a name, “KELVIN”), but you can
declare additional turtles if you have need of them, or
simply grow fond of the little critters. To declare a turtle,
use:

TURTLE name

where name is the name of the new turtle. When a tur-
tle is declared, its position is set to (0, 0, 0) in the X–Y
plane, and its initial direction is along the positive Y axis.
Declaring a turtle does not activate it. At any moment
only one turtle is active; the active turtle responds to tur-
tle commands such as FORWARD, LEFT, etc. To activate a
turtle, use:

name LISTEN:

where name is the name you gave the turtle in its declara-
tion. Turtles retain the entire state of the turtle graphics
system, so any operations you do with the active turtle
will not affect other turtles. You can place the active
turtle on the stack with:

ME

You could use this, for example, to interrupt a drawing
process with a turtle, draw a unit square at the origin,
and resume where the original turtle left off with:

TURTLE delbert
ME
delbert LISTEN:

4 0 DO 1.0 FORWARD 90.0 RIGHT LOOP
LISTEN:

29

The mouse and the turtle

In some turtle graphics programs (but almost never in a
ClassWar class definition), it’s useful to sense the cur-
rent position of the pointing device. You can accomplish
this with:

MOUSE

which reads the position of the AutoCAD pointing de-
vice immediately—without waiting for the button to be
pressed—and places the floating point X, Y , and Z co-
ordinates of its position on the stack. If an error occurs,
zeroes are returned for all three co-ordinates.

If you’d rather wait for the pick button, allowing the
user to use any of AutoCAD’s methods of specifying co-
ordinates, you can use:

prompt PICKPOINT

where prompt is a string that is presented to the user to re-
quest the point. As with MOUSE, the co-ordinates entered
are left on the stack. The general ARG acquisition facilities
of ClassWar provide much more flexibility in obtaining
input from the user; PICKPOINT and MOUSE are provided
primarily for simple stand-alone turtle programs.

Cleaning up after turtles

To reset the active turtle to the defaults of a newborn
hatchling, use:

RESET

This places the turtle in the X–Y plane at (0, 0, 0) pointed
along the positive Y axis. Its height is set to 0.5, its width
to 0.4, and its depth to 0.25. The pen is put down, the
icon becomes visible, and the tracks are set as ephemeral
vectors.

You can redraw the AutoCAD screen and thereby discard
all ephemeral vectors left by turtles with:

REDRAW

Where’s that turtle?

You can retrieve the current co-ordinates of the active tur-
tle with the XCOR, YCOR, and ZCOR primitives. Each places
the respective floating point co-ordinate on the stack.

Loading turtle programs

You can load a file containing turtle programs or any
other Atlast code with:

filename LOAD

where filename is the name of the file to be loaded, with
a default extension of “.tur” if none is given. Unlike
CLASSDEF and CLASSFILE, programs loaded this way are
not stored in the drawing. Consequently, LOAD is primar-
ily useful for loading small utilities used only during one
drawing session.

Transforming turtle tracks

Co-ordinates traced out by the turtle are transformed by
the SGLIB current transformation before being inserted
into the AutoCAD database. This allows you to combine
the ease of turtle definition of geometric figures with the
power of SGLIB in assembling transformations to trans-
late, rotate, and scale the figure as desired. The SGLIB
transformation is reset to the identity transform before
a DRAW method is invoked, so turtle-generated geome-
try will not be transformed unless you explicitly define
a transformation with the SGLIB primitives within the
DRAW method.

External Methods

By declaring a method “EXTERNAL,” you can implement
it in another ADS application, coresident with Class-
War. When that method is invoked, whether from the
AutoCAD command line or within another class defini-
tion, ClassWar collects the class and instance variables
along with the arguments to the method (if any) and
sends them to the other application for processing. Since
the other application can be written in any programming
language with an ADS binding and may be shipped in
compiled binary form to the customer, external methods
provide both maximum execution speed and protection
of proprietary components of user applications.

The task of creating an external method program is sim-
plified by the CLASSTOC command provided by Class-
War. This command generates a ready-to-use C lan-
guage header (.h) file which, in conjunction with the
source code module CLASSAPP.C supplied with Class-
War, manages all communication between the external
method and ClassWar, leaving the application devel-

30

oper only the job of actually implementing the actions
taken by the method.

Declaring external methods

All classes must have ClassWar class definitions, but
for classes with entirely external methods these are just
short “stubs.” Here is a simplified version of the class def-
inition MOUNTAIN.CLS, the fractal mountain sample class
supplied with ClassWar.

\ Fractal mountain class definition

PUBLIC:

integer mesh_size
real fractal_dimension
real power_factor
integer colour_mode
integer random_seed

PRIVATE:
static integer interface_level

method newclass
{

1 interface_level !
}

external command method draw
{
}

method acquire
{

8 mesh_size !
1.75 fractal_dimension 2!
1.0 power_factor 2!
0 colour_mode !
0 random_seed !
this object.inspect

}

This class definition contains conventional declarations
for its instance and class variables and a normal ACQUIRE
method which simply sets all instance variables to their
defaults and uses OBJECT.INSPECT to display an INSPECT
box to allow the user to change them.

The DRAW method, however, is declared EXTERNAL and,
being externally implemented, contains no code. When
this class is loaded into AutoCAD and a header file gener-
ated with the CLASSTOC command, the result is as follows
(edited slightly to fit on the page):

/*

External method interface
definition for class MOUNTAIN

*/

typedef struct {

/* Class variables */

long interface_level;

/* Instance variables */

long mesh_size;
ads_real fractal_dimension;
ads_real power_factor;
long colour_mode;
long random_seed;

} s_mountain;

static s_mountain mountain;

/* Message protocol description */

#define Gv(x) ((char *) &(mountain.x))
#define Gp(x) ((char *) (mountain.x))

#ifndef m_Protocol_defined
#define m_Protocol_defined 1
typedef struct {

int p_type;
char *p_field;

} m_Protocol;
typedef struct {

char *methname;
void (*methfunc)();

} method_Item;
extern int beg_method(), end_method();
extern void define_class();
#endif

static m_Protocol mP_mountain[] = {
{ 71, Gv(interface_level) },
{ 71, Gv(mesh_size) },
{ 40, Gv(fractal_dimension) },
{ 40, Gv(power_factor) },
{ 71, Gv(colour_mode) },
{ 71, Gv(random_seed) },
{ -1, NULL}

};
#undef Gv
#undef Gp

/* Protocol for DRAW method */

static m_Protocol aP_draw[] = {
{ -1, NULL}

31

};

extern void M_draw_mountain();
#define draw_mountain void \

M_draw_mountain() { if \
(beg_method(mP_mountain, \
aP_draw) != RTNORM) return; {
#define end_draw_mountain } end_method(); }

/* Method definition table */

method_Item MOUNTAIN[] = {
{"MOUNTAIN.DRAW", M_draw_mountain},
{NULL, 0}

};
#define mountain_methods void main(c,v) \
int c;char *v[];{main_method(c,v,MOUNTAIN);}

Implementing external methods

Using the definitions in this file, coding methods in the
external application is straightforward. This is a simpli-
fied version of the DRAW method from the sample external
method application MTNAPP.C.

#include <stdio.h>
#include "adslib.h"
#include "mountain.h"

mountain_methods

/* MOUNTAIN -- Make a mountain. */

draw_mountain
float *a;
int i, j, n, urs;

if (mountain.interface_level > 1) {
ads_printf("Interface level %d.\n",

mountain.interface_level);
}
n = mountain.mesh_size;
fracdim = mountain.fractal_dimension;
powscale = mountain.power_factor;
wtype = mountain.colour_mode;
urs = mountain.random_seed;

if (urs == 0) {
initseed();
urs = rseed;

}
/* Return random seed used */
mountain.random_seed = urs;

initgauss(urs);

spectralsynth(&a, n, 3.0 - fracdim);

free((char *) a);
end_draw_mountain

The external method application first includes the header
file, mountain.h, created with the CLASSTOC command.
After declaring any regular C variables and functions needed
in the application (I’ve elided these from this listing for
brevity), the application declares the start of the method
implementations with the statement:

classname_methods

where classname is the name the class had when loaded
in AutoCAD. Each method function is delimited by the
sequence:

methodname_classname
end_methodname_classname

where classname is again the name of the class, and method-
name is the name of the method being declared. These
macros generate the entire function header, initialisation,
and termination code. You simply place the body of the
function between them.

Referencing variables

Within an external method function, you access the in-
stance and class variables of the object being manipulated
with:

classname.varname

where classname is the AutoCAD name of the class and
varname is the name of the variable as declared in the
original class definition (make sure you choose a variable
name that’s acceptable as an identifier in C!).

If you change any of the instance and/or class variables,
the changes are automatically transmitted back to Class-
War and stored in the AutoCAD database.

Methods with arguments

External methods may have arguments, just as built-in
methods do. The arguments to external methods are
transmitted to them along with the instance and class
variables and are referenced in a similar manner. Suppose
we add another method to our MOUNTAIN.CLS definition,
as follows:

32

2variable two 2.0 two 2!

external command method rougher ((
real "How much rougher" two default
ARG_nozero ARG_noneg + argmodes
"Little Lots Smooth" keywords
arg))

{
}

This method allows us to adjust the fractal dimension
of the mountains, making them rougher or smoother.
Adding this method will result in the following definitions
in the mountain.h file written by CLASSTOC.

/* Arguments for ROUGHER method */

typedef struct {
struct {

int kwflag;
union {

char *kwtext;
ads_real value;

} kw;
} arg1;

} aS_rougher;

static aS_rougher rougher;

/* Protocol for ROUGHER method */

#define Gv(x) ((char *) &(rougher.x))
#define Gp(x) ((char *) (rougher.x))

static m_Protocol aP_rougher[] = {
{ -40, Gv(arg1) },
{ -1, NULL}

};
#undef Gv
#undef Gp

extern void M_rougher_mountain();
#define rougher_mountain void
M_rougher_mountain() {
if (beg_method(mP_mountain,
aP_rougher) != RTNORM) return; {
#define end_rougher_mountain } end_method(); }

Using this definition, we can code the method function as
follows:

/* ROUGHER -- Make a mountain
rougher by increasing its
fractal dimension. */

rougher_mountain
if (rougher.arg1.kwflag) {

ads_printf("\nKeyword: %s\n",
rougher.arg1.kw.kwtext);

} else {
mountain.fractal_dimension *=

rougher.arg1.kw.value;
}

end_rougher_mountain

Here we access the argument, which can either be a num-
ber or an optional keyword string, as:

classname.argn

where classname is the AutoCAD class name and n is the
argument number, with the first numbered 1. If the ar-
gument has no optional keywords, this is the full name
of the argument. If keywords were declared for the argu-
ment with the KEYWORDS specification, the argument is a
structure containing the following subfields:

kwflag An int which is nonzero if a keyword was entered
and zero if a normal value was furnished for the
argument.

kw.kwtext If kwflag is nonzero, a string containing the
keyword entered.

kw.value If kwflag is zero, the value of the argument.

Whether referenced directly as argn or as argn.kw.value,
the argument will be declared with the C data type cor-
responding to the type of argument being passed.

Linking and running

An external method application written as described above
is prepared for use by compiling the source code module
CLASSAPP.C with the same C compiler and modes used
by the rest of the application, then linking all application
modules, the object from CLASSAPP.C, and the ADS li-
brary file for the host machine into an ADS application.
You can split the method functions across as many C
source files as you like, but only one file may contain the
classname_methods statement which generates the main
program for the application.

The application should be loaded into AutoCAD before
any of the methods it implements are used. You can load
it either explicitly with the “(xload "filename")” state-
ment or by naming it in the acad.ads file. If an external
method is invoked and the application that implements
it is not loaded, ClassWar will report an error and ter-
minate the command.

33

Sample Classes

A collection of sample classes are supplied with Class-
War. These classes are intended to illustrate the various
features of ClassWar more than be useful applications,
but examination of them should help in defining your own
practical classes.

AILOGO. The Autodesk logo, realised as an extruded
solid. Demonstrates SGLIB geometry definition facilities.

BLOBMAN. The Blobby Man. You can make s/he/it
stand at attention with the ATTENTION message or wave
at you with the WAVE message. Use INSPECT to create
your own postures. Demonstrates nested transformations
and the SGLIB geometry definition facilities. This class
definition is large; you’ll have to increase CLASSHEAP well
above the default of 5000 to load it.

DPOLY. This is a labeled polygon class derived from
POLY. It uses ads_entmake to label each polygon with

the number of sides as a text item.

HILBERT. The Hilbert curve, recursively defined. Uses
the turtle to draw the curve.

KLEIN. The Klein bottle, defined with SGLIB.

LPOLY. A stand-alone labeled polygon that doesn’t
inherit POLY.

MOUNTAIN. A fractal mountain application that demon-
strates EXTERNAL methods. To use this class, you must
remake the contents of the “mtnapp” subdirectory of your

34

ClassWar directory, then load the application into Auto-
CAD with (xload "mtnapp") before using the commands
defined by the MOUNTAIN class.

PARAM. Three-dimensional parametric curves. De-
faults to an ellipse.

PLOT3D. Three dimensional plot of a function of X
and Y . Demonstrates ads_entmake object creation.

POLAR. Two-dimensional parametric polar co-ordinate
curves. Defaults to the Nephroid of Freeth.

POLY. A simple polygon object. Uses the turtle for
drawing.

4POLY. A class that uses four instances of LPOLY to
create an object containing four distinct labeled polygons.
Demonstrates instances of classes within a new class, mes-
sage passing to constituent classes, and the behaviour of
PRIVATE: and PROTECTED: variables when instances of
classes are declared within another class definition.

POLYHEDRON. Uses the SGLIB geometry creation
facilities to generate the regular Platonic solids.

SHUTTLE. The space shuttle orbiter. A rat nest mesh
defined with SGLIB.

SIERP. The Sierpiński gasket. Uses the turtle.

SOCBAL. The soccer ball / implosion bomb. Uses
SGLIB.

35

TREE. Fractal trees as defined in “Turtle Geometry.”

VW. The VW bug defined using SGLIB.

ClassWar Today and Tomorrow

Since ClassWar implements a general object oriented
programming environment within a showroom stock Auto-
CAD Release 11, there has been some confusion among
those who’ve examined it so far about how ClassWar
will interact with our plans to restructure AutoCAD in
Release 12 around an object-oriented database in a man-
ner that allows entities and commands to be implemented
in an identical fashion and with equivalent performance
regardless of whether implemented within the AutoCAD
core or in an external application. In this section I’d like
to dispel as much of this confusion as I can by explain-
ing, in a question and answer format, how ClassWar fits
with Releases 11 and 12 and how future developments in
AutoCAD will affect the evolution of ClassWar.

Question: Does the advent of ClassWar make the Re-
lease 12 object oriented database project unnecessary?

Answer: Not at all. ClassWar is a user-level object ori-
ented programming interface which presently maps its op-
erations into the existing set of AutoCAD facilities avail-
able through ADS. Because the internals of AutoCAD are
not structured in an object-oriented manner, several de-
sirable facilities are missing from ClassWar. The most

vexing of these limitations is the inability for user-defined
objects to supply methods that overload built-in Auto-
CAD commands such as MOVE, ERASE, and TRIM. In Auto-
CAD Release 12, these built-in commands will be meth-
ods of a system-supplied entity superclass, inherited by
all user-defined entities but capable of being redefined by
any entity that wishes different treatment by a command.

Q: Does the inability to redefine built-in commands make
ClassWar unusable for practical applications?

A: No. AutoCAD’s automatic transformation of the ex-
tended entity data that stores a ClassWar object’s pa-
rameters allows most user defined objects to behave prop-
erly when edited with standard AutoCAD commands.
The AME project has demonstrated that complex application-
defined objects can be introduced this way and integrate
smoothly with AutoCAD.

Q: Will ClassWar be compatible with Release 12? Will
I be able to use class definitions I create on Release 11
with Release 12?

A: Hey, that’s two questions! First, ClassWar will
be completely compatible with Release 12. As far as
AutoCAD is concerned, ClassWar is simply an ADS
application that uses standard AutoCAD facilities, al-
beit in an unorthodox fashion. Since Autodesk is com-
mitted to maintaining 100% upward compatibility for
ADS applications, ClassWar should run with Release 12
with at most a recompilation and relink with the Release
12 ADS library. If we maintain binary compatibility of
ADS applications in Release 12, the existing ClassWar
executable application should work without difficulties.
Since ClassWar is compatible, all class definitions de-
veloped with it will also work in Release 12 without mod-
ification.

Q: How will ClassWar benefit from Release 12?

A: While the Release 11 ClassWar will run on Re-
lease 12, I anticipate we’ll develop an extended, upward-
compatible version of ClassWar for Release 12. Inter-
nally, the program will be restructured to replace the cur-
rent ADS, entity attribute, and anonymous block archi-
tecture with direct calls to the Release 12 object oriented
database manager. Externally, class definitions will now
be able to overload existing AutoCAD commands (simply
by defining methods named “ERASE,” “TRIM,” etc.) and
receive control when overloaded commands are invoked
on their objects. In addition, a rich set of internal Auto-
CAD facilities, including all built-in commands, will be-
come available to ClassWar methods by being defined
as methods of the entity superclass.

36

Q: I’m developing a big application in C. Why should I
use ClassWar as its “wrapper”?

A: By packaging your application as external methods
of a stub ClassWar definition you receive several ben-
efits. First, you can let ClassWar worry about all the
low-level details of working with the AutoCAD database
and interacting with ADS. Not only does this simplify
your job as an application developer, it allows your appli-
cation to automatically benefit when more powerful and
efficient database access mechanisms for applications are
introduced in Release 12. If your application were pep-
pered with ADS calls, you would have a major program-
ming task on your hand to convert it to the new interface
and reap the extra performance it will offer. Second, by
specifying your application objects as ClassWar class
definitions, you publish the external interface of your ap-
plication in a form that encourages your customers and
other developers to build upon your application. By al-
lowing your application to be “designed into” other ap-
plications, you increase its usefulness and expand your
potential market as well as making your product more
useful. Since the actual algorithms of your application
remain written in C and shipped in binary form, you dis-
close no proprietary information by doing this.

Q: Isn’t ClassWar really just a sugar-coating of the
existing AutoCAD database and not object oriented at
all?

A: Yes, ClassWar is an interface to our existing Release
11 database facilities. But those facilities, particularly ex-
tended entity data, provide the foundations required to
implement a true object oriented programming environ-
ment. A language is generally deemed object oriented
if it provides abstraction, encapsulation, inheritance, and
polymorphism. ClassWar provides all of these mech-
anisms, in the manner of much-vaunted object oriented
languages such as C++ and Smalltalk.

Q: Isn’t this way too complicated and arcane for our de-
velopers and users to digest?

A: Complicated and arcane compared to what? Yes, mas-
tering the basic concepts of ClassWar does take some
time and effort, but once accomplished you can create
new user-defined entities with minimal effort. If you don’t
use ClassWar, you’re forced to roll your own code to
manage extended entity data, ADS command definition,
entity creation, etc. I expect most users will prefer to let
ClassWar worry about these details rather than figur-
ing them out for themselves. Besides, our customers are
among the most intelligent and resourceful software users
in the world; they have repeatedly confounded predic-
tions that they couldn’t master Lisp programming, 3D,

shaded rendering, and virtually every advanced feature
we’ve given them. I’m confident that if we place Class-
War in their hands, they’ll accurately evaluate its merits
and demerits, apply it where it makes sense, and let us
know how we can improve it to better meet their needs.

Q: Suppose ClassWar doesn’t prove out in the market.
Won’t we end up stuck maintaining it forever to satisfy a
splinter group of users?

A: No. Since ClassWar is a pure ADS application, if
we decide we don’t want to go on supporting it we can
simply place its source code in the public domain and let
its dedicated supporters do with it as they wish.

Q: Why rush this out with Release 11? Why not retain
it as a mid-life kicker, or else package it with Release
12 when we’ll be making a joyful noise about our object
oriented architecture?

A: With Release 11 we’re putting unprecedented power
to create user-defined objects into our customers’ hands,
but we are providing very little guidance about how to
proceed with the tools we’re making available. As we’ve
groped our own way through building applications with
these tools, we’ve discovered that many of the techniques
that work are subtle and that many pitfalls await the un-
wary. ClassWar provides a clearly marked path through
the minefield. Applications developed within its guide-
lines will almost certainly work on any AutoCAD plat-
form, be upwardly compatible with new releases, inter-
operate with other applications, and be extensible by
users. By releasing ClassWar now, we can avert a
painful learning curve and difficult period as each devel-
oper struggles to figure out how to build robust applica-
tions from the low-level ADS tools.

Summary and Conclusions

The development of ADS and the introduction of ex-
tended entity data has rendered Release 11 able to sup-
port general user defined entities. The Eagle/AME project
has demonstrated that the facilities work, and possess the
speed and generality needed to support real applications.
The user defined entity capability is implicit in the new
mechanisms, however, not a coherent package explicitly
documented and promoted to that end. In addition, the
techniques required to implement user defined entities are
highly specialised and somewhat subtle. Consequently,
we run the risk that much of the true power of Release
11, power which if properly applied may transform the
world’s view of the capabilities of AutoCAD and its fu-

37

ture extensibility, may lie latent—undiscovered by the
users and developers whom it might benefit the most. Or,
even worse, we may find ourselves deluged by a torrent of
unreliable, inextensible, and mutually incompatible ap-
plications.

ClassWar can act as unifying force as the scope of Auto-
CAD applications broadens beyond anything we’ve seen
to date. Requiring no material sacrifices of efficiency
or proprietary protection of applications that adhere to
its standards, it offers faster implementation, guaranteed
correct interface with ADS and AutoCAD, and an open
object definition architecture that encourages users and
developers to incorporate applications as components of
larger software systems. ClassWar provides Autodesk
a head start in clearly positioning AutoCAD as an object
oriented CAD system, one that supports a wide variety of
applications that can be assembled, like building blocks,
into solutions that benefit our customers.

John Walker
Muir Beach, California

February 25–May 6, 1990
16079 lines of code

38

ClassWar Programming Language Syntax
The following syntax, given in a form resembling that used in the Algol 68 Revised Report, describes the overall
structure of a ClassWar class definition. Each statement in the metalanguage begins with the name of the element
being defined followed by a colon. Nonterminal symbols are written in normal roman letters and may consist of any
number of words. Terminal symbols appear in teletype font and are quoted. A comma between symbols indicates
concatenation; a semicolon delimits alternative forms. Each definition is terminated with a period. Since Atlast
code can be embedded anywhere in a class definition this syntax is not complete but it does specify the essential
structure of a valid program. Upper and lower case letters are treated identically by ClassWar except within quoted
string constants.

Program
Program: Derivation part, Declaration part, Method part.

Derivation
Derivation part: Parent class name, “DERIVED”;

Parent class name, “PUBLIC”, “DERIVED”;
Empty.

Parent class name: “:”, Symbol.

Declarations
Declaration part: Declaration, Declaration part; Empty.

Declaration: Access specifier, Variable specifier.

Access specifier: “PRIVATE:”; “PUBLIC:”; “PROTECTED:”; “TEMPORARY:”; Empty.

Variable specifier: Class variable indicator, Variable type, Variable name.

Class variable indicator: “STATIC”; Empty.

Variable type: Simple type; String length, “CHARACTERS”.

Simple type: “INTEGER”; “REAL”; “SCALEFACTOR”; “DISTANCE”; “POINT”; “TRIPLE”; “DISPLACEMENT”;
“DIRECTION”; “POINTER”.

Variable name: Symbol.

Methods
Method part: Method, Method part; Empty.

Method: Access specifier, Method declaration.

Method declaration: External option, Command option, Method definition.

39

ClassWar Programming Language Syntax
External option: “EXTERNAL”; Empty.

Command option: “COMMAND”; Empty.

Method definition: “METHOD”, Method name, Argument list, “{”, Method body, “}”.

Method name: Symbol.

Argument list: “((”, Argument sequence, “))”; Empty.

Argument sequence: Argument declaration; Argument declaration, Argument sequence.

Argument declaration: Argument type, Argument prompt, Argument option list, “ARG”.

Argument type: Simple type; “CHARACTERS”; “ANGLE”; “ORIENTATION”; “CORNER”; “KEYWORD”.

Argument prompt: Quoted string.

Argument option list: Argument option, Argument option list; Empty.

Argument option: Default value pointer, “DEFAULT”;
Base point pointer, “BASEPOINT”;
Acquisition initget modes, “ARGMODES”;
Keyword string, “KEYWORDS”.

Default value pointer: Symbol.

Base point pointer: Symbol.

Acquisition initget modes: Positive integer.

Keyword string: Quoted string.

Syntactic Elements
Variable name: Symbol.

String length: Positive integer.

Positive integer: Digit; Digit, Positive integer.

Symbol: Letter, Symbol tail.

Symbol tail: Alphanumeric, Symbol tail; Empty.

Quoted string: “"”, Any sequence of characters. Backslash forces a quote or backslash, “"”.

Alphanumeric: Digit; Letter.

Digit: “0”; “1”; “2”; “3”; “4”; “5”; “6”; “7”; “8”; “9”.

Letter: “A”; “B”; “C”; “D”; “E”; “F”; “G”; “H”; “I”; “J”; “K”; “L”; “M”; “N”; “O”; “P”; “Q”; “R”; “S”; “T”;
“U”; “V”; “W”; “X”; “Y”; “Z”; “_”.

Empty: “”.

40

ClassWar Primitives: Alphabetical Reference

{ → Begin method OBJECT
Marks the beginning of the executable code that im-
plements a method.

} → End method OBJECT
Marks the end of the executable code of a method.

((→ Begin argument list OBJECT
Delimits the start of the optional argument list for
a COMMAND METHOD.

)) → End argument list OBJECT
Marks the end of an argument list for a COMMAND
METHOD.

<- → Send virtual OBJECT
The preceding message is treated as a virtual mes-
sage. This allows access to methods of the parent
class which may have been overloaded by methods
defined in a derived class, and references to fields of
other classes with the same names as fields of the
current class.

ADS ENTGET name → Load entity ADS
The AutoCAD entity specified by 2VARIABLE name
is loaded into the current result buffer chain. If an
error occurs, the result buffer chain will be void.
(This condition can be detected by inquiring the
presence of the 0 (entity name) group with the
“GROUP?” primitive.)

ADS ENTLAST name → status Last entity ADS
The name of the last (most recently created) en-
tity in the AutoCAD database is stored in the
2VARIABLE given by name. The ADS status is left
on the stack.

ADS ENTMAKE → status Create entity ADS
The entity defined by the current result buffer chain
is added to the AutoCAD database. The status re-
turned by AutoCAD is left on the stack. This status
is positive if the entity was successfully added, neg-
ative in case of error.

ADS ENTMOD → status Modify entity ADS
The entity defined by the current result buffer chain
is modified in the AutoCAD database to conform
to the values in the result buffer chain. The ADS
status is left on the stack.

ADS ENTNEXT name resname → status Next entity ADS
Given the address of an entity name (stored in a
2VARIABLE), stores the name of the next entity in
the database in 2VARIABLE resname and leaves the
ADS status from the operation on the stack. If name
is zero rather than a pointer to an entity name, the
name of the first entity in the database is stored in
resname.

41

ClassWar Primitives: Alphabetical Reference

ADDGROUP gcode → Add group to item ADS
Adds a new group of type gcode to the end of the
current item.

ANGLE → Declare angle argument OBJECT
A method argument representing a relative angle in
radians is declared.

ARG → Declare argument OBJECT
Declares an argument, either within a “((”–“))”
argument list, or a procedural argument requested
within a method.

ARGMODES modes → Argument modes OBJECT
The argument modes specified on the stack are used
in the next argument acquisition.

BACK fdist → Turtle back TURTLE
The active turtle backs up the distance given by
fdist, drawing if the pen is down.

BASEPOINT p1 → Base point OBJECT
The specified point is used as the base point in the
next argument acquisition.

CHARACTERS x n → Declare string OBJECT
A character string variable or method argument is
declared. If used to declare a variable x, the maxi-
mum length string the variable can store is given by
n−1 and the variable assumes the current storage
class and modes. The string length, n, is not spec-
ified on the stack when declaring a string method
argument.

CLASSNAME class s1 → Class name OBJECT
Stores the name of the class into string s1.

CLEARITEM → Clear current item ADS
All groups of the current item are deleted.

COMMAND → Declare command method OBJECT
Used before “METHOD” to declare a method as
an AutoCAD command as well as a ClassWar
method.

CORNER → Declare corner argument OBJECT
A floating point triple method argument represent-
ing the corner of a box in three-dimensional space is
declared.

CUBE → Draw cube SGLIB
A cube with unit vertex co-ordinates is drawn at the
origin.

DEFAULT ptr → Declare default value OBJECT
The variable pointed to by the pointer at the top
of the stack is used as the default value in the next
argument acquisition.

DELGROUP group → Delete group ADS
The group selected by group is deleted from the cur-
rent item.

42

ClassWar Primitives: Alphabetical Reference

DERIVED parent → Declare derived class OBJECT
Used at the head of a class declaration to define a
derived class. Expects the name of the parent class
in the form “:classname” on the stack.

DIRECTION x → Declare direction OBJECT
A floating point triple variable or method argu-
ment x, representing a direction vector in three-
dimensional space, is declared using the current stor-
age class and modes.

DISPLACEMENT x → Declare displacement OBJECT
A floating point triple variable or method argument
x, representing a displacement vector, is declared
using the current storage class and modes.

DISTANCE x → Declare distance OBJECT
A floating point distance variable or method argu-
ment x is declared using the current storage class
and modes.

DODECAHEDRON → Draw dodecahedron SGLIB
A dodecahedron with unit edge length is drawn at
the origin.

DRAWFACE n p1 p2 p3 p4 visbit → Draw face SGLIB
Draws a planar face with n vertices given by the 3
element vectors p1 through p4. If the face has only
3 vertices, the last vertex should be specified twice.
If the 2i bit is set in visbit, the edge starting with
pi+1 is invisible.

DRAWVEC p1 p2 → Draw vector SGLIB
A vector is drawn between the points given by the
3 element vectors p1 and p2.

EXTERNAL → Declare external method OBJECT
Used before “METHOD” to declare a method as ex-
ternal. External methods are executed by sending
messages to other applications with ads invoke().

FORWARD fdist → Turtle forward TURTLE
The active turtle advances the distance given by
fdist, drawing if the pen is down.

GPLANE fancy → Ground plane SGLIB
A ground plane is drawn at the origin. If fancy is
nonzero, the ground plane is composed of solid faces;
otherwise it’s a wire frame image.

GROUP group → value Group value ADS
The value of the group in the current item selected
by group is placed on the top of the stack. The value
is stored as an integer, a floating point value, a triple
of floating point values for co-ordinates, the address
of a temporary string buffer, or the address of a
temporary string buffer with a binary chunk length
on the top of the stack depending on the group’s
data type.

43

ClassWar Primitives: Alphabetical Reference

GROUP? group → flag Test group present ADS
If the designated group is present in the current item
−1 is placed on the top of the stack. If no such group
appears in the current item, 0 is returned.

GROUPCOUNT → n Number of groups in item ADS
The number of groups in the current item is placed
on the top of the stack. This number can be used in
conjunction with the −(10000 + n) group specifica-
tion to scan streams of extended entity data groups
with identical group codes.

HIDETURTLE → Hide turtle icon TURTLE
The icon representing the active turtle is removed
from the screen. All turtle operations continue to
function normally.

ICOSAHEDRON → Draw icosahedron SGLIB
An icosahedron with unit edge size is drawn at the
origin.

INTEGER x → Declare integer OBJECT
A 32 bit integer variable or method argument x is
declared using the current storage class and modes.

KEYWORD → Declare keyword argument OBJECT
A method argument representing a keyword string
is declared.

KEYWORDS s1 → Specify argument keywords OBJECT
The string s1 is used as the alternative keyword list
for the next argument acquisition. The argument
string is specified in the standard manner used by
ads getkword().

LEAVETRACKS type → Set objects created by turtle TURTLE
The type of “tracks” left by the turtle when it moves
with the pen is down is set to type. If 0, ephemeral
vectors that disappear on the next REDRAW are gen-
erated. If 1, Polyline entities are created, with a
new Polyline started whenever a break appears in
the turtle’s path due to the pen being raised and
lowered. If 2, planar faces (represented as rat nest
meshes) are generated from closed paths traced by
the turtle. If 3, individual Line entities are created
for each step taken by the turtle.

LEFT degrees → Turn turtle left TURTLE
The turtle turns degrees counterclockwise about its
local Z axis.

LISTEN: turtle → Activate turtle TURTLE
The specified turtle is activated and will respond to
subsequent turtle commands. The previously active
turtle becomes inactive (but remembers its position,
orientation, and state).

44

ClassWar Primitives: Alphabetical Reference

LOAD filename → Load turtle program TURTLE
A turtle program (or for that matter, any Atlast
program you like) is loaded and executed from the
file given by filename. An extension of “.tur” is
assumed if none is given.

MATCOPY m1 m2 → m2 = m1 SGLIB
Matrix m1 is copied to m2.

MATMUL m1 m2 m3 → m3 = m1 × m2 SGLIB
The matrices m1 and m2 are multiplied and the
product is stored in m3.

MATIDENT m1 → Identity matrix SGLIB
The matrix m1 is set to the identity matrix.

MATORIE a b c d e f p q r m1 → Orientation matrix SGLIB
The matrix m1 is set to an arbitrary orientation ma-
trix with the values given by a through r placed in
the first three rows and columns.

MATPERS alpha zn zf m1 → Perspective matrix SGLIB
The matrix m1 is set to a perspective transformation
matrix with a field of view of alpha radians, a near
clipping plane at a distance zn from the eye, and a
far clipping plane at a distance zf.

MATPRINT m1 → Print matrix SGLIB
The matrix m1 is printed on the AutoCAD text
screen.

MATRIX x → Declare matrix SGLIB
A new 4 × 4 transformation matrix named x is de-
clared and initialised to the identity matrix.

MATROT theta axis m1 → Rotation matrix SGLIB
The matrix m1 is set to a rotation transformation
matrix that rotates theta radians about the desig-
nated axis (0 for the X axis, 1 for the Y axis, and 2
for the Z axis).

MATSCAL fx fy fz m1 → Scaling matrix SGLIB
The matrix m1 is set to a scaling transformation
matrix with scale factors given by fx, fy, and fz.

MATTRAN fx fy fz m1 → Translation matrix SGLIB
The matrix m1 is set to a translation matrix with
displacements given by fx, fy, and fz.

ME → turtle Current turtle TURTLE
The currently active turtle is placed on the stack.

METHOD x → Begin method OBJECT
Begins compilation of a method named x.

MOUSE → fx fy fz Current mouse position TURTLE
The current co-ordinates of the AutoCAD pointing
device are placed on the stack. The co-ordinates are
returned immediately without waiting for a button
to be pressed.

45

ClassWar Primitives: Alphabetical Reference

OBJECT.INSPECT o1 → stat Inspect object OBJECT
A dialogue box allowing examination and modifica-
tion of the public variables of object o1 is displayed.
If the OK box is selected stat will be −1, otherwise
stat will be zero.

OBJECT.SPY o1 → stat Spy on object OBJECT
A dialogue box allowing examination and modifica-
tion of all variables of object o1 is displayed. If the
OK box is selected stat will be −1, otherwise stat will
be zero.

OBJ! o1 o2 → Copy object OBJECT
The object o1 is copied to o2. The objects must be
of the same class.

OCTAHEDRON → Draw octahedron SGLIB
An octahedron with unit edge size is drawn at the
origin.

ORIENTATION → Declare orientation argument OBJECT
A method argument representing an absolute (bear-
ing) angle in radians is declared.

PENDOWN → Turtle pen down TURTLE
The pen of the active turtle is lowered. Turtle mo-
tion while the pen is down leaves tracks in the form
set by LEAVETRACKS.

PENUP → Turtle pen up TURTLE
The pen of the active turtle is raised. Turtle motion
while the pen is up does not leave tracks.

PICKPOINT prompt → fx fy fz Pick point TURTLE
The co-ordinates of a point are obtained from the
user after issuing the prompt specified by the string
on the stack. If prompt is 0, no prompt is issued.

PITCH degrees → Turtle pitch up TURTLE
The active turtle pitches up degrees (or down if de-
grees is negative) by rotating that amount about its
local X axis.

PNT fx fy fz n → Define point SGLIB
The point specified by fx, fy, and fz is added to the
point database as point n. The lowest numbered
point is 1.

POINT x → Declare point OBJECT
A floating point triple variable or method argu-
ment x, representing a location in three-dimensional
space, is declared using the current storage class and
modes.

POINT@ p1 → fx fy fz Load point OBJECT
The co-ordinates of point p1 are placed on the stack.

POINT! fx fy fz p1 → Store point OBJECT
The co-ordinates fx, fy, and fz, are stored into point
p1.

46

ClassWar Primitives: Alphabetical Reference

POINT? p1 → Print point OBJECT
The co-ordinates of point p1 are printed on Auto-
CAD’s text screen.

POINTER x → Declare pointer OBJECT
A database pointer (handle) variable or method ar-
gument x is declared using the current storage class
and modes.

POINTGET fx fy fz p1 → Set point SGLIB
The 3 element vector p1 is initialised to (fx, fy, fz).

POINTCOPY p1 p2 → p2 = p1 SGLIB
The 3 element vector p1 is copied to p2.

POLY 0 v1 v2 …vn → Draw polygon SGLIB
An n-sided polygon consisting of the vertices v1,
v2,… through vn is added to the database, either as
a member of a rat nest mesh if enclosed in a RATON–
RATOFF sequence, or 3DFace entities otherwise.

PRINTGROUP group → Print group ADS
The value of the specified group of the current item
is printed on the AutoCAD text screen.

PRINTITEM → Print current item ADS
All groups of the current item are printed on the
AutoCAD text screen.

PRIVATE: → Set private access OBJECT
Sets the accessibility of subsequently declared vari-
ables and methods as private. Private components
can be accessed only within the class definition in
which they appear.

PROTECTED: → Set protected access OBJECT
Sets the accessibility of subsequently declared vari-
ables and methods as protected. Protected compo-
nents can be accessed within the class definition in
which they appear and by classes derived from it,
but not by other classes that declare instances of
the class.

PUBLIC → Set public inheritance OBJECT
Used before DERIVED, causes all variables and meth-
ods of the parent class to be available as methods of
the derived class.

PUBLIC: → Set public access OBJECT
Sets the accessibility of subsequently declared vari-
ables and methods as public. Public components
can be accessed within the class definition, in classes
derived from it, and by other classes that declare in-
stances of the class.

RATON → Begin rat nest mesh SGLIB
Begins definition of a rat nest mesh with the PNT
and POLY primitives. RATON must be issued before
the first POLY primitive of the mesh.

47

ClassWar Primitives: Alphabetical Reference

RATOFF → End rat nest mesh SGLIB
Closes a rat nest mesh begun with the last RATON.
Call this after generating the last POLY of the mesh.

REAL x → Declare real OBJECT
A floating point variable or method argument x is
declared using the current storage class and modes.

REDRAW → Redraw screen TURTLE
The AutoCAD screen is redrawn.

RESET → Reset turtle TURTLE
The active turtle is reset to the default settings:
position (0, 0, 0), heading (0, 1, 0), normal (0, 0, 1),
pen down, turtle icon visible, ephemeral tracks, and
icon 0.5 units high. In addition, the current SGLIB
transformation is set to identity.

RETURN → Return from method OBJECT
Return immediately from a method. EXIT cannot
be used within a method; use RETURN instead.

RIGHT degrees → Turn turtle right TURTLE
The turtle turns degrees clockwise about its local Z
axis.

ROL degrees → Turtle roll right TURTLE
The active turtle rolls degrees to the right (or left if
degrees is negative) by rotating that amount about
its local Y axis. The primitive is named “ROL” to
avoid conflict with the Atlast “ROLL” primitive.

SCALEFACTOR x → Declare scale factor OBJECT
A floating point scale factor variable or method ar-
gument x is declared using the current storage class
and modes.

SCRATCHPAD class → scratch Get scratchpad OBJECT
Given a :class name, returns the scratchpad in-
stance used to read and write the object to the Auto-
CAD database.

SETGROUP value group → Set group value ADS
The selected group is set to the value that precedes
it on the stack. The form of the value depends on
the group’s data type; see the GROUP primitive for
details.

SETHEADING degrees → Set turtle absolute heading TURTLE
The active turtle’s heading is set to the bearing given
in degrees, with 0 representing the X axis and angles
increasing counterclockwise.

SETPOSITION fx fy fz → Set turtle absolute position TURTLE
The active turtle is moved to the absolute three-
dimensional location given by fx, fy, and fz, drawing
if the pen is down.

SHOWTURTLE → Show turtle icon TURTLE
The icon representing the active turtle is displayed
on the screen.

48

ClassWar Primitives: Alphabetical Reference

SPHERE → Draw sphere SGLIB
An approximation of a unit sphere is drawn at the
origin. If OBJECT.WIREFRAME is nonzero, the sphere
is represented by three mutually perpendicular cir-
cles. Otherwise, the sphere is drawn as a mesh with
OBJECT.CNSEGS latitudinal and longitudinal tiles.

STATIC → Declare class variable OBJECT
Causes the next variable declared to be a class, as
opposed to an instance, variable. Note that the
STATIC declaration affects only the next variable de-
clared, not subsequent declarations.

TEMPORARY: → Set temporary storage OBJECT
Sets the storage type of subsequent variable decla-
rations as temporary. Temporary variables retain
their values only during the execution of a method
and are not stored with the instance or class.

TETRAHEDRON → Draw tetrahedron SGLIB
A tetrahedron of unit edge length is drawn at the
origin.

THIS → obj Current instance SGLIB
The instance being operated on by the current
method is placed on the top of the stack.

TRIPLE x → Declare point OBJECT
A floating point triple variable or method argument
x is declared using the current storage class and
modes. A TRIPLE is not modified by AutoCAD
transformations of the object containing it.

TURTLE x → Declare turtle TURTLE
A new turtle named x is created and given the de-
fault settings described under RESET. The new tur-
tle is not automatically activated; use LISTEN: to
activate it when desired. If you only need one tur-
tle, you don’t need to explicitly declare one. A turtle
named “KELVIN” is automatically declared for you
by ClassWar.

VECADD p1 p2 p3 → p1 = p1 + p2 SGLIB
The vector sum of the 3 element vectors p1 and p2
is stored in p3.

VECCOPY v1 v2 → v2 = v1 SGLIB
The 4 element vector v1 is copied to v2.

VECCROSS p1 p2 p3 → p3 = p1 × p2 SGLIB
The cross (vector) product of the two 3 element vec-
tors is calculated and stored in p3.

VECDOT p1 p2 → f1 f1 = p1 · p2 SGLIB
The dot (inner) product of the two 3 element vectors
is calculated and placed on the top of the stack.

VECGET fx fy fz v1 → Set vector SGLIB
The 4 element vector v1 is initialised to
(fx, fy, fz, 1).

49

ClassWar Primitives: Alphabetical Reference

VECMAG p1 → f1 f1 = |p1| SGLIB
The magnitude of the 3 element vector p1 is placed
on the stack.

VECNORM p1 p2 → p2 = p1/|p1| SGLIB
A unit vector in the same direction as the 3 element
vector p1 is stored in p2.

VECPRINT v1 → Print vector SGLIB
The 4 element vector v1 is printed on AutoCAD’s
text screen.

VECPUT v1 → fx fy fz Put vector SGLIB
The components of the 4 element vector v1 are
stored on the stack. They are normalised by di-
viding them by the fourth element of the vector.

VECSCAL p1 fs p2 → p2 = p1 × fs SGLIB
The scalar product of the 3 element vector p1 and
the scale factor fs is stored into the 3 element vector
p2.

VECSUB p1 p2 p3 → p3 = p1 − p2 SGLIB
The vector difference of the 3 element vectors p1 and
p2 is stored in p3.

4VECTOR x → Declare 4 element vector SGLIB
A new 4 element homogeneous co-ordinate vector
named x is declared and initialised to (0, 0, 0, 1).

VECXMAT v1 m1 v2 → v2 = v1 × m1 SGLIB
The 4 element vector v1 is multiplied by matrix m1
and the result is stored in the vector v2.

XCOR → fx Turtle X co-ordinate TURTLE
The X co-ordinate of the present location of the
active turtle is placed on the stack.

XORIE a b c d e f p q r → Orientation transform SGLIB
An arbitrary orientation matrix with the values
given by a through r placed in the first three rows
and columns is composed with the current transfor-
mation.

XPERS alpha zn zf → Perspective transform SGLIB
A perspective transformation with a field of view of
alpha radians, a near clipping plane at a distance zn
from the eye, and a far clipping plane at a distance
zf is composed with the current transformation.

XPOP → Pop transformation SGLIB
The topmost transformation on the transformation
stack is removed and replaces the current transfor-
mation.

XPUSH → Push transformation SGLIB
The current transformation is saved on the transfor-
mation stack.

XRESET → Reset transformation SGLIB
The current transformation is set to the identity
transform and all transformations pushed on the
transformation stack are discarded.

50

ClassWar Primitives: Alphabetical Reference

XROT theta axis → Rotation transformation SGLIB
A rotation transformation that rotates theta radians
about the designated axis (0 for the X axis, 1 for the
Y axis, and 2 for the Z axis) is composed with the
current transformation.

XSCAL fx fy fz → Scaling transformation SGLIB
A scaling transformation matrix with scale factors
given by fx, fy, and fz is composed with the current
transformation.

XTHEN → New transformation SGLIB
Equivalent to XPOP XPUSH. Used for readability
when assembling objects with many nested trans-
formations.

XTRANS fx fy fz → Translation transformation SGLIB
A translation with displacements given by fx, fy, and
fz is composed with the current transformation.

YAW degrees → Turtle yaw left TURTLE
The active turtle yaws degrees to the left (or right if
degrees is negative) by rotating that amount about
its local Z axis. This is a synonym for the LEFT
primitive, provided to make three-dimensional turtle
navigation more intuitive.

YCOR → fy Turtle Y co-ordinate TURTLE
The Y co-ordinate of the present location of the ac-
tive turtle is placed on the stack.

ZCOR → fz Turtle Z co-ordinate TURTLE
The Z co-ordinate of the present location of the ac-
tive turtle is placed on the stack.

51

