Marinchip 9900 BASIC
Marinchip 9900 Extended Commercial BASIC
Marinchip 9900 Transaction BASIC

User Guide

by John Walker

(C) Copyright 1979 Marinchip Systems
All Rights Reserved

Revised April 1979

° ° ’w 16 St. Jude Road -
Marinchip Systems wivatey, casissn w

(415) 383-1545

N
1’ 1.
g

2.

)
|
1

.'? .

GO s
RIS

>

RIRATATRT RTINS S TR ST AT LM TR T ST S T S ST AT LS L ST M TR S STRL MM S S

t

MR =D NNNNNN NN NNNNN NN NN N NN NNNNNNNNNNNNNNNNNNNNNNNG G O S OAGAANS S AONRD Wl

—
0

SRS

UrUDJMmn_]MFJFJMMNFJNMHHP—‘HD—‘HF‘D—‘HP‘HHH)—‘MHD—'D—‘HD—‘l—‘!—‘f‘,—‘r—‘r—‘?—‘ [..JIUU—

Marinchip 9900 BASIC User Guide

Table of contents

roduction

Versions of Marinchip BASIC
Structure of this manual
Conventions

Language Components
Program
Line
Statement
Constants
Numeric constants
String constants
Variables
Numeric variables
String variables
Subscripted variables
Distinctness of variables
Declaration of variables
Operators
Arithmetic operators
Relat10na1 operators
glcal operators
Func ions
Numeric internal functions

1. ABS(<i>») - Absolute wvalue
2. ASC(<x%>) — ASCII code
3. ATN(<i>) - Arctangent
4. CINT() = Convert to inte)
9. CSNG(<i>) - Convert to s1ng?e precision
6. CDBL(<i>) — Convert to double precision
7. COS(<i>) — Cosine
8. CVD(<x$>) — Convert to double
9. CVI(<x$>) - Convert to integer
10. CVS(<x%>) - Convert to single precision
11. EXP(Li>) - E to the power
12. EOF() — Test e .
13. FIX(Li>) - Convert to integer
14. INP(<i>) - Input
15. INSTR(Ci2, <x$2>, <y$>) — In string
16. INT(L1i2>) - Largest integer
17. LEN(<x$>) = Len
18. LOC(<i>) - Loca 1on in Direct file
19. LOG(<i>) - Natural logarithm
20. PEEK(Li>) - Examine memory
21. RND(<i2>») - Random
22. SGN(<i>) — Sign
23. SIN(<i>) - Sine
24. SQR(<i>) - Square Toot
25. TAB(<i>) - Tabulation
26. TAN(<Ci>) - Tangent
27. VAL (<{x$>) - Va
String internal functions
1. CHR$() - Character
2. HEX$(<i>) - Hexadecimal
3. LEFTH(<x$>, <i>¥) — Leftmost part
4. LWR$(<x$>) — Lower case
5. MIDS(Ix$>, <i>, {y>) — Extract substring
6. MUD$(<{i>) — Make double precision string
7. MKI$(<i>) — Make integer string
8. MKS$(<i>) = Make single precision string
9. RIGHT$(<x$>, {i>) — Rightmost part
10. SPACE$(<i>) - Spaces
11. STRH(<i>) - String representation
12 UPR$(<x$>) - Upper case
User functions
ments
Comment statement
Data transfer statements
LET
MID%

| O T T T Y VY N O Y T O T O T O O N Y
L T el Y e S N e e e e N e e o

oo WWWWWMNIMNMNMNMNMAN - e == 00000

[T I Y I

NI

Lottt rrreieirrn
VIOVDDONNNNOCOCCOOUADLIDDS

10

S

[S—

—

o O 3

CARPARRPAPAEAC LHULLULLUHELLDLELYLLELLHLLLLLLYLLYELEELYYLIYLLYLYL VY VBLLLLLY

it e 122000 O DD OB DODDNNNNNNNNNNNNNNG GO0 S SWEUL WD

PPN =~O000

ng

PEBLEPLEPUN-E

oONe OB~

M- = 0DONCORON- W

FWNE NOORLONE GRBEREBREERONS- LN

= e

bl Sl ey

Marinchip 9900 BASIC User

Table of contents

SWAP
Control statements
G0 TO

GO0 SuUB
RETURN
ON

FOR
NEXT
IF

END
STOP

0. PAUSE

Array statements
DIM
ERASE
Function statement
DEF
Data input statements
READ
DATA
RESTORE
Interactive I/0 statements
INPUT
LINE INPUT
PRINT
PRINT USING

Guide

1. ! — Single character string picture

2. \ \ — Multiple character string picture
3. & — Variable length string picture

4. # — Numeric picture

9. ## — Check protected numeric picture

9. $$ — Float dollar sign numeric picture

8

. Examples of
WIDTH
Seauential File I/0 statements
PEN
INPUT
LINE INPUT
EOF(<i>) — Function
PRINT
PRINT USING
CLOSE
Direct (Random) File I/0 statements
OPEN (for Direct files)
SEEK
LOC(<i>) - Function
Interprogram transfer statements
CHAIN
D EOM i tat t
ebugging statements
CIRON

TROFF
Machine—dependent statements
INP(<i>) —"Function
ouT
PEEK(«<i>) — Function
POKE
WAIT

BASIC
Entering statements
Deleting statements
Immediate execution of statements
Commands)

AUTO

BYE

COMPILE

CONTINUE

LIST

NEW

oLD

SAVE

RINT USING pictures

ii

##% — Check grotect and float dollar sign

| T T T T O O T T T O Y
[N e N L S ey oy
V00 QODDNNNNEGTE

UL
nng
(e]e]

L
MR
=000

n.

U
PPN
.‘N]FJ)_‘.._.
()

N
n.

UNUSUSUSUSUSUSURURL
NN NN
R L PP AAIAIAIAIN]

|
n
W

USUSUSURR
NN
0,18, 14,3814]

|
N
o

-31

-32

© s .

ndrlincnip 7vvv BASLIC User

Table of contents

?. SAVEX
10. SCRATCH
11, RENAME
12 RUN

iii

Guide

-32
-33
-33
-33
-33

Marinchip 9900 BASIC User Guide
1. Introduction

Marinchip BASIC is an implementation of the BASIC language for the

Marinchip 9900 computer system. All of the standard BASIC eatures are
rovided, and numerous extensions in the areas of string processing, file
andling, and machine interface are implemented.

BASIC is intended to be used in an interactive program development mode,
and is suited to the construction of programs that interact directly with
the user at a terminal. Marinchi ASIC 1s equally well svited to
beginning programmers learning their first programming language and
experienced programmers developing application packages

Marinchip BASIC may also be used as a powerFul.desk calculator.
1.1, Versions of Marinchip BASIC

Marinchip BASIC comes in three separate versions. The first 1is referred
to simpgq as BASIC, and is a simple BASIC language. Real numbers in this
version have between 6 and 7 digits of accuracy, and formatted ovutput
(PRINT USING) is not provided. Extended Commercial BASIC contains all of
the features of the simple BASIC, but maintains 16 digits of accuracy 1in
all calculations, provides PRINT USING, and contains a random—access file
facility. Extended Commercial BASIC is most often used when extended

precision .and formatted output are required (typically for business’

applications). Transaction BASIC is an extended version of Extended
Commercial BASIC which adds facilities which enable implementation of
multi—-terminal applications. Transaction BASIC 1is currently under
development, so 1information relating to it in this manual is subject to
change at any time.

This manual will identify those features present only in certain versions

of BASIC. The codes for such items are:
B Simple BASIC
EB Extended Commercial BASIC
TB Transaction BASIC

1. 2. Structure of this manvual

This manual will first discuss the elements that make up a BASIC program,
then will explain each statement in detail. Finallx, how. to use ASIC
will be explained. The facilities offered by BASIC for program entry,
editing, and saving will be discussed

1. 3. Conventions

All examples given in this manual, and all references to BASIC keywords
will appear in UPPER CASE TYPE. The BASIC system itself is insensitive to
the case of data entered (except for quoted strings), so a program may be
written without concern for the case of letters. In the descriptions of
various components of the BASIC language, examples will be given with
items &enclosed in corner brackets, ike <this>. Such an item indicates
that in its place the user supplies an item as indicated by the <contents
of the corner brackets. For example, the line:

ZORCH <number>

indicates the user should write something that looks like:

ZORCH 18
An item enclosed in square brackets like [this] indicates that the item is
optional. An item followed by an ellipsis (...), indicates that the item
may be repeated any number of times. ence, the line:
ZORCH <number>[, <number>,. . .1
2

—_—

i ™
S | S

Marinchip 9900 BASIC User Guide

describes things that look like:

ZORCH 23
ZORCH 118, 93, 23
ZORCH 9, 10

|
i
|

Marinchip 9900 BASIC User Guide

2. BASIC Language Components

i
‘? .a'.ua
v N

2. 1. Program

A PROGRAM is the unit which is executed in BASIC. A program consists of
one or more LINES. The program being executed 1is stored in the BASIC
"work area'", and may be interactively modified by the user.

2.2. Line
A LINE 1is a part of a Erogram which occugies one source line. Each line
must begin with line number which must be between O and 32767 1inclusive.

Following the line number are one or more BASIC STATEMENTs. If more than

one statement appears on a line, the statements must be separated by
colons (:).

2. 3. Statement

A STATEMENT is a declaration or command written according to the rules of
the BASIC language. A statement may perform some action, or may declare
data to be used 1n a program. Each program LINE must contain at least one
STATEMENT. STATEMENTs may also be typed in without line numbers, in which
case they will be executed 1mmediately. Blanks are completely
insignificant in BASIC, except when they aggear within votation marks.
The user is encouraged, though, to insert anks as an aid to readability

Chapter 3 of this manual discusses each BASIC statement in detail.

2. 4. Constants

Constants represent data with a fixed valvue. A constant may either be
numeric (for example 18 or 25.6) or a string (for example "Kaboom").

2.4.1. Numeric constants

Numeric constants may be written in several forms:
As an integer:

167 -239 +1007
As a8 decimal number:

1. 09 2300. 18 -2. 178262

In scientific notation:

12E7 6. 02BE-23 -0. 928E+18

As a hexadecimal integer:

¥*H14 ¥%XH3B1E ¥%HFFFC

Numbers written without either a8 decimal point or a power of ten which are
in the inclusive range =-32768 to 32767 will be treated as 1integers by
Marinchip BASIC. arinchip BASIC will automaticall perform integer
calculations unless forced to Floatinﬂ point by an overflow or appearance
of a fraction. Since integer arithmetic is up to 500 times faster than
floating point arithmetic, the user should leave out decimal points when
they are not required.

When writing numbers in scientific notation., the number following the "E”

indicates a power of ten by which the number preceding the "E" s
multiplied. For example, one million (1000000) may be written 1E6, and

4

D

[
[

!

-

Marinchip 9900 BASIC User Guide

‘one millionth (0. 000001) may be written 1E-6. This allows very large or

very small numbers to be written compactly.

Numbers 1in Marinchip BASIC must fall between 8. 638E-78 and 7. 237E75S. A
number outside this range, whether explicitly specified or generated as
intermediate resvult, will cause an overflow error. Marinchip BASIC (
maintains between six and seven digits of internal accuracy for a
numbers. Extended Commercial BASIC (EB) and Transaction DBASIC (T
maintain sixteen digits of internal accurac for all numbers. A
a

arithmetic 1is performed with additional 1internal precision to gu
against round-off errors.

A hexadecimal integer may be written by preceding the hexadecimal digits
with the characters "&H". The hexadecimal integer must be greater than or
equal to zero (¥HO) and less than or equal to &HFFFF.

" 2..4. 2. String constants

"Strings are made up of a sequence of zero or more characters. Strinag
constants are written b% enclosing the characters in quote marks. Either
the sinaqle quote (‘) or the double quote (") may be used, but ~the quotes
on both ends of the =string must be the same kind. Within a string
enclosed in one type of quote, the other type of quote may appear. for

example, the following are valid strings:
"doesn‘t"” ‘It was 7" long. ’

A quote of the same kind used to enclose the string may Se included in the
string by writing two quotes in a row. The two quotes will cause one
quote to be considered as part of the text of the string. For example:

lainlltl nuenn

The last example represents a string consisting of one double quote mark.
The first quote identifies the start of the string, the second and third

represent the quote character, and the fourth identifies the end of the
string.

2. 5. Variables

BASIC variables are used to hold wvalues that may change during the
execution of a program. Variables may be either numeric (which hold
numbers), or string (which hold ?roups of characters) and ma% be either
simple: which hold a single value, or array, which hold multiple valves.
All combinations are possible and meaningful, e. g.. ‘

Simple numeric

Simple string

Subscripted numeric

Subscripted string

2.5 1. Numeric wvariables

Numeric variables are composed of either a letter (A through 2V, or a

letter followed by a digit (0O through 9). For example, some simple
numeric variables are:

A Q9 V7
Numeric variables may optionally be written as a letter followed by one or
more letters or numbers. Such long variable names ma% be of ang length,
but only the first two <characters are wused to distinguish ifferent
variables (e.g.. BOMB and BOOK are the same variable). Long variable
names may not contain a BASIC keyword (statement, function name, or
command) anywhere within them. Examples of long variable names are:

BLUE TURKEY Z9M%Z SIGNALS

. 2

Marinchip ?900 BASIC User Guide

Note that "“CARTON" would not be permissible, since it contains the BASIC
keyword "TO".

n

. 9. 2. String variables

String variables are composed of either a letter followed by a dollar sign
(%), or a letter followed by & digit followed by a dollar sign. Some
typical simple string variables are:

A$ B5S$ Z6%

String variables may also be written as a letter followed by one -or more
letters or numbers as described above for numeric variables. The entire
variable name is followed by a dollar sign. The restrictions on embedded
BASIC keywords apply to string variables also. Examples of long string
variable names are:

NAME$ ADDRESS$ ARGLEBARGLES$

2.5 3. Subscripted variables

A subscripted variable represents a vector or matrix which can store
multiple valves. The number of subscripts used with a variable and thelr
maximum values is fixed when the subscripted variable is declared via

DIM statement. All subscripted wvariables must be declared by a DIMH
statement before use: there i€ no auvtomatic declaration. The lowest
value of a subscript is always zero, and the highest value is specified in
the DIM statement. For example, to declare a .list of numbers whose
subscript may range from zero to 10, one would use:

DIM N(10)
Then, to reference element 5 in this list of numbers, one would write:

N(S)
Subscr;pted variables may be strings as well as numbers. In the case of a
strin 8 dollar sign follows the variable name and precedes the
paren hesis. For example:

DIM F1$(20)

Fi1$¢(18)
Subscripted variables may have from one to ten subscripts. While all of

these examples have used constants as subscripts for clarltg 1n fact, a
subscript may be any numeric expression within the bounds to the
limit iven in the DIM statement. I+ the subscript has a Fractlonal part
(e.g.. .8) the fraction will be truncated. For example V(12 3) selects
element 12 of the variable V.

,:i)-
%

9

2.5 4. Distinctness of variables

String wvariables and numerT1ic variables with the same name are permitted
and are distinct, and simple and subscripted variables with the same name

are distinct. As a result, the following are four completely different
and unrelated variables:

A — A simple numeric variable

A(7) - Element 7 of a numeric array

A$ - A simple string variable

A (7) — Element 7 of a string array

Note that exte nsxve use of this feature may make programs very confusing
and hard to foll

¢
1
1
]

1 1 O3 2 —

Marinchip 9900 BASIC User Guide

Declaration of variables

A subscripted var1ab1e must be declared by the execution of
statement before element of the variable is used. A simple variable
is declared when a va vue is first assigned to it bg the execution of a LET
statement, or by being read in by a READ or INPUT statement. String
variables may also be created with the MID% statement (see below). If a

variable is wused in an ex&ressxon before it has been given a value, the
program will error with an ndefined variable" message.

a DIM

2. 6. Operators

Operators are special characters or words that indicate operations to be
performed on var1ab1es, constants, or other valvues.

2. 6. 1. Arithmetic operators

The arithmetic operators are as follows:
()

.

Parentheses to group items

OT ## - Exponentiation
- = Unary minus (e. g.., -A)
* / — Multiply and Divide
\ — Integer divide (remainder discarded)
MOD -~ Modulo (remainder from divide)
+ - ~ Add (concatenate) and Subtract

The arithmetic operations are performed in the order listed above. Note
that since parentheses have the highest priority., parenthesised
expressions will always be evaluated first. For example, the expression:

 A+B#C
meané to multiply B and C, then add A. Since multiplication has a higher
priority than addition, it is performed first. I# the expression were
written:

(A+B) ®#C .

A and B would be added, and the result multiplied by C. The use of
parentheses forces the computation of A+B first. Operations with the same
priority are performed eft to right. While a user familiar with the
operator priority rules can write a very <complicated expression without

g parentheses, the program may be more readable if the theoretically
edundant parentheses are included. For example:

C/B##-F/B9 is correct
but:

(C/(B##(—-F)))/B? is better

The addition operator (+) may also be used with two strxn%s to concatenate

strlng consisting of the left operand string
with the right ogerand strin% appended to the end. For example., if the
string variable X% contains the string "Chuck", the expression:

"Hello there, LR & £ AN

would have the value "Hello there, Chuck!'". None of the other arithmetic
operators (except parentheses) may be used with strings.

2. 6. 2. Relational operatoﬁs
The relational operatars are:

= - Equality
Lk oor > - Inequality

Marinchip 9900 BASIC User Guide

-,

[}

Less than %
Greater than "ﬁ?
Less than or equal

Greater than or equal

14

<= or =<
>= or =>

[

The relational operators are used to determine the relation between two

values. The relational ogerators may be used with both numeric values and
strings, but may not e vuvsed to compare numbers to strings, and vice
versa. When comparing numbers, their numeric values, includin% sign, are
compared. When comparing strings, the strings are examined from left to

right for the first differing characters, and the relative magnitudes are
determined Ffrom the ASCII collating sequence of the differing characters.
I# one strin% is shorter than the other, but both are egual vp to the end
of the shorter string, the shorter string is considered to be the lesser.

The value TrTeturned b the relational operators is always numeric, and
equal to -1 if the relation is true and O if the relation is false. All
\ relational operators have the same priority, so the% are executed from
[left to right. Relational operators have a priority 1less than any

arithmetic operator, so the expression:

[) A+BC+9
J will test whether A+B is less than C+9, as expected.

(] 2.6. 3. Logical operators

The logical operators are as follows: : A

ii} NOT Logical negation (Unarg)
\ AND Logical conjunction
OR Logical disjunction

XOR Logical exclusive or

[I I A

EQV Logical equivalence
IMP Logical implication
The logical operators operate bit by bit on the integer part of their
operands. When used on values returned by the relational operators, the
logical operations take on their conventional definitions with -1 defined
| as TRUE and O defined as FALSE. In addition, the logical aoperators may be
used to perform bit by bit masking operations. The operands used with a
logical operator are converted ¢to integer before the operation is
F executed, and if the operands are outside the range -32768 +to 32767 an
(* overflow will occur. The logical operators may not be used with strings.
“ The prioritg of the logical operators are in the order listed above. and
all logica operators have a priority below that of any relational
— operator. Hence, the expression:
LJ A+B>D/2 OR NOT F<G6/9
will be interpreted as: ' 2D
k} ((A+B)>(D/2)) OR (NOT (F<(G/9)))
2. 7. Functions

Functions take a set of values as ARGUMENTS and return a value as a
RESULT. A function 1is .identified by a name. Functions may be either
| internal functions, provided by BASIC, or user functions, written by the
‘l programmer and defined in he BASIC program. Some functions return
numeric values, while others return strings. All functions which return
string results have names which end in a dollar sign.

‘l 2.7.1. Numeric internal functions
Numeric functions are those that return a number as their rTesult. Note
| that some numeric functions acceﬁt strings as arguments. The mathematical
functions ATN, CO0S, EXP, LOG, SIN, SGR, and TAN return results accurate to

approximately six decimal digits regardless of which version of BASIC 1is

B :

Marinchip 9900 BASIC User Guide

being used.

2.7.1.1. aAps(<i>) - Absolute value

;:LJ@@;__J

The value ret

e n
example, ABS(

r s? is } e absolute value of the numeric argument <i. For
cl. 1S]

v h
1 2.9, and ABS(-18. 2) is 18. 2.

n

2 7. 1. ASC(<x$>) - ASCII code

The value returned is the ASCII code for the first character of the strin

argument <x%>. If the string argument is of zero length, the ASCII codg
for space will be returned.

rﬁ 2.7.1.3. ATN(<i>) = Arctangent
The value returned will be the arctangent in radians of the value il

M)

N 2.7.1.4. CINT(<i») = Convert to integer

. | The value returned will be <i> with any fractional part discarded. If <i>

' B 1s outside the range -32768 to 32767, an overflow will occur

~~ 2. 7.1.5. CSNG(<i>) - Convert to single precision

|

|

- The value returned will be <i> converted to floating point.

[] 2.7.1.6. CDBL(<i>) - Convert to double precision
The value returned will be <i>» converted to floating point. In Marinchip
BASIC CSNG and CDBL always perform the same function. In B, the
canversion is always to single precision. In EB and TB. conversion is

always to double precision.

)J 2.7.1.7. ¢c0OS(<i>) - Cosine

o) assuming <i» is in
tjradlans

ca_q,\l,.'i_’.7.1.t':l. CVD(<x$>) - Convert to double

[

t}The leftmost eight characters of string <x$> are directly converted to s
double precision real number. In other words, the binary wvalue of the

_characters is taken as the Flaatinghpoint number. This function is used

| |to convert back strings returned by e MKD$ function (see below). If
ﬁ used in simple BASIC, CVD will return a single precision number. :

w2.7.1.9. CVI(<x%$>) - Convert to integer

“The leftmost two characters of string <x$> are directl converted to an

intePer. This function is used to convert back string da%a packed wusing
;wthe MAI$ function (see below).
b

1

Marinchip 9900 BASIC User Guide

2.7.1.10. CVS(<{x$%>») — Convert to single precision

The leftmost four characters of string «<x$> are directly converted to a
single-precxsxon floatxng point number. This function is used to convert
bac strin data packed using the MKS$ function (see below). If used in
EB or TB, is function will produce a double precision floating point
number, but only six to seven digits of accuracy will be preserved.
2.7.1.11. EXP(Li>) - E to the power
f} Ih; value returned will be the mathematical constant E raised to the power
. i>.
2.7.1.12. EOF({i») - Test end of file

The EOF function returns zero if file number <i> is not at end of file,

and -1 if it is at end of file. This function is used in conjuction with

r the File I/0 statements to determine when the last record of a file has
j} -been rTead.

2.7.1.13. FIX(LiZ») - Convert to integer

{] .)
- The rtesult will be the value of <i> with any fractional part removed.

This function differs from INT in that negative numbers will not be
= réunded down. FIX(a) is equivalent to:

) SGN(a)#INT(ABS(a)).

2.7.1.14. INP(Li>) = Input

The value returned is an integer from O to 255 representing the value that

- resulted from reading machine input port <iZ. £<i>» must evaluate to a
. number from O to 2565.

a2.7.1.15. INSTR(LiZ, <x$2>, <y$>) — In string

\t

L The string <x$> is searched starting at character <{i> for the string <{ys$>.
If <ys$> is not found, zero is returned, otherwise the character at which

ﬁI the matching substrina(starts is returned. If fi} is omitted [in other

words, the call is INSTR(<x%$>, <y$>)]1 the search will -start at the first
character of <x&%>.

[} 2.7.1.16. INT(<i») - Largest integer W
| .

The fractional part (if any) of <ix is discarded. In other words, the
largest integer in <i> is returned.

\1 1

-+ 2.7.1.17. LEN(<x$>) — Length

EJ The number of characters in the string <x$> will be returned.
‘2.7.1.18. LOC(<i>) - Location in Direct file

The LOC function will return the number of the next record to be
written in Direct access file <Ti>.

for more information.

read or
See the section on Direct access files

}‘ | 10

&

\

I “‘r‘

Marinchip 9900 BASIC User Guide
2.7.1.19. LOG(<i>) — Natural logarithm
The natural (base E) logarithm of <i> is returned.
2.7.1.20. PEEK(<i>) - Examine memory

The byte at absolute memory address <i> is returned. The argument <i> ma¥
have a value between O and 6955385. Negative values greater than or equa
to -32768 are also accepted, and address bytes with the equivalent 16 bit
two’s complement addresses. Note that PEEK returns a byte value between O
and 2595. To load a whole word, two PEEKs must be done.

2.7.1.21. RND(<{i>) = Random

A pseuvudo-random number greater than or equal to O and less than 1 is
returned. The argument <i> is ignored and may be omitted. If omitted.,
the parentheses must be omitted also.

d.7.1.22. SGN(Li>) - Sign

. The sign of the numeric argument <i> is examined. I <i> 1is equal to
tero, O is returned. f <i> is positive, 1 is returned: and if <i> is
negative, -1 is returned.

2.7.1.23. SIN(Li>) - Sine
The sine of the angle <i> specified in radians is returned.
2.7.1.24. SQR(<i>) - Square root

The square toot of the argument <i> is returned. If <i> 1s negative the
program will be errored.

2.7.1.29. TAB(<i>) - Tabulation

The TAB function may be used only within a PRINT statement. It causes the

output column to be set to the integer part of its argument. The argument
must be less than or equal to the current output line width (set by the
WIDTH statement). The leftmost column on the output line is column zeTo.

2.7. 1. 26. TAN(<i>) - Tangent

The tangent of the angle <i» in radians is returned.

2.7.1.27. VAL (<x%>) — Valvue

The string <x%> is evaluated as a numeric constant according to the syntax

rules for BASIC numbers. The numeric result is returned

2.7. 2. String internal functions

The string functions return string Tresults. Note that some string
functions take numeric arguments.

11

S — JE—
{ |

Marinchip 9900 BASIC User Guide

2.7.2. 1. CHR$(<i>») — Character

The CHR$ function returns a one character string which has the <
with the ASCII code egual to the expression <1>. If the value o
outside the range -32768 to 327467, an overflow will occur. If g

outside the range O to 127, the upper 8 bits will be removed to re
to within this range.

T

2.7.2. 2. HEX$(<{i>») - Hexadecimal

The value returned is the integer part of the argument <i> edited as four

hexadecimal digits. If the argument <il» is outside the range -32768 to
32767 an overflow will occur.

2.7.2. 3. LEFT$(<x%>, <1>) — Leftmost part

The leftmost i characters of the string value <x%> will be returned. If

i 1s greater than the number of characters in the string <x$>, all of
&xig will be returned.

2.7.2. 4. LWRE(<x$>) — Lower case

The string <x$> will be returned with all alphabetic characters converted
to lower case.

2.7.2. 5. MID$(<x$>, <12, <J>) — Extract substring

The «{J)> characters starting with character <i> will be extracted from

string <x$> and returned. If all or part of the substring to be extracted
is outside the len%th of <x$>, spaces will be returned for the out of
bounds characters. is omitted (the function 1is <called with two

arquments), the rightmost <{i> characters of <x$> will be returned.
2.7. 2. 6. MKD$(Li>) - Make double precision string

The binary representat1on of the numeric value <i> is returned as an eight
character strxn% This function is most often wused in packing string
records used with Direct access files. Since any ASCII character may be a
part of the string returned bg this function, caution must be exercised in
using these strlng in sequential files where control characters may cause
improper interpretation o data. This function 1is normally wused in
programs written in EB and TB, but may be used as well in B. In B, the
function will still return eight characters, but only the first four uill;&
be significant, as B implements only single precision numbers. E=

2.7.2.7. MKI$(lix) — Make integer string

The numeric value <<i>» is truncated and converted to an integer. If the
value is outside the range -32768 to 327467 an overflow will occur. A two
character strin is returned whose <characters consist of the binary
eBresentatlon o the 1integer Tresult. The caution iven above for
$--generated strings applies to strings generated by MKI$ as well.

2.7.2. 8. MKS$% (i) - Make single preciéion string

The ©binary representation of the numeric value <i> is returned as a four

character string. When wused in B, this function will preserve the

complete accuracy of a number. In EB and TB, use of this function and 1ts

inverse CVYS will cause the accuracy of a8 number to be truncated to six

seven decimal places. The <caution giwven above about the use of MKD$
12

; Marinchip 9900 BASIC User Guide
! (strings in sequential files applies to strings generated by MKS$ as well.
_%' 2.7.2. 7. RIGHTH(<x%>, {i>) — Rightmost part

The <i» rightmost characters of the string value <x%:
If the wvalue of <Ki* exceeds the 1length of <x$2>,
returned.

ill be returned.
11 of <x%> will be

2.7.2.10. SPACE$() - Spaces

~
fl A string consisting of <i> blanks will be rTeturned.
] 2.7.2.11. STR$(<1i>») — String representation

The value <il will be edited and returned as a string. The string
_ Teturned will be identical to what would be printed if «<i.r were placed on
a PRINT statement.

———

-

2.7.2.12. UPR&({x%>) - Upper case

}%The string <x$> will be returned with all alphabetic characters converted
to upper case.

[] 2. 7. 3. User functions

User functions are declared by the programmer via the DEF statement, and
have names of the form FNx where X is a letter from A to Z. The
declaration of a function is of the Form:

—

DEF FN<letter>[$1[(<formal arg list>)l=<{expressionz>

where <letter> is the letter from A to Z identifying the function: <formal
arg list> is an-optional list of variables to represent the arguments with
which the Ffunction is called, and <expression> is an arbitrary expression

(T
e

. which computes the value of the function. For example. the Ffollowing
LT declaration will define a function which computes the average of two
' | numbers:

160 DEF FNA(A,B) = (A+B)/2

Once defined by the execution of the DEF statement, the function 1s wused
like any BASIC internal function. For example, to set the variable F
equal to the average of the variables Q and W, one would write:

(230 F=FNA(Q, W)

T
—

Note that the variables wused in the <formal arg 1list> and in the
expression which defines the function have no existence outside the
function: they are used only to represent the arguments with which the

\i function 1i1s called. Other program variables may be used in the function
{ } expression. If a variable used 1n the function expression is defined both
7 in the <«formal ’arg list> and elsewhere in the program. the <formal arg

listl variable will be used. User function arguments may be either

"7 numeric or string, but the type of the argument with which the function 1is
'\ called must agree with the type of the variable used in the <formal arg
) 1list> when the function was declared. User functions may return either
string or numeric values. User functions which return strin%s should be
declared and <called with a dollar sign ($) following the function name.
User string functions and numeric functions are distinct: the functions
IC% may be defined at the same time. For example, the following
is the declaration . and use of a function that takes a string and a numeric
argument and returne a string consisting of the string argument with the
i}numeric argument appended.
|

560 DEF FNE$(S%, N)=S&+" "+STR$(N)

i | FNC and F

13

Marinchip 9900 BASIC User Guide

8460 PRINT FNE$("Error in line”,L1)

The <formal arg listl is optional. Functions may be declared which have?
no arguments, in which the expression references only program variables®
and constants. Such functions are a convenient shorthand for lengthy
espressions vsed Frequently in a3 program. For example:

750 DEF FNS=X+1/Y+INT(Z+COS(TS5))+FNA(R, 8)
980 V(FNS)=V(FNS)+G(FNS)

A function is declared by the execution of the DEF statement, hence the
DEF statement must be executed before the first reference to the function
in the program. Functions ma% be redeclared as frequently as desired
within a program, simply by executing another DEF statement re erencing an
existing function name with a ifferent <formal arg list> and/or
“<expression>.

14

ITF (TN

l
|

Marinchip 9900 BASIC User Guide
3. Statements

The Ffollowing paragraphs describe the BASIC statements. Every line in a
BASIC program is a statement of some kind. Each statement is preceded b
a line number. Line numbers may be assigned freely by the user, but mus%
be greater than or equal to O and less than or equal to 32767. Statements
are normally executed 1in order of ascending line number, and are always
printed out and written to files in line number order. In addition, line
ngmgers tare used to identify the destination of GO TO and GO SUB
statements.

Multiple statements may be written on one line by separating tthem by
a

colons (:). Whenever BASIC would normally execute the next s ement in
the grogram; it will check whether a <colon follows the statement ust
completed. If so, execution will continue following the colon rather than
on the next line. Examples of statements written using this feature are:

110 A=1: B=1: C%='Hello’

210 IF A=1 THEN PRINT "It was 1": GO TO 180 ELSE 605

310 FOR I=1 TO 100 : PRINT I,SIN(I) : NEXT I

3. 1. Comment statement

3.1.1. REM

Ang line beginning with the letters "REM" will be treated as a comment and
totally ignored by BASIC. Ang characters following the REM will be
totally ignored and can be used to add comments to a program. Examples of
comments are:

100 REM This program computes the square root of zero

120 REMARKABLE PROGRAM!
130 REMNANT OF A FORGOTTEN AGE

3. 2. Data transfer statements

3.2 1. LET

LET <variable>=<expressionX

The. LET statement is wused to assign the value of an expression to a

- variable. The variable and expression may be either numeric or _string,

but must be of the same type. The variable may be subscripted. The word
L%Ttmag ge omitted, if desired. Hence, the following are all wvalid LET
statements:

100 LET A=19

110 A7=12. 8+B33

120 LET v2(18, Q+4)=C3(INT(Q+?))
130 LET A$="This is my string"
140 A%$(Q, B+3)=LEFT$(M$, 3)

Be careful to distinguish the equal sign in the LET statement, which means
"becomes", from the relational operator "=" which means "is equal to"
The statement:

820 LET V=R=1

sets V equal to -1 if R equals 1, and O otherwise.

15

Marinchip 9900 BASIC User Guide

3.2.2. MID%$

2

] of a strin% variable.
The substring starting at the <character indicated a

MID$(<string var>,<start>(,<{length>1)=<{string expression>

The MID$ statement allows replacement of a substring

by <start>, and
extending for {len?th> characters within the variable <string var> will be
set to the first <length> characters of <string expression. I+ the
<length> specification is omitted, the length of <string expression> will
be used. The <string var> will be made longer if necessary to contain the
selected substring. Assume that variable A% contains the string:

"This is a good program. "
then the statement:

165 MID$(A%, 11,4)="poor choice!"
will set A% equal to:

"This is a poor program. "

1
]
L 3.2 3 SWAP

'J SWAP <variable>, <variableX @

The wvalues assigned to the two variables are interchanged. The variables
may be either numeric or string, but must be the same ¢t

T] - 2pe. This permits
r valves to be interchanged without the requirement for an intermediate
\ji variable. If X equals 19 and Y equals 104, the statement:

208 SWAP X, Y
[] will assign 104 to X and 19 to Y.
|

3. 3 Control statements

|

] In the absence of control statements, statements in a program are executed
in order of ascending line number. Control statements permit the user to
alter the flow of contr

B ol and create loops and decision branches within a
g;i program.

3.3. 1. GO TO

|
{J GO TO <statement number>
) ThetGO TO statement causes the line with <statement number> to be execute@g
. next.
|
|
~ 3.3.2. GO0 suB
f} GO 8UB <statement number:
The GO SUB statement causes the line with <statement number> to be

| executed next. The statement Followin% the GO SUB is saved in memory so
J that it may be returned to by a RETURN statement. G0 SUB statements ma

Y
be nested (that 1is, part of a program called by a GO SUB may call other
parts with GO SUB). The only limit on nesting is the amount o available

: memory to save the return points. GO SUB works correctly with multiple
g statements on a line, permitting the following:

323 PRINT "Hi" : GO SUB 1800 : PRINT "We got back!"

\i 16

R A LT

]
-
]

Marinchip 9900 BASIC User'Quide
3.3 3. RETURN

RETURN

The next statement executed will be the statement following the most
recent GO SUB statement.

3.3.4. ON

ON <expression> GO TO <{statement noXx, {statement no>,...
ON <expression> GO SUB <{statement no>, <{statement no>, ...

The <expression> is evaluvated, any fractional part is discarded, and the
integer value is used to select one of the statement numbers Following the
GO0 TO or GO SUB. If the <expression> is outside the range —-32768 to 32767
an overflow will occur. If the <expression> is negative, zero, or larger
than the number of <statement no> specifications, the ON statement will be
ignored and the next statement will be executed. Otherwise, a GO TO or GO
SUB (depending on which 1is wused) will be performed to the selected
“statement nol. For example, if J was equal to 3, the statement:

305 ON J GO TO 150, 180, 220, 105, 130

would cause statement 220 to be executed next.
3. 3. 5. FOR

FOR <variable>=<{start> TO <limit>
FOR <variable>={start> TO <limit> STEP <step>

The <{variable? is set equal to the numeric expression <{start>. Then the
<limit> and, if specified, <step> expressions are evaluated and saved. If
<step> is omitted, it is assumed to be 1. The block of statements between

the FOR and the next NEXT statement with the same <variable> will be
executed repeatedla. each time adding Csteg} to <variable> wuntil the
<limit> 1is exceeded. For example, o print the numbers 1 through 10 and
their squares, the following might be used:

100 FOR ‘I=1 TO 10
110 PRINT I, I#I
120 NEXT I

to print the same table in descending order, one might use the following:

100 FOR I=10 TO 1 STEP -1
110 PRINT I, I#I

120 NEXT I
Note that the statements in a FOR loop will always-be executed at least
once, even if the {start’ expression is already beyond the <limit>. Also,

note that the NEXT statement must bhe executed in order to perform the test
against the <1imit> and possibly transfer control to the top of the loop.
Hence, a NEXT may be the object of an IF statement. Programs which use
this feature are generally very hard to understand.

3. 3. 6. NEXT

NEXT <variable>

Encountering a NEXT statement speci?ging the <variable> of an active FOR
loop causes the <step> to be added to the <variable> and the <variable> to

be tested against the <limit> of the loop. If the <1limit> is exceeded,

control continues Pollowing the NEXT. Otherwise, control rTesumes

Pollowin% the FOR statement for <{variable>. See the FOR example above for
T

an illustration of the use of NEXT with FOR. NEXT ma% be used with a list
of variables separated by commas as a shorthand way to terminate multiple
nested FOR loops. For example, the following program which clears a three
dimensional array:

17

D

Marinchip 9900 BASIC User Guide)

200 FOR 1I=1 TO
210 FOR J=1 TO
220 FOR K=1 TO
240 NEXT K
2350 NEXT J
260 NEXT I

-
[e]eJo)
&

may be rewritten:

200 FOR I=1 TO
210 FOR J=1 T0O
220 FOR K=1 TO
230 A(I,J, K)=0
240 NEXT K, J, I

Pt b et
[eJele]

3.3.7. IF

IF <expression> THEN <statement noX -

IF <expression> GO TO <statement noZ>

IF <expression> THEN <statement>

IF <expression THEN <statement> ELSE <statement>

The IF statement allows conditional execution of statements

g and transfer
within a program depending wupon the value of expressions

| The numerirc
<expression> willl be evaluated. If nonzero, the 1item +following the IF.
wil be executed. If zero, the statement will be ignored unless an ELSE
is specified. In that case, the item following the ELSE will be executed.

An F ... THEN ... ELSE statement will accept either statement numbers or

regular statements following the THEN and ELSE. If a statement number is
specified, control will be transfered to that statement. If a statement
is specified, that statement will be executed, and control will

Tesume
followin the IF statement. To illustrate the many forms of the IF
statement, some examples follow:

IF A=1 THEN 290 - Goes to 290 if A=1
IF A=1 THEN 290 ELSE 650 - Goes to 290 if A=1,
. 650 otherwise.

IF A=1 GO TO 290 - Goes to 290 if A=1
IF A=1 THEN PRINT “Ok" - Prints "Ok” if A=l
IF A=1 THEN PRINT "Ok'" ELSE 350

- Prints "Ok" if A=1

oes to 350 otherwise.

IF A=1 THEN PRINT "Ok" ELSE PRINT "Bad"

- Prints "0Ok" if A=1,
"Bad” otherwise.

Since any statement may be used after THEN or ELSE, including another IF,

there is a potential ambiguity in associating an ELSE with an IF in such a
statement as:

IF AZ>4 THEN IF A>B THEN 280 ELSE 300

the ambiguity is resolved by always grouping an ELSE with the

p ding IF immediately
recedin .

it is
after a THEN or ELSE. For example:

IF A<Z10 THEN A=A+1 : PRINT A ELSE PRINT "End." : GO TO 100

By using the feature of separatin% multiple statements with a colon,
possible to have several statements

3. 3. 8. END

END

The END statement terminates the execution of the BASIC program, closes

all open files, and returns control to the command handler. The END
statement is normally the last statement in a BASIC program.

18

{

-

T T

-
i

|

]

Marinchip 9900 BASIC User Guide
3.3.9. STOP

STOP

The STGCGP statement is identical to the END statement described above. For
compatibility with other BASIC systems, there should only be one END
stagement in a program, and it should be last. The STOP statement should
be used to terminate the execution of a program from within the middle of
the program. Alternately, the program may GO TO the END line

3.3.10. PAUSE

PAUSE
The PAUSE statement suspends execution of the BASIC program. Variables
continue to keep their values, files Temain open, and control returns to
the command handler. This statement allows the program to permit the user
to examine 1it, modify 1it, and later resume execution with the CONTINUE
command.
3. 4. Array statements
The array statements allow the declaration and release of arrays
(dimensioned variables). Use of these statements can allow dynamic

allocation and release of storage in a BASIC program

‘3. 4. 1. DIM

DIM <variable>(<Lexpression>,...),. ..
The DIM statement declares dimensioned variables and assigns storage for
them. The wvariable name 1is followed by a dimension list enclosed in
parentheses. One entry must occur for each subscript to be used with the
variable. The entries declared are from 1zero to the value of the
expression. The statement:

450 DIM A(10),B7%(5, 80)

declares two arrays. The variable A is a numeric array with elements A(O)
to AC(10). The wvariable B7% is a two dimensional string array with
elements B7$(0,0) to B7%(5,80). Note that the dimension 1limits can be
expressions as well as the numbers wused in the example above. This
permits, for example, reading in the number of elements in a file from a
record in the file, creating an array with that number of elements. then

reading the file into the array. It is important to remember that DIM is
an executable statement: it must be executed in order to create the arra
variable. If a variable has been created by a DIM statement, an attemp

to create it again will cause the program to error with the message:

Attempt to redimension variable in <{line>.
stroying it with the ERASE

An array can be deliberatelzhredimensioned by :g 44 ’ =
e new imensions via

de
statement (see below), and en creating it with
another DIM statement.

3.4 2. ERASE

ERASE <variableX <variable>, ..

The ERASE statement releases the storage assigned to an array variable
When an array variable is declared by the execution of a DIM statement,
storage 1s assigned to hold the elements of the array. When this storage

is no longer required, the program can release it by performing an ERASE
on the variables. For example:

620 ERASE A:B7%

19

Marinchip 9900 BASIC User Guide

After an ERASE. the variables can be re-created with a DIM statement, witbj
any desired bounds or number of subscripts. S

3. 5. Function statement

3.5 1. DEF

1 DEF FN<letter>[$1[{({formal arg list>)l=<Cexpression>
[] .

The DEF statement defines a user function by specifgin? the function .name
(always "FN" followed by a single letter), an optiona list of formal
arquments, and an expression- that computes the value of the function. The
- DEF statement must be executed to define the function before the function
11 is first used in the program. A function ma% be redefined by execution of
| subsequent DEF statements. For more information on the wuse of DEF and

user functions, refer to the section on "User functions” in chapter 2 of
this manval.

|
{ 3. 6. Data input statements

w This section describes the READ, DATA, and RESTORE. - statements, whic“)
permit readin% of data sugplied by statements within the program. This

Pacilitg permits easy initialisation of variables as well as access to

constants required repetitively during the execution of a program.

]
- 3.6.1. READ

| READ <variable>, <variable>, ...

The READ statement reads successive items from the DATA statements in the
program and assigns them to _the <variable>s on the READ statement. All of
M the 1items apgearing on DATA statements in the program (see below) are
‘ taken as a list. Each <variable> in a READ statement 1s assigned the next
L data item. If the <variable> is a numeric variable, the data

a number, and if the <variable’ is a string, the data item must be a
string. The data 1is read without regard to its distribution between
sepatrate DATA statements. The {variable>s used on the READ statement may
| be subscripted. If a READ statement attempts to read past the end of the

DATA present in the program, an "Out of data"” error message will be
issved.

item must be

-~
LJ 3.6.2. DATA

ﬁq DATA <constant>, <constant>, ...

| The DATA statement, which is not executed, lists data items which are read
b the READ statement. Data apgearin in a program are read in order of

~ their appearance (left to right within a DATA statement, and in order of

| ascending line numbers on DATA statements) with each data item bein

L, assigned to each <variable> appearing on a READ statement. A DAT

statement ma¥ contain one or more constants; the constants are
h

separated
by commas.

e constants mag be either BASIC numeric or string constants
e

[If a constant is found that gins with a letter, it will be scanned as a

\i string terminated by a comma. Such a specification will have all spaces

L compressed out, so string constants on a DATA statement which require
embedded spaces or commas must be quoted. The following is an example of

) a DATA statement:

}J 480 DATA 12,19,2. 76, 25. 7E-8, "Results 1", good, average, bad

|

\

}‘ 20

|

|

Marinchip 9900 BASIC User Guide

3. 6.3. RESTORE

RESTORE
The RESTORE statement resets the pointer to the DATA in a program to the
first i1item on the lowest numbered DATA statement. That is, it restores
the data to the state at the beginning of the program execution. This

statement is used when a program desires to repeatedly read the data on
DATA statements within the program.

3.7. Interactive I/0 statements

The INPUT, LINE INPUT, PRINT. PRINT USING, and WIDTH statements allow
BASIC to communicate with the system terminal. This allows the user to
input to the program and to receive results as the program runs.

3.7.1. INPUT

INPUT <variablelr, <variable, ..
INPUT <string2>; <variable>, <variable>,. ..

- The INPUT statement accepts constants from the terminal and assigns their
* values to program variables. In the first form of the statement, the user

will be prompted with a question mark. In the second form, the <string>
will be typed as the %rompt for the input. If multiple <variable>s are
specified on the INPUT statement, the multiple data items entered from the
terminal must be separated by commas. If ¢the <variable> on the INPUT
statement is a numeric variable, a number must be entered on the terminal,
and if the <variable> on the INPUT statement is a string; a string must be
entered. A string starting with a-letter may be entered without enclosing
it in quotes, but if a string is to have embedded blanks or spaces, quotes
must be used. Any error in the data entered to the INPUT statement will
cauvuse the message:

Bad data. Re—enter from start.

to be issued and the prompt to be repeated. The user must then retype ALL
the 1items expected by the INPUT statement. If fewer items are entered
than there are <variable>s on the INPUT statement, a question mark prompt
will appear and the user will be expected to supply the rest of the input
expected. The user will continue to be prompted until all the <{variablels
on the INPUT statement have been satisfied. Examples - of INPUT statements
are:

INPUT L

INPUT I,J,K,L

INPUT "Enter next data point: ":; X, Y
INPUT "Type your name: "iN$

3.7 2. LINE INPUT

LINE INPUT <string variable>
LINE INPUT <string>; <string variable>

The LINE INPUT statement permits a line of input from the keyboard to be
read transparently and stored, exactly as entered, in a string variable.
I+ the first form of the LINE INPUT statement is used, no prompt at all
will be typed, while the second form will cause the <string> specified to
be tgged_as the grompt for the line of input. Note that only one <string
variable> may e read by a LINE INPUT statement. For example, to read a
line of input into the variable A$:

650 LINE INPUT "Enter next line: "; A%

21

Marinchip 9900 BASIC User Guide
'3.7.3. PRINT

The PRINT statement displays the wvalue of both numeric and strin%

PRINT <expression>,<expression>; <expression>..

expressions on the interactive terminal. The simplest form of the PRIN
statement is simply:

PRINT
which will cause a blank line to be printed. If a variable name 1is

supplied, it will be edited in a format depending upon its type and value.
A number will be edited in either integer, decimal, or exponential form
depending upon _its value and magnitude, and a string will be copied to the
output line. Either commas or semicolons may be used to segarate multiple
expressions on a PRINT statement. A comma causes the next expression to
be printed at the start of the next 14 character field, while a semicolon
causes the next item to start immediately after the last one. If the last
item on a PRINT statement is an expression, the carriage will be returned
after printing the last valve. If a comma or a seimcolon is the last item
on a PRINT statement, the carriage will remain extended following the
execution of the PRINT. This can be used to allow an output line to be
built up through the execution of multiple PRINT statements, or to type a
prompt for a subsequent INPUT statement. For example:

420 PRINT "Enter your name: “; .
440 INPUT N$ A)

Output generated by the PRINT statement mag be aligned to any column bg
the TAB function. If an {expression> supplied to PRINT consists solely o

a call on the TAB function, the output will be tabulated to that column
rather than prlntxna any valve. The leftmost column on the output line is
column zerTo. The TAB function is normally followed by a semicolon to
cause the next value to start in the column selected by the TAB function.

For example, to print three numbers in columns 10, 20, and 30, you might
use:

520 PRINT TAB(10); I; TAB(20); Ji TAB(30); K
If the output generated b¥ one PRINT statement is longer than the line on

the output device, it wil be continued onto as many lines as are

required. The 1length of the output device is set by the WIDTH statement
(see below).

3.7.4. PRINT USING

PRINT USING <format>, <expression’,. ..
The PRINT USING statement prints an output line formatted according to the

specifications of a <format>, which 1s a eneral string expression .
agpearing as the first item on the PRINT USING statement. ~Characters ir.)
the <format> string will be <copied to the output, except that special

sequences of characters are replaced by edited versions of the expressions
appearing on the PRINT USING statement. The editing performed is
specified by the special characters in the <{format>. Because the editing
specifications are usuallg a generic representation of the output desired,
they are referred to as the "picture” of the output field. Any character
not listed below as a picture character will be copied directly to the
output. The PRINT USING statement will reprocess the <format> string
until all <expression>s have been edited. ence, if an output line is to

have all <expression®s edited with the same format, it need only specify
one number in the format.

_PRINT USING is available only in EB and TB.

3.7.4.1. ! — Single character string picture
The ! «character in the <format> string will be replaced by the First
character of the next <expression> in the 1list on the PRINT USING
statement. If the next <expression> is numeric, an error will occur.

22

Marinchip 9900 BASIC User Guide
3.7.4. 2. \ \ = Multiple character string picture

The two backslashes and the characters between them will be replaced b
the same number of characters starting at the beginning of the nex
fexpression> (which must be a string). If the <{expression> string is not

as ong as the field is wide, the string will be padded with spaces on the
right to fill the field.

3.7.4.3. & — Variable length string picture

The & character will be replaced with the value of the next {expression>
(which must be a string). The entire string value will be inserted into
the output line.

3.7.4 4. # — Numeric picture

The # <character begins a numeric field. . The number sign characters
represent digits, and the field may contain as man? digits as desired
before and after the decimal point. If no decimal point appears in the

picture, the decimal di?its will not be edited. If a minus sign (=)
appears immediately following a numeric field, a minus sign will be edited
following the number if it 1s negative, and a space will be edited
Following it if it is positive. Otherwise, the minus sign will be printed
before the number if it is negative. If a comma appears between two #
characters before the decimal point, the number will be edited with commas
between each group of three digits. The commas count as places in the
number, so hey should be written where commas are desired in the number
(although commas will almazs be edited correctly regardless of where the

commas were specified in the picture). Examples of simple numeric fields
are:

Single digit integer

Decimal number

Decimal number with commas
Decimal number with trailing sign

#

HE#4, ##

R, HEH, HHH HH
HERBHSE. HEH-

[

If the value of the <expression> is too large to represent in the field
size given, the field will be filled with asterisks.
3.7.4.5. #4# — Check protected numeric picture

A field beginnin? with two asterisks is a numeric field which will be
printed with all positions before the decimal place not used for the
number filled with asterisks. This feature is called "“check protection"”.

and is normally wused ¢to prevent alteration of numbers printed on
negotiable instruments. A field beginning with two asterisks may continue
like ang other numeric field, with either asterisks or number signs (#)
used to denote digits. The following are examples of <check protected
fields:

#4338 F ~— Simple decimal check protected field

#HH HH - Same as above

4, 43, b 3 - With commas

#4636 3 3 — - With trailing sign
Note that two asterisks must appear in a row to denote a <check protected
field. A single asterisk will simply be printed in the output like a

non—-picture character.
3.7.4.6. $% — Float dollar sign numeric picture

A field beginnin? with two dollar signs is a numeric field in which . a
dollar sign will be printed to the left of the most significant digit of

the number. Following the two dollar signs is a normal numeric picture as
described for the # picture character. All the options agglicable for #
numeric fields may be used with % fields. Note that two dollar signs must

23

Marinchip 9900 BASIC User Guide

appear in a row to denote a picture field. A single dollar sign will

simply be copied to the output. xamples of float dollar sign fields are:m
% - A two character field -
SEHER. ¥ - Five before decimal, two after

3.7.4 7. ##$ — Check protect and float dollar sign

If a field begins with two asterisks and a dollar sign, it denotes both
floating dollar sign and check protection. Because of the notation wused

for such a field, all such fields must be at least three characters wide.
Examples of such fields are:

#4#$, #3444, . ## — Lots of money
##BH - Four character float, protect

3.7.4. 8. Examples of PRINT USING pictures

The Followin%t program fragment illustrates the wuse of PRINT USING to
e .

produce forma d output.
1200 PRINT " Part In Stock Cost"
1210 F$ = "\ \ HHHdHHH sEH#H. #4" .
1220 V=0) D
1230 FOR I=1 TO N) ’
1240 PRINT USING F$,P$(I),S(I),C(I)
1250 V=V+C(I)#S(I)
1260 NEXT 1
1270 PRINT USING "Total inventory value $$#### ##", v

3. 7. 5. WIDTH

WIDTH <expression>>

The WIDTH statement sets the interactive output line width to the integer
part of the <expressionl. If the <expressiont is outside the inclusive
range 1 to 132, an overflow will occur. The PRINT statement will continue
ovtput that exceeds the current WIDTH settina onto multiple 1lines. The
default WIDTH setting 1is 80 characters. IDTH affects only interactive
output; output to files always uses the maximum output width, 132.

3. 8. Sequential File I/0 statements

The OPEN and CLOSE statements, and special specifications on the INPUT,
PRINT, and LINE INPUT statements, as well as the function EOF permit BASIC
programs to read and write system standard sequential files. ;9

3.8.1. OPEN

OPEN <mode>, <number>, {file name=

The OPEN statement associates a file number with a file name and defines
the mode which will be used to access the file. The <mode> expression
must be a strlnﬂ. the first character of which is examined to determine
the mode. IfF "I", the file is opened for input (to be read), and if "0Q",
the file is opened for output (to be written). Under the Network
Operating System, BASIC will automaticall% create a file opened with a
mode of "0" 1f the file does not already exist. Under the Disc Executive,
all files must be created from the system console before use. <{number> is

a8 numeric exgression which must be greater than or equal +to O and 1less
than or equal to 15. This number is used to refer to the file once it has
been OPENed. The <file name> is a string expression equal to the name of
the file to be read or written. This may be a ful?g general file name
acceptable to the operating system. The followin two statements open

file "DATA" for input as file number 1 and open file "ANSWER" for output

24

Marinchip 9900 BASIC User Guide

as unit 3.

820 OPEN "I", 1, "DATA"
830 OPEN "0", 3, "ANSWER"

The file number may be prefixed by a number sign (#) to be consistent with
the use of file numbers in other statements

3.8.2. INPUT

INPUT #<number>, {variable>, ...

If the INPUT statement begins with a number sign., the expression following
it will be used as the file number from which the input will be read. The
file number used must have been previously opened in input mode by an OPEN
statement. The format of data read from the file is identical to that
accepted by the interactive form of the INPUT statement. The INPUT
statement will always read at least one record from the file, and as many
additional records as are required to satisfy the variables wused on the

INPUT statement. The following statement reads two numbers and a string
from file number 1. '

550 INPUT #1,1I,J, V5%

If the end of the file is encountered, variables not gef read in will be

left wunchanged and the end of file flag will be set. This flag can be
tested by the EOF function.

3.8.3. LINE INPUT

LINE INPUT #<number>,<{string variable>

The LINE INPUT statement, when used with a file number specification, will
read the next record of the file and store it in the named <strin
variable>. Only one <string variable> ma% be specified. If the end o
the file is reached, the end of file flag (tested by the EOF function)
will be set and the <string variable> will be unchanged.

3. 8. 4. EOF(<i>) - Function

The EOF function takes ‘a file number (defined by a previous OPEN
statement) as its argument, and returns O if the file is not at end of
file and -1 if the end of file has been reached. This allows an IF
statement to easilY test whether an end of file was encountered in the
last input from a file. The following program fragment reads in a file
and stores it in an array until the end of file is reached. ’

400 LINE INPUT #5,S5%(I)

410 I=I+1
420 IF NOT EOF(5) THEN 400

3.8.5. PRINT

PRINT #<number>, <expression>, ...
I#¢ the PRINT statement begins with a number sign the expressioh following
is taken to be the file number in which the output is to be written. The
file number must have been previously opened in output mode with an OPEN

statement. All the formatting options discussed for the PRINT statement
in the section on Interactive I/0 apply to the file PRINT statement.

3.8.6. PRINT USING

PRINT USING #<number>, <format>, {expression>,...

25

Marinchip 9900 BASIC User Guide

If ¢the PRINT' USING statement begins with a8 number sign the expression

—]

following is taken to be the file number in which the ovutput 1is to be
written. The file number must have been opened for output b% a previoug
OPEN statement. The <format> and <{expression>s are interpreted exactl

like a PRINT USING directed to the system console.

]

3.8.7. CLOSE

CLOSE <number>, <number>, . ..

-

The CLOSE statement closes the files identified by the expressions listed
on the CLOSE statement. For an input file, the file is simply detatched
from the file number. For an output file, the last block is written to
the file and the end of file sentinel is written into the file. Once a
file has been closed, the file number may be reused for another file, and
the file itself may be accessed again by issuing another OPEN with its
name. Note that programs which write a file and then read it back MUST
issue a CLOSE on the file before OPENing it for input. Failure to do this
can result in readin& past the en of valid data in the file and
or

I

encountering garbage. consistencg. the file number expressions in the
CLOSE statement may be prefixed Yy number signs (#). The following
r\ statement closes two files
- @70 CLOSE 1, #3
(] 3. 9. Direct (Random) .File I/0 statements . ‘ {9

Extended Commercial and Transaction BASIC allow wuse of Direct access
(random access) files. These files are implemented in a manner largely
compatible with sequential files, so large-changes are not required in a

%rggram when converting back and forth between sequential and Direct file
/0" :

(.

Sequential files are stored with variable length records, and cannot be
accessed except sequentiallz. Direct files are stored in fixed length
records (the length 1s -specified on the OPEN statement., see below).
Associated with each Direct file is a read/write pointer, which contains
the number of the record to be read or written next. When a file is
OPENed, the pointer is set to record O, which is the first record in the
file. When a record is read by an INPUT # or LINE INPUT # statement, or
written by a PRINT # or PRINT USING # statement, the record indicated by
the pointer is read or written, and the pointer is incremented to point to
the next record in the file. Hence, several INPUT or PRINT statements in
a Trow will read or write consecutive records just as for a sequential
file. The major difference between Sequential and Direct files is that
INPUT and PRINT operations may be intermixed for Direct files, and that

the read/write pointer may be manipulated by the SEEK statement described
below. ’

C

1 4

3.9.1. OPEN (for Direct files) &)

]

OPEN <modeZ, <number>, <file name>, <record length>

The OPEN statement for Direct files operates like the OPEN statement for
Sequential files described in the section on Sequential I/0 above. The
<modeZ must be "D" to indicate that the file bein% opened 1s to be a

) Direct file. The <number> is the file number to be used to access the

file, and the <file name> is the string expression for the file to be
{ opened. The Direct OPEN will error if the file desi?nated b¥ <file name>>
‘ does not already exist. A BASIC rogram may dynamically create a Direct
‘ file by performing a Sequential OFEN ("O

mode), closing the file, then
re—0OPENing the file in Direct mode (this technique will work onl under

the Network Operating System: as the Disc Executive does not allow file
creation from within a program).

The <record length> is an expression which will be truncated to an integer
value and taken as the length in characters of records to be transferred
to and from the Direct file. The actual records written to the file will
{J be one character 1longer than the <record length> specification, as a

26

T e

rﬁg[:][;;r—)r“*]

el e S st S wn S s S s s S

Marinchip 9900 BASIC User Guide

carriage return character will be apBended to each record. Inserting this
character allows BASIC-generated irect files to be examined by other

- system vutilit ackages, ut has no effect on the BASIC rogram tself.
wh gaBTc R Pne leng

en using ; under the Network Operating System, the <record length
may be any desired value, but under the Disc Executive, <record length
must be 127, as the Disc Executive does not allow byte—addressable Fi?es

YAV

.

3.9.2. SEEK

SEEK <number>, <expression>

The SEEK statement will set the read/write pointer for the file indicated
by the <number> expression to the integer part of the second <expression>.
The next INPUT or PRINT will read or write that record (unless another
SEEK is done first, of course). For consistency:. the file number
expression in the SEEK statement may be preceded by a number sign (#).
The following statement will position file 7 to record 200.

2915 SEEK 7, 200

3. 9. 3. LOC(<i>) — Function

~The LOC function takes a file number (defined by the OPEN statement) and
* returns the current value of the read/write pointer for that file. LOC is

defined only for Direct files. LOC may be wused either to save record
numbers in wvariables for later access, or in conjunction with the SEEK
statement for relative record access. For example:

1820 SEEK #5,L0C(5)-1

will back up file S to the previous record.
3. 10. Interprogram transfer statements

The CHAIN and COM statements (available in Extended Commercial and
Transaction BASIC) provide a facility which permits one program to
transfer control to another BASIC program stored in a disc file. The
CHAIN statement performs the actuval transfer to the other program, while
the COM statement permits the declaration of common variables "which are
passed to the new program when it receives control.

3.10. 1. CHAIN

CHAIN [#1<file name>[,<start line>]

The <file name> 1is a string expression which is taken to be the name of
the disc file containing the program to which control 1is to be given.
<{start line> 1is an 1nteger expression specifying the line number of the
first line of the program to be executed after loading the new program.
If <start 1line> 1is not sgecxfled. the new program will be executed
starting at the first line. f an asterisk aggears before the <file name>
expression, the <contents of the file wi be merged with the current
program, following the normal rules for BASIC line number editing. (That
is, the resulting program will be the same as if the lines in the
designated file were typed in from the keyboard while the running program
was ~in the work area.) If no asterisk agpears. the running grogram will
be reglaced bH)the program in the named file. CHAIN without the asterisk

("ful CHAIN is normall used when one program wishes to transfer
control to another, while CHAIN with the asterisk "~ ("partial CHAIN") is
vsed primarily bg grograms to load common ~subroutine packages or
configuration—dependent code.

When a full CHAIN statement is executed. all wvariables n
declared b a COM statement (see below) will be deleted. F
the original program will remain open, so the program CH
continue to access them. A partial CHAIN does not
variables.

ot previously
iles opened by
AINed to can
affect program

27

|

:
|

i

Marinchip 9900 BASIC User Guide

3.10.2. COM

COM <variable>[(<expression,...)]1,...

The COM statement declares one or more variables to be '"common". Common

variables behave 1like any other variables, but are not deleted when a

CHAIN statement is used to give control to another program. Hence, common

variables mag be used to pass parameters to the Brogram being CHAINed to
e

Variables to in common must be declared by a COM statement before being
used in the program.

COM variables may be either simple or subscripted.
If subscripted, he dimension

bounds must be specified on the COM
statement; a DIM statement is neither necessary nor allowed.

3. 11. Debugging statements

The debugging statements are ero
Yy

vided to ease the debugging of a BASIC
program. rogram debugging vusual

involves use of immediate execution of
statements (any statemen entered without a line number is immediatel

executed). Refer to the section on immediate execution in Chapter 4 o
this manual for more information.

3.11.1. TRON

TRON : ')

The TRON statement turns on the BASIC statement trace. This will print
each line before executing it. This allows the path _of program execution
to be determined when trying to locate a problem. The TRON statement can
be placed before the section of the Erogram known to have problems.,
avoiding tracing sections known to work properly. The TRON statement can
be used in immediate mode to turn on the trace before executing a rogram
with RUN. This will cause the entire grogram to be trace (ungess it
executes a TROFF statement to turn off the

t Tace). If the BASIC source is
not available (if the program was compiled and only the complied code was

saved), the trace will print only the 1line numbers of the statements
executed.

3.11.2. TROFF

TROFF

The TROFF statement turns off

the statement trace enabled by the TRON
statement.

3. 12. Machine—dependent statements

The machine—dependent statements permit a BASIC program direct access to
the memory and peripheral hardware of the computer on which it is
executing. These statements allow %reat power in BASIC rogramming., but

should be vused only as a last resor as they tie the BAS?C program to the
specific hardware configuration on which it was developed.

3.12. 1. INP(<{i>») = Function

This function returns the result from reading input port <il. See the
function section of this manual for a more complete description of INP.

3. .12 2. ouT

OUT <port>, <data>

The <{data> and <port> numeric expressions are evaluated. If either is

28

@

e

Marinchip 9900 BASIC User Guide

outside the range -32768 to 32767 an overflow occurs. Both values are
truncated to the range O to 255 bg clearin% the uvpper 8 bits, then <data>
is sent to the output port selected by <portl.

3.12. 3. PEEKR(Li>) - Function

This function returns the memory byte at address <{i2. See the function
section of this manual for a more complete description of PEEK.

3.12. 4. POKE

POKE <address., <data>

The <{address> and <data’> expressions are evaluated as numeric expressions.
If the <data’ expression is outside the range O to 255_ _an_ overflow will
e

occur. The <address> may be within t range —-32768 to 653535. The
ne%ative numbers address the memory locations correspondin to their 16
bi unsigned two’s complement representation. Note that POKE, like PEEK,

works on bytes.
3.12. 5. WAIT

WAIT <port>, <mask>C, <xor>]

The WAIT statement evaluates the <port>, <mask> and <xor> numeric

expressions. If <xor> is omitted, zero is used. WAIT then enters a loop
which reads from I/0 port <port>, exclusive or’s the value with <xor>,
and’s with <mask>, and continues to loop until the result is nonzero.

When the result is nonzero, execution resumes with the next statement.
The WAIT statement may be used to wait for a status bit to change on an
I1/70 port, and permits much faster response than a BASIC loop using INP to
read the port and the logical functions to perform the testing.

Marinchip 9900 BASIC User Guide

4, Using BASIC

The earlier sections of this manual have discussed how ¢to write BASIC -

1
i
i

o

programs. This chapter will discuss how to enter, execute, modify, and
save a program; in other words, how to use BASIC. BASIC is 1invoked from
the operating system by typing its name:
BASIC
The operating system will 1load BASIC, and BASIC will issue its command
romgt, which is a right corner bracket (>). When this prompt appears,
ASI is in comman mode and ready to accept either a statement or a
command. :
4. 1. Entering statements

Statements may be entered at any time sim

ng bz typing & 1line number
followed by the text for the statement. The statement will be inserted in
the position in the grogram indicated by its line number. If a

statement
already exists wit

he same line number as the statement)just entered.
the new statement will replace the existing statement. By using the AUTO
command (discussed below), the wuser can

cause BASIC to generate line
numbers for statements automatically. This can eliminate the

time—consuming and error—-prone task of manuvally typing line numbers when-
entering a program. ‘ ’ n

4 2. Deleting statements

If a line number is t?ged with nothin? following it, the statement with
that line number wi be deleted. f no statement exists with that line
number, nothing will occur.

4. 3. Immediate execution of statements

If a BASIC statement is entered with no line number, it will be

in "immediate mode", that is, right away. The statement will operate in
the context of the most recently RUN program. If no program has been run,
the statement will execute in an empty environment. Immediate execution

allows BASIC to be used as a desk calculator. An example of suvch wuse
follows:

executed

A=14

B=2

PRINT A, B, A#B

14 2 28

=

Immediate execution is also a powerful tool in program debu?gin%. When aﬁﬂ
program errors and BASIC returns to command mode, a he program

variables are left around with their values at the time of the error.
They can be dumped or changed by the user with immediate mode commands,
then the program execution can be resumed by tgping in a GO TO statement
in immediate mode. Sections of a program can be tested by inserting a
RETURN statement after them, setting up the variables used by that section
in immediate mode, and perForming a GOSUB to the section to be tested.
The section will be executed, and the RETURN will cause a return to
command mode. The wuser <can then examine variables with the PRINT
statement to see the results of the execution of the section of program.

Only one statement may be typed on a line when using immediate mode
execution. :

4. 4. Commands

BASIC commands control the loading., saving, execution, and_ listing of

BASIC programs. These commands may be entered when the BASIC command

prompt (>) appears. BASIC commands may not be used as statements in a
program.

30

IR

QYest o 20

=S K

TR

-
|
Al

-
L

3

]

—

Marinchip 9900 BASIC User Guide
4.4 1. AUTO

AUTO <start>,<increment>

The AUTO command will cause BASIC to automatically generate line numbers
for statements typed by the user. If {start> is specified, the numbers
will begin with tha number, and each number will increase by the
specified <increment>. If <increment> is omitted, the <increment> used in
the last AUTO statement will be wused. If this 1is the first AUTO
statement, an <increment> of 10 will be used. If <start> is omitted, the
line number of the last statement added to the program will be used, plus
the <increment> in effect at that time. Once the AUTO command 1is given
the wuser will be prompted with the line number for each statement. The
user should enter the text of the statement. Entering a null line (just a
carriage return), or the occurrence of a syntax error will terminate AUTO

mode. If the line number prompt is followed by an asterisk (#), a line
with that number already exists in the program and will be deleted if the
user enters a statement. If this is not what the user intends, AUTO mode

should be terminated by entering a null line.
4. 4 2. BYE
BASIC will exit to the operating system. Be sure to SAVE your progrém

before entering BYE iP.zou want to preserve any changes made to it since
the last SAVE done on it.

4.4.3. COMPILE

COMPILE: <program name>

Any program in the work area is discarded. The specified <program name>
is read 1n and compiled to executable code. The source program will not
be 1loaded into memory. If <program name> is not specified, the user will

be prompted for it by the message:
0ld program name?

Once a program has been COMPILEd, it may be RUN but not LISTed or
modified, as the BASIC source code is not present. COMPILE is used to

load debugged programs for execution. as it makes much more memory
available for execution—time storage, since the source Erogram is not in
memory. For programs which are under development, the OLD command (see

below) should be used. .
4.4.4. CONTINUE

CONTINUE

The CONTINUE command is used to resume execution of a program halted by _a
PAUSE statement, a Control C from the console, or an execution error. f
the program was halted by PAUSE or a Control C keyin, execution will
resume following the statement at which the halt occurred. If the program
was stopped by a runtime error, the CONTINUE command will reexecute the
statement which failed, in the assumption that the user has corrected the
problem that caused the failure by modifying that statement or changing
variables by immediate mode statements. :

4.4.5. LIST

LIST <start>,<end> .
Lines of the program will be 1listed. If <start> and <end> are both

omitted, the entire program will be listed. If only <start> is specified,
Just that line will be printed, and if both <start> and <{end> are

31

]

- . . o

Marinchip 9900 BASIC User Guide

tg tatement numbers within the inclusive range from
i

s
e listed.

4.4 6. NEW

NEW: <program name>

Any program in the work area is discarded, and a new program is defined
wi%h the specified <program name>. The <program name_. should be the name
of the file in which you intend to store the program. This may be any
valid operating system file name.

If the colon and <program name> is
omitted, the user will be prompted for the program name with the line:

New program name?

If you have been modifying a program and wish the chan%es applied, be sure
to 30 a SAVE before loadin?da new program with NEW. I

) you don’t, the new
rogram will overlay the o one in the work area and your changes will be
os% without a trace.

4.4 7. oLD

OLD: <program nameZ>

Any program in the work area is discarded, and a program is read in (‘t‘om:.".l
the file <program name>. If (gro%ram name> is omitted, the user will be
prompted for the program name by the message:

Old program name?

Any program Ergzi
i

ously in the work area will be overlayed by the OLD, so
be sure to SAV if

you wish changes made to it to be preserved. As the
program is rvead in, it will be compiled and syntax checked, so if errors
are detected in the OLD program, the error messages will be listed as the

file 1is read. Ang line in the OLD file which lacks a line number will be
printed and discarded.

4. 4.8. SAVE

SAVE

The program in the work area will be written to the file name specified as
<program

name> on the last OLD, NEW, or RENAME command. If none of these
commands has been issued, the message:

Rename your program before saving it!

will be issved and the command will be i g

nored. The output file used byzs
SAVE will be automatically created when BASIC is run under the Networ
Operating System. Under the Disc Executive, this
Y

file must have been
previous created from the system console.
4.4.9. SAVEX

SAVEX:<file name>

The executable object code for the current program in the work area will
be written to the file designated b

3 <file name>. If <file name> 1is not
specified, the user will be prompted for the file name by the query:

Object program name?

The executable object code is sufficient to execute the program, but does

not contain the source code which is saved by the SAVE command. Files

written by the SAVEX command may be 1loaded using the OLD or COMPILE

gnga?ds (which are equivalent, since no source code exists in SAVEX
1l1es),

or in properly—configured systems may be executed simply by typing

32

C—

)

L_A 44‘

[
—

Marinchip 9900 BASIC User Guide

their name as a system command (the operating system will auvtomaticall

load the BASIC execution monitor and run the program). The SAVEX comman

may be used for several reasons. First, programs saved with SAVEX are
normally much more compact than the source code, so more programs and
larger programs mag be stored in the same amount of space. Second,
programs saved by SAVEX cannot be listed or modified by the user (since no
source code 1is saved), preventing theft or wunauthorised <changes 1in
software provided to others. Third, since SAVEX-generated programs can be
called directly from the console, BASIC programs can be calle like any
other executable programs without the user being required to learn how to
invoke BASIC and OLD the desired program. The output file used by . SAVEX
will be automatically created when BASIC 1is run under the Network
Operatin? System. Under the Disc Executive, the file must have been
previously created from the system console.

4.4 10. SCRATCH

SCRATCH
All lines stored in the work area will be erased, but the current program
name will be retained. This command is wused when totally rewriting a
program.

4.4 11. RENAME

‘RENAME: <program name>

The program in the work area is given the specified <program name>. A
subsequent SAVE will store the program in the file b? that name. If the
colon and <program name> are omitted, the user will be prompted for the

program name with the message:

New program name?
4.4 12. RUN

RUN
The program in the work area will be executed, starting with the 1lowest
numbered statement in the work area.
4. 5. Stopping a program
An executing BASIC program may be stopped by pressing the Control C key.
This will cause the message:

Break in <line number>.
to be typed, and control returned ¢to the command handler. The BASIC
command prompt "' will Treappear. At this time, the wuser may vuse

immediate mode statements to inspect and alter program variables, and may
Tesume execution of the program by executing a GO TO from immediate mode.

33

