e

Marmch’

USER GUIDE

by John Walker

Sy
3 O .’

*‘p Sgstems

Mm Valley, CA 94941
' ‘:}- YL :

1. Introduction el eeeeeenoceenaoeennens 1

R EE R E T 1
1.1. Notatlon oo iner st eneeasessnsceeasccnannssncsecssecnenanesss >
1.2 Acknowledoements & it eieeresenascocsocossonansosasennsans =
2. lsing RBASIC ...eeeravsns ceaseans c s e s amEs s Euseraasennnenns =
2.1, Disc Executive 1nstructions c.eeereeeesncannenasnnas B
2.2, Network Operating Svstem instructions o...eeeececraensss o
2.2.1. Converting praograms from Disc Executive .sovecenveenr.- 7
Z2.2.2. WUsin2e hard disc .ieeenenesas fesss s masassans. e enssesens 7
2. Lansuagse syntazx c.ieeeees eressnnsamcs cessmeasceamssansansnnn 4
2.1. Statements00.. cessanna csesassenas P aeeesassersean =
Zeluile Line MUMBErS wueeeeveececaannanannnsssa e e ieeseaeaaeas -
2.1.2. Continuations .c.ieeeceeecnanssanannson e e e s e s e 10
Z.1.2. Multieple statements pPer line ..ou... s s s s ssasssnesanoa 10
Z2.1.4. Significance of SPACES teeeaceasssccnoncs e ssresenas s 10
B ST 1 (11 (T 4 o= 10
S.2.1. REMARE Ztatement ...c.eeececrecannnocsccnnnnannsansancannss 10
3.2.2. Embedded comments esaesasean cas e sasessaasaaasn 11
Z2.2. Constants i e s essseanas s e e ansEsas e asaE o 12
Z.2.1. Integer constants erssasens e e s saseensasaseannans 2
3.2.2. Real canstants s.icieienaanaaana. teesesanaaaaana e 12
2.3.3. String canstants c.ceiceeenns cessssamsemecanaens esaas 13
2.4, Variable namés ..eeeasssncasnss P eeseamssensesaasenuanan 1z
Z3.4.1. Subscripted variables esennma e esass escasssenenaa 14
ZeT. E%Pressicons c.cecescassnsesns casssuns es e manana T
3.0.1. OpPerators coieienencannnceens teesrrrarsssaarasaan s 1%
2.5.1.1. Arithmetic OPErators cveeeseeeeroeeoncerennnns R
T.T.1.2. Relational orPerators cesesasbanessassasesaanns 14
S350 3. Logical aperators coeievesese. e nass crssseasaasw I V4
2.5.2. Order of evaluation .c..ceerecereeencanaoncess e eee e 17
4, Assianment and control statements000.0... ceasanans 12
4.1. LET (assigarment) statementcceecnnrcnccssosessnans 1%
4.2, GOTD statement ceeniee e veenns et e s e s srsEEs e E e a e 1%
4., %z, GOSIIB statement @ .ttt it et i cnasan s ansaananannnann 1
4.4, RETURN statement ... eveereeeeennsaansnnenanasanncasrss 20
4.5. IF statement ... cnenn c s sassseeseseaesssenanaen= 20
4.5.1. Zingle—=line IF .ticeueieveccannasonnnnssasnscnsnanssnsac 20
4.5.2. Block IF statement ... ceesneennercannsscanasnsanssssas 21
4,.5.3

T IRC I ENDIF statement ..ot eeenccncsnnnas ce e e e e s e s m e 22
4,.5.4. ELSEIF statementv... f et esasesensesacer e 22
4.5.5. ELSE statementt iiitiecencerencnscarssansnsnnaan =2
4. A, WHILE statement c e s mms e aesenEms e an e aane s =23
4.7. WEND statement .cucceerennresracsennnsnsonasssansansnsan 24
4.2 FOR statement cvereerecenssccnnnasannnces s e senseasne s 24
4.%9. NEXT statement earaann er e s mun e .o 25
4

.10, EXIT IF statement c e s essmes s acasEannn ceaeasmn =5
4.11. ON statement cc.vececancas sseses s e s s s encanamane s ems oh
4.1=, STOP. statement coeeececeannnananes s e ssmscemses s m e 2t

4.1=., RANDOMIZE statement creesaaasenas cesseean- e =27
4.14, DIM statement ceveeeecase cecasacmnas P eemaeen memee s =7
4.15. CHAIN statement ...eeemenns 2=

B.14. COMMON StatemEnt ool eeeeeeeeenencennns S, =9
S Predefined functiaons ...neceerccnannnecnnas : =1

! E RBASIC User Guide — Table of Contents
S.1. Numeric valued functions ... eeeieeeeneneeececnccnncnans =1
{75.1.1. ARS(X) — Absolute vAalUE ... eeeeeccccnssascccacnnnnasns 21
| ﬁ.l.Z. ACZ(X) - Arccosine ccesenases ceasaas ciesens cee. 21
S.1.2. ADRZ(X) — Address of variable ...ccccecannccacs eeeeaa 32
—2.1.4., ASC(A$) — ASCII Code ...t ieeeerernecenneccnonnsnnnnens 32
3?5.1.5. ASIN(X) — APCSINE ... ceeeccccssccccsnscscncasasacncananss =2
IS5 1.6, ATN(X) ar ATAN(X) — Arctansent .veeeeeeen.. s eeessassss 32
" 5.1.7. CO5(X) — Cosine teecsssssssssssssessssssnsessas I
fks.i.s. COT(X) — Cotangent .eeeceeeeceanecanccaceannens S
" IS.1.%. CSC(X) — CoSeCant ceeeeeececcacaenes fereeeseaeeaaaa. =2
5.1.10. DATETIME(IZ) — Date and timé ..ccceecenansencsanncncas =2
"Y=.1.11. EXP(X) — ExpPonential Pescesssacssessasssssanes 232
! /3.1.12. FLOAT(IZ) - Convert to Realceeennnnnn.. 23
'S.1.12. FRE — Total free spPace available tveeeeeeeencnnancas 33
—5.1.14, INT(X) - Integer Part of Realccccccecncccncnss 24
‘55.1.15. INTZ(X) — Convert to Inteser ...e..ceeceneccas ceee.. 24
" 'S.1.146. LEN(A%$) — Lensth of stringceeeceecncecancncana. 24
.5.1.17. LOG(X) — Natural lagarithmccceceecacencncnanas 24
j S.1.12. MATCH(A%.B%,1%) - Search for Pattern in strinsg 34
“15.1.1%. MFRE - Largest memarvy block available ... eenecans 35
S.1.20. RND - Pseudaorandom number ...eeecececccscsancsnasnsss 25
MS.1.21. ZSADD(A%) — Strine Address c.iececececenanssns cesenas e 25
‘J5.1.22= SEC(X) — Secant .t..ciececencnccsscssscsscscssassscnsascsa 35
CS.1.23. 0 SGN(X) — Si9n ceeeeene csecesssssasesasssesssceaneans 26
—Te1.28., SIN(X) — S1N€ cceeceescanssascsscasassscssasssscasanassss ey
JWS.I.ES. SER(X) — SZquare root ..ceceeceecncacscasaannas cesaaes DA
731,260 TANCX) — Tansgent ...veeecnienenncnenns tesscsseaaas 24
S.1.27. VAL(A$) — Value v.ceeecennne Chececescsceceeaeaaeanas 26
\jS.Z. String valued functionseeiceencecncsnancnnnsnannnss 26
230201, CHR$(IZ) — Character from ASCII code ceeeeeeeces saens oA
S5.2.2. COMMANDS — Command string ..ceeecececescscansscncnssasnsas 26
" 15.2.3. LEFT$(A$,1I%L) — Left Part of stringcviereereacncens 37
| 5.2.8. MID$(A$,I%:J%) — EXEract SUBSEring «eueeeeeeeenennens 37
S.2.9. DOVERLAY$(A%$-.B%,1%) — Overlaw string ...ceeee creesssas o2
—S.Z.bh. RIGHT$(A%$.17%) — Right Part of string ... eeaaanns 33
15.2.7. STR$(X) — Strine representation of numberc.cceeae S
S.2.3. UCASES(A$) — JPPEP CASE .t ie vt ectsecascsssasaasssscansasas 33
}A llserr detined functions ... ecieeeecacssessccssacssanscsancanses 3%
~ihi1. Single line fFUNCEiONS v eeeeececacacsacssssasasanasacnsess 3%
A.2. Multirple Tine fUNCtionNS ceeecaceaasccacsasasasrassacacsnssscse 40
 %.3. Function calls ...iieiininninanannnn.. ceeee et 42
.4, Call bv referencec... c st essssesscsssssssssesnsnenns 42
17 . InPut and Juteput Statements i eeeieeneenccncccncnscnnsns 44
‘}7.1 Caonsaole and printer inPut/autPut (..t tiiieencercnncnsns 44
“'7.1.1. FPRINT statement oo eeeeereeeceennnsoseseenenensanees .. 44
T.1.2. PRINT UZING statement — formatted outPut oo 45
}]7.1.2.1. - Sinale character string fieldierenencenns 4%
7010202, /.../ — Fixed length string field (oieeieereecnncens S
7.1.2.2. % - Variable lencgth string fieldcccetccencacns 45
.’V.1.2.4. Numeric fieldS ceeeeeeennncacenneses feeenee cebesen- 44
7. 1.2.5. Forcing field contra) characters .. oeea.. ceesanns 4z
7.1.2.4. Matching of expPressions and fieldscceeccccnns 4=
710320 CONSOLE statement @i ieeeccacesacaceasasasascasaneansens 43
7.1.4. LPRINTER Statement ...u.ueeeesessesenenenenennencnnns 4%
7.1.5 Console/pPrinter outrPut functions & eeeeenes e 43
j} —ii-

—~——

0000 0 0D 00 00 00

[y

(=]

NNNNNNNNNNN

S WDWWRE R e

DD LI -

o~ ann

F

DO o8 o
L

[

TAB +function ..
INPUT statement .
Direct console inPu

CONSTATY functiaon

CONCHARYZ function
Praaram data inpPut

DATA statement ..

REALD 'statement ..

RESTORE statement
Array inPut/ocutrut

File inPut/cuteput ...

—

]
.

)
b

4.2,
4. 4.

2.5.

é'

2.46.1.

-

-
B.46.2.

2.7,

2.7.1.

0 000 00 00 00 00 E0 0D 00 G0 E0 00 00 G0 0

D

00 0 N0 0 0

&

"':I

0

s u « = 0 s = @ LI]
HHH»—AHHr—n»—lHHH'{n'@'{ll:lji:DtO

. Usina IBASIC files

NN AP FRRE -

[y

M=

-
'

S bW WW W R

4,32,

. « ® 8 s e = h.' [

HWN-

1

[R

2.7.2.

D
P

OFEN statement
CREATE statement ..

POZ function ...

t functions .
statements ..

FILE and GETFILE statements ...

READ statement

Sequential file variable READ

Sequential file 1

ine READ

Random file variable READ
Random file l1ine READ ..ovense

IF END statement ..
PRINT statement ...

E';equerltia] Fi]'&' PRINT s e s o= s

Random file PRINT
FRINT LISING stateme

l'lt ® o & s 8 v azsan

Sequential file PRINT USING ..

Random file PRINT
PUT statement

HSING

Sequential file PUT ... nen

Random +ile PUT .
GET statement

Sequential file GET ...a.. ceas

Random +ile GET .
CLOSE statement ..
DELETE statement .
MOUNT and DISMOUNT

statements .

LOCK and UNLQCEK statements

LE“:;I':: FILE Statenlerlt s a2 o uwmseoe

. UNLQCK FILE statement
. LDI::"’: I"C‘Cl)l"d Statem@nt > ®» a n o e®m
. UNLOCK record statement

File related functions c.eececae

RENAME functiaon
SIZE function ..

MOUNT and DOISMOLUNT functions

General tile characteristics ...
File organisation ...ccceceenceen

Stream files
Fixzed +files

ArPending to a stream file

Device files

File and record lockingcees

Using +file lock .
Ilsing recard lack

-iii-

o~ o~ nAnan o

oo O

RO R VIR R O]

70
70
71
71

72

73
74
74

S T =)
Gl p R

[N U N S N N N

[

-
w
L]

s
14
14,
’. &14.

15.
115.
18,
15.

JIS.

16.
1&.
1é.
16,
1A,
16,
Lié.
16,

)
J
|

1. Compiler:erroPR:MESSA9E@S 5hbisess

QABASIC User Guide ~ Table of Cantants

Y e T3 The-UNLDCK Pr OO R 6.6 » 5585818 6 ot o8 8 25 -8 v <8 +8 <0 5 <8 5 -8 o8 v6 @ <8 -8 & 8 8105 8

- T E - : - * . T T
Hardware and machlne 1anquase-4nterFa£e e eaeesmae.een e
1. Memurv inspect and change alils cee v eswtcmmecaceaemn amme
1.1, ZPEEK FURCTION. cit - avs o eve vt e sus e mre e o e e e <o <o 028 10 va o0 20 -0 <6 <8 o8 =0 <8 va 28
1.2. "POKE statement @ icannnecacccccumunncsccanascaa.cnmeane
2. Hardware inpPut.and outPuti3cis ceemwaacemeawawcmemnaess
1. INP funNClioff o ccwceswmeacmcwec—emmesrce ama.mesomarn sesss
20 DUT statemernt v en eceenwmcmmmmnca.nesemsas-a,camen.ansasses
Assemblw langsuagse iNterface cescaecewvecwaccascacssscaas
LALL statement Saes op7es eletalGis swnwsnnaesiunmacaa.ae s oo .0
Writing assembly: language. subroutines, cacveecscwaacae
Writing. assemblx:damauase FUnNItions, caweeeccweasnssea
Library entries- camiss ccadn s scali v saasmuvmnavacsaaemans
Llnkanq assembin damguagerwith. DBASILC ctveveeccanenas
T = Trrneer o InTegSer e
Pumplher dlrert1~esu.«&.5tn;nq.‘.,-.-,*.a,-,-..--....,_-

1. ZINGLUDE ~ CoPy S0UPrCe: Filem snewwssscsumaswasassacseea
2.5 ADERUG: =~ Prinpt. line humberssim &I TDr MESSADES . T ce e
2. . ADILAGNOSTILC = ComPider. debugsoina featlyre. cceescscsesan
4 Ianored compliler direcbiVes cearaccacenammaesesceamman-a

.
]

W LW WNM
R I TR

LA NN

» b 8

i

o Aol el Soon Ll AT ET R DL e e e e - s e e et x e e e
Zerarately compided routines. cocacccc i c e csccaascsancnaa
. Main.Proarams, subprograms,. and. moANles, - o e i scaaaaaan

SUBPROGRAM statement. cve e e cviccnsc s amwacsanaeameas
. ENTRY statementr o st camn e n e i e e

EXTERNAL statememt iuceccicnmsccwcnesncannananacscsenae
eI T SerAFAte- MOTU] ES. ceamenmemcmmeaccanaaoeacen s

EXTERNAL vamlahies insthe Jibrary. cecoeaeecssseeaseasasass

3 T imacs o ten Froan ST CAd9 e i s ek e an s
Re s=rved werds: (ke*mﬂrdsduuq.-........--.-_----...---..-
A s R D S S -0 o A SRS

. stra
Errar BieSS5a0€s iieuetabnidshesussbian

i D R A .-
S e s saa- AEas saeaca e aensn

=
1-;.--.p¢-1-cnm1n-¢.1
v

2. Second:pPass: ébrarsisihbt.vant ew b e T emevesweessmavenw
e Runt;me error cmdeqvnuuazmta.;sa.ct.mumwa....,...._..

of
L]
A

ComParison oF QBASIC w1th CBASIC .c.iceecnsvesncsaananannnnsns
1. Restrictions present. in. CBBASIC. ccicecensscsnrasassansaas
2. Features treated. differentlw. in. QBASIC. and. CBASIC ...
3. "Restrictioms removed in. BBASIC. caciensrsescscsvercnsnsrnsns
4, "Extensians: to LBAOI C. ccevcessnscsenssssvrsasssssssrsonvsae

Differences Frnm earllcr HBASIC re]eaqes csresascsennaens
1. Chapges 1nJre1ea5e e L it venssessavmassassssser s eana
1.1. TransParent chanoes tiiderE b snvnnsnasnssannrssrnssesnn
1.2. "Nantransparent changes..
1.3. Extensions .vercisoresat
2. 'Changes.in releasea-2:Q .
2.1.. . Thin9gs to-watch out for:
2.2 Extenﬂ1ons cdebimivesinTa®

TS TS L e e e e s s
- Z . e e e - - -
' = oL e 1 -
- .
L - . .y - - - -
s L= 55 .
ez e : ¥ a =
. -z i} L vt e a
| e e ot
R T T I
. 1 1 - -

<
an

SRRN

Q D) 00

ﬁNMw

3

LD

CmmoN

25
R=t]
25
2h
26
=7
[}
=
[}
[}
b=

GO0 NN

o) Q@ o)

0
—

92

29
160

. 100

100

- 101

N

e e

<

GRASIC lUser Guide

1. Introduction

RABASIC is a compPiler for BASIC which runs ons and producet code fuors
the Marinchirp 9900 compPuter svystem. The dialect of BASIC accerted by
RBASIC is essentially the same as that wuwsed by the CBASIC (tm)
compPiler (version 2) develorPed by Compiler Swstems of Sierra Madre,
California. Unlike CBASIC, a pseudo—campPiler which senerates internal
code which is interpreted at run time, RBASIC is a true compPiler,
which generates threaded code executable on the #3700.

Since RBASIC is a true compPiler, Pruograms caompPiled by it will
aenerally run much faster than progsrams run under CRASIC. Since the
comPiled pProgram is linked with the runtime librarvy, GIBAZIC saves
sPace by including only the suppPort subroutines required bv a proaram.
For exampPle, -if a pProgram does not use fleoating—proint arithmetic, the
floatina—-Paint Package will not be included in the executable pProgram.
A RBASIC program which uses a minimal subset of supPort routines will
aoccuPY less than 4K brytes when éxecuted.

The RBAZIC langwage, being essentially compPatible with CBASIC, is
suprerbl~ suited to commercially—coriented Prosrammins. Features such
as formatted cutput (PRINT LESING), random AaAccess files, and the
WHILE-WEND canstruct make for pPrograms that are easwy to write and
maintain. The Pravision of long variable names (up to 31 characters)
with full siganificance, and the fact that line numbers are resuired
only on statements to which control mawv be exPlicitly transferred (b
a GO T4 or EDSUUB, for exampPle)s removes the two major barriers which

rrevented development of large, compPlex Progsrams in earlier
of BASIC.

versians
RBASIC cantains numercous extensions not Present in CBASIC. These
extensions permit pPrograms to be more efficient and exPressive. and
remove several severe limitations in CBASIC. Prcearams which are
intended to run on beth lTansuases should, of cCourse, avoid use of the
esxtensions in QBASIC. A complete list of extensions and differences
between CBAZIC and ZBAZSIC appears at the end of this manual.

1.1. Natation
The fallowing na

Items enclosed in corner brackets, like <thisl, refer to informatiaon
suppPlied bv the user. The text will expPlain what should be suPpPlied.

Items . enclased in square brackets, like C[thisls refer to aptiaonal

information which mav be suppPlied if desired but is nat required by

the compiler. The text will expPlain the action taken when the
oPtional item is amitted.

The ellipsiss, "..."» indi&ates that the pPrecedine item maw be repeated
any number aof times. For example, the sample texxt:

EAT <meatl,<vegetable>[,<cheese>...]

would describe the following statements:

-1-

HBRASIC liser Guide

B
{
)
- EAT BEEF,FOTATOES .
' EAT PIREK.3SPINACH, CHEDDAR
(1 EAT CZHICKEN, CARROTS, BRIE. JARLSBERG, GORGIONZOLA -

*gzamples aiven in the text are given in UFPER CZASE tyre.
‘tompiler mavy be either upPpPer case or lower case. The
~dnput is insigenificant excerpt within Strine constants.

ﬁl'z- Acknowledaements

The QBASIC compiler was desigsned and impPlemented b
_valution Computing, Phoenix, Arizoena. Dan Drake of Mar
*jas responsible for the extensive testing required
zomPatibility between CBASIC and RBASIC, and several ext
.ﬁvstem which added convenience and pPower to the language

iJBASID is fully supparted by Marinchip 3Svstems.
resarding RQBASIC should be directed to Marinchip Svstems
;%ther Marinchip Product. :

InpPut ta the
case of the

Mike Riddle af
inchip Swvstems

ta insure
ensions to the

All qQuestions
> as for anvy

)

-—

S
——t

| [—

\,

—~————r

g

———

HBBASIC Iser Suide

2. llsins BASIC

This charter describes how to compile and execute QBASIC Prosrams.
This chapter assumes that wou have already written a pProperlv—Ffarmed
RBASIC pProgaram, and have Placed its text in a file using ane of the
standard text editors, EDIT or WINDOW. '

Beginnine with level 2.0, BBAZIC uses different libraries on Disc
Executive and Netwaork (COrPerating Svystem. This is necessary in aorder to
make ProrPer use of the file ftacilities in NOS without includinge larae
amounts of extra code in the library routines. Therefore, it is no
longer pPoassible to take a LINKed progaram from a Disc Executive disc,
coapPv it to N3 with the CONVERT utility. and execute it. See "Network
Operating System instructions” for more infarmation on transferrins
Prog@rams.

2.1. Disc Executive instructians

The Disc Executive version aof GBASIC is surpPlied on a diskette which
rerlaces the normal svstem disc in drive 1 while work with EBASIC is
beine pPerformed. One normally boots the svstem initially from the
regular svystem disc, then removes that disc from drive 1 and installs
the ZBASIC release disc. The EBAZIC disc cantains the utilities EDIT.,
IR, and CREATE/DELETE. as well as the GHBASIC compiler and its runtime

librarwv, 'sa this disc mav be wused Ffor most pProgsram development

functions as well as for actual GBASIC compilatinons.

Yaur GBAZIC program will normally be edited into a file aon disc Z.
You must alsa create a file for the relocatable code output from the
caoamPilation. and for the final executable proaaram. These files are
narmally Placed on drive 2. The normal namins convention used is that
the source pProgaram name ends in ".BAS", the relocatable in ".REL"> and
no tvpe designation is used after the abiect file rname. For example:

FRIMES. BAS — The ABASIC source Progaram
FRIMES.REL . — The relocatable code file
FRIMES — The executable pProaram

If the namine of files follows these conventions, and the program is
of moderate sizes the calls on the ZBASIC comPiler are very simpPle.
These simPle calls will described in the next few Parasrarhs. If
files are not named accarding to these conventiaons, or the source,
reloecatable, and executable files are not on the same disc, ar the
Ppragram is large enocugh to require a sepecial scratch file for the
comPiler, see the next sectiaon for the pProper commands to use.

The compilation is pPerformed by the command:
RBASIC <progaram>

where <pragram> 1s the rame of the pProarams includinge-the disc wnit

.but without the suffix .BAS aor .REL. For exampPle,

MBASIC Z/FRIMES

Ta aet a listing aof the Program as it is compiled, wvou can use:

-

{(- PRASIC User Guide
HBASIC <program,.<listinal

, bVhere <listing> is the file on which wvou wish the printed acutput, such
as PRINT.DEV. Note the two commas. For exampPles

;l HBASIC 2/PRIMES,,PRINT.DEV

‘IF errars are detected during the compilation, thev will be indicated
, pv messages identifyvine the nature of the error and the location where
“the comPiler detected the error. UOnce an error has bheen detected, the

t of the pProgoaram will be scanned bv the compiler to detect ather
orss but ne cutput will be produced bv the compiler. A1l errars
t be corrected before a relocatable output will be Produced.

~nce the pProaram has been successfully comPiled, it must be linked
I Yith the ABASIC runtime librarv. This is normally accomplished bw the
‘command:

f% QLINKER <pProaram

This will take <prosram>.REL. pPick up the necessary library routines,
f}nd write the executable output in file <pProgram>. In the exampPrle
_ibove, we would have:

(GLINKER 2/PRIMES

| .

"If the executable file has a different name from the relocatable, ar
rlt is orma different disc unit, see the end of this section.

)

|

¥}he liAker will pPraduce a memoary mapP for the prcaram, write the ohiect
program to the output file, and return to the oreratins swvstem. The
\leect Praaram mavy then be- executed simply bv tvpPins its name, for
—kzamplel

fg 2/PRIMES

"If the proaram files are not named <prosram>.BAS and <proaram2.REL. or

*hev are on different discs, vou must give the inPput and output file
iames exPlicitlvyse

- GBASIC <reloci={source>

|

.4¥ there is no pPeriaod in a name, the compiler alwawvs tacks on .BAS oar
.REL. Theretore, if +wou have a source file named "SDURCE" (with no

{}xxx atter it), wvou must enter it as "IOURCE."; for instance:

|
i
i
N

HBASIC Z/DUTPUT;SDURCE.

F}hich will compPile from 1/50URCE inte 2/0UTPUT.REL.

Jhe full form of the GBASIC compilation command is as follows:

| GBAZIC <relock[=<source>1[,[<{interpass>](>,<listinall

d'here Zreloc is the name of the file where the relocatable output of
Jhe coampiler will be pPlaced; “<source> 1is the name of the file

containing the BBASIC saurce proarams “<interPass’y, if spPecified, is

-4 -

|
B |

(

)

e ——
1
—

J

§
A

§
]

e

J
j
]

HBASIC User Guide

where the intermediate code pPassed between the twoe Passes of the
comPiler will be storeds and <listinme®, i+ sprecified, 1is where . the
Pproaram listing will be pPraduced.

If no =<source is aiven, the compiler will assume that the source and
relocatable files have the same name, distinguished bvw the suffixes
.BAS and .REL.

If no <interPacss® sPecification is given, this cade will be written
inta the file TEMP1% on the BBASIC release disc (or in the assumed

directarv, in case af NO3). <interpass> is uswuallwv specified on the
HDBASIC call anlv when compPiline a very larae proaram for which the
TEMF1$ file is insufficient in size. In such cases, a larae

intermediate file aon drive 2 1is usuallv created and named on the
OBASIC call. When compPiline a verv large pProgram. vau would use a
cammand like:

BBRASIC Z/BRAINSIM,Z/TEMP

In linkine the Proaram, wvou may want the relacatable and executable
files to have different names or to reside on different disc units.

In this case wvou can use the form:

GLINKER <executableX=<relac>

As in earlier releases of GHBAZIC, vau may alseo link the proaram with
the command:

LINK <obiectir=<reloc>,CRLINK
Ors in the Network OpPerating Svstems

LINK <abiecti=<reloc,@l:0OBASIC/ULINK

N

2 Netwaork COpPerating Swstem instructions

Usina PBASIC under NOS/MT is essentially the same as under Disc
Executive, but there a few changes which allow the use af the e=xtra
features aof NOS/MT.

The NOZ/MT version of BBASIC, like the Disc Executive version. is
supPrPlied on a diskette that is MQINTed in drive 1 to act as a svstem
disc while QBASIC work is being pPerformed. (Instructions faor copPving
PBASIC to a hard disc are at the end of this section.) Toe besin GEBASIC
work:

Tvpe DISMOUNT 1:
Remave the normal swstem disc and insert the QRASIC disc
Tvre MOLINT 1:

The OGBASIC disc contains the wutilities EDIT, DIR, and ZREATE/LELETE.
as well as the PBASIC compiler and its runtime librarwv, so this disc
mavy be used for most eproaram development functioens as well as far
actual ZBASIC compPilations.

Yaur 2BASIC proaram will normally be edited inte a file on disc 2.
There must also hbe a file for the relocatable code autput from the

~!

(, GEASIC User Guide

compPilation, and for the final executable pProsram. You need not
"REATE these in advance, since NO3/MT will da it antomaticallw when
sy compile and 1ink the progoram. The normal namine caonvention used
i: that the source eprogram name ends in ".BAZ", the relacatable in

LREL" and no tvype designation is used after the cabiect file name.
hr <amplesl

o PRIMES.BAZS — The 2QBAZIC source Progaram
‘i PRIMES.REL — The relncatable code file
e PRIMES — The executable proaram

't the namins of files follows these conventions, and the Prosram is
F moderate size, the calls on the BHBASIC compiler are very simprle.
These simpPle calls will described 1in the next few Paragsrarphs. If
"M les are not named according to these conventions, or the sacurce,
locatable, and executable files are not in the same directorwv, or
the proaram is large enoush to require a special scratch file for the
1m:'JmPilel'-, see the end of the pPreceding section for the Proper commands
j,L use.
\;) .
Befare pPerforming a compilation, vou must ASSIIME a directorwv. GRASIC
Wfﬁll use this directory to hold a temporary file wused in the
_empilations therefore, the directory should be a pPrivate one. not
ac-essible to anvone else wha misht be using WBAZIC at the same time.
((he obviosus «choice of a file to ASSUME is the one in which wvour
! E]ocatab]e and/or executable pProgsram will ao.

MHMith the normal conventions for naming the files, the HBASIC
| mmPilation is Performed by the command:

HBASIC <pPragaramc
|
~WL act a listine, the command is:
f% RBASIC <program>,.<listinal

AJhere £listina® is the file in which the listine will be produced,
‘chh as PRINT.LDEV. Nate the two commas.

a perform a normal GBASIC caompPilation, one miaht use commands such

\J ASSUME 2:PRIMEPROG
PEASIC PRIMES, . PRINT.DEV

I+ errors are detected durins the compilation, thev will be indicated
(jv messages identifvine the nature of the error and the location where
ihe compiler detected the erroar. 1Once an error has been detected, the
Fest of the Prosram will be scanned bv the compiler to detect other
rrars, but no output will be pProduced by the compiler. A1l errors
?uqt be corrected befare a relocatable output will be Produced.

Once “the-Praoaram has been successfully campiled, it must be linked
Jlth the FBASIC runtime librarv. This 1s accomPlished by the command:

GALINKER <Progaramc

K

P

\

RBASIC User Guide

For example, te limnk the PRIMEZ proaram mentioned in the ea0rl-
comPpiler call abave, vou would use:

HLINKER FRIMES

The linker will Proaduce a memory mapPp for the Prasram,. write the obJezs,
Program to the ocutput file, and return to the apPerating svystem. The

object epragram mavy then be executed simplv by twvePine its name. for
\
exampPle:

PRIMES

I¥ the executable file is to be in a different directory from the
relocatable, wou can 1ink the pProsram?

BLINEER <emecutablel=<rel

o

D)

See the end of the pPreceding section for more information.
2.2.1. Converting programs from Disc Executive

If +waeu have ‘a prosram that has been developed wunder the Disc
Executive, it is easv to carrvy it aver to NOZ. Zimplvy use the CONVERT
utility to copvy Program.BAS and prosram.REL (if +ou have both) ta the
NDOS disc. Then 9o throush the LINK pProcedure described above, to make
the executable file. It is not necessarv to recompile the Pprosram
with GBASIC if wou already have a REL file. Remember, thoush,. that a
Pprogram which uses file rnames may have to be modified to use the
slightlv different file naminsg conventions that arply in NOZ. For
programs that want to know which svstem they are rumnins under, see
the section "EXTERNAL variables in the librarv.”

HBASIC data files can be carried over directly bw the CTONVERT utilitw,
with noe change.

b B B

222, llsing hard disc

The entire BBAZIC system can be copied to a hard disc, with all its
advantagses of large carPacitw. high spPeed, and lack of constantly
mounting and dismountine discs. A1l that is required is to copy the
PrarPer files from the release disc to the hard disc. The release disc
includes a script to automate the proucess. Bath the script and the
instructions given here assume that disc 1 is a hard disc and disc 2
is a flarpPvs if this is naot the actual configsuration, the instructions
should be modified appPropriatelw, and the script should be edited
before use. The pProcedure is as fallows:

1. Log in as the pPrivileged user. (Z¢e the section "Privilesed
mode"” in the NI3S user guide.)

2. Put the ZBASIC release disc in drive 2.

3. MIUNT 2:

4, I+ the svstem does not have hard disc on unit 1 and floappv disc
on unit 2, edit the file RBASIC/HOIZC.ZCR on the relewase disc.

S. SCRIPT Z:BASIC/HOISC.SCR

A. DISMOUNT 2:

'J The opPeratina instructions for QBRASIC are exactly the same as in a

g

-7 -

T Y DSc SySIEM.,

|
|
|

o~
fa 1 o——\

R L L e o) o .

[

—_— o
—) [

— _w,

GERASIC User Guide

2. Language syntax

This charter describes the campPonents that make up a DRASIC “ proaram
arid gives the rules for combining these components to form compPplete
QBASIC pPrograms. Subsequent chapters will describe specific QRAZIC
statements.)

3.1 Statements

A BBAZIC pProgaram consists of one or more STATEMENTS. Each statement
Pperforms a specific function in the language, such as assigning a
value to a variable, readine or writine data, transferring contraol to
anoaother statement, aor makine a decision.

RABASIC statements are written in free faormat: anv number of
statements mav aPPear on one lines or one statement mav continue for
any number of lines (there are a few exceprtions to these ruless thewr
will be noted in the text).

Z2.1.1. Line numbers

Anv statement - (excert the declarations COMMON. ENTRY. EXTERNAL, and
SUBPROGRAM) mar be pPreceded by a LINE NUMBER. Line numbers are used
tae identifvy statements t¢ which control is transferred by a GOTO,
GZUB, ON, or IF statement. Althoush anv statement mavy have a line

number, onl v those statements tao which contral "“is explicitiw
transferred must have line numbers. In general, Programs are easier
te read and maintain if line numbers are used anlv when required, as

it is easvy to identifv the flow of contral in the Praosram.

Line numbers cansist of strings of digits and decimal Points, with
artianal expPonent specifications. A line number may be of anv.lenath,
but only the first 21 characters are sianificant. The first character
of a line number must be a decimal pPoint or a digit; subsequent
characters mav be decimal pPoints, digits, the letter "E": or pPlus or
minus sigsns. Note that line numbers are treated as svmbals br the
comPiler, not as numbers: hence the line numbers

1234 and 1Z34.00
are distinct.

Unlike other versions of BASIC, RBASIC line numbers need not hbe wused
in ascending numeric order. Line numbers are simPlvy statement labels,
and mav be used in any order desired bv the Preesrammer, as long as no
twoa statements have the same label.

The followine are valid QBASIC line numbers:

1

0100
22L7L2.332
1.22E-3
AH.QOZE+2Z
21415946235
. 2IAT7E3

—-J—=

/!

-‘y"]

1 217.50.0320

- 1:2.....-...-22.....-11
} .. .E++—,72-CFEE. - -

RABASIC User Guide

-
|
2.1.2. Continuations

f atements may be continued from line to line throush the use of the
backslash character, "\". When a backslash is encountered, the rest
of the line containins it will be isnored, and the statement will Ghe
y pntinued onto the next 1line. A backslash mavy be used wherever a
sPace may be used, but mavy not be used in the middle of kevwords,
X}Piable names, or constants. .

ijI.S. Multirple statements Per line

ry1tirle statements may be written on one line by serparatine them by
) nen . . .
« ylons, t". Any number of statements may be written on one line in
this manner. See the description of the IF statement later in this
Wlnual for impPortant uses for this feature.

&‘ASIC allows REMARKs to be added at the end of anvy statement (excert
a DATA statement) without the need for a colon before the REMARK. See
{ fe description of the REMARK statement below for more information.

| \

In CBASIC, the statements DATA. DEF, DIM. and END must apPear on lines
‘ themselves, and IF must be the first statement on a line. MGBASIC
[Kmoves these restrictionss these statements mavy be combined with each
ather@aaﬁﬁmith other statements as 1leon9 as thevy are separated by

I}lons.

.1.4. Significance of spPaces

; i} QBASIC, spPaces are sisnificant. This means that whenever two words

x~pear adjacent to one another: dne or more spaces must arrear to
separate the words. Also, no spPaces may aprPpear within words or
i Imbers. Wherever one sPace 1is pPermitted. any number of sPaces maw
i Jrear. GBASIC”s handlins of sPaces is identical to CBASIC’s.

?72. Comments

UBASIC offers two wavys of includins comments in Prosrams: the REMARY
statement, whick 1is compatible with CBASIC and manv other BASIZ
iKPlementations, and the "embedded comment”, which was borrowed from
"=2scal and is often far more convenient to use.

7%§ither ferm of comment occupies space in the executable pProaram
nerated by the compiler, nor does the inclusion of comments affect
“he execution spPeed of a program in any wavy. Hence. the user should
7 el frees and is stronslv encourased, to include comments describins
\Vk function and oreration of RBASIC Prosrams.

“h2.1. REMARK Statement

~ [<line number>] REMARK <text>
¢£ [(<line number>] REM <{text>

;J - -10-

|

HDBASIC lser Guide

A REMARK statement,. which mawv be atbtbreviated REM. is used to include
comments in a pProgsram. The rest of the line followinoe the word REMARK
or REM will be totallvy isnored by the compiler. If a <line number 1s
Ppresent, it mav be used as the obiect of a GO TO or other control
transfer statement. Noate that a srPace must follow the waord REM aor
REMARE.. Note especiallw that since the compiler ignaores the <textl in
a REMARK, a calan mawvw not be used to include a statement on a line
faollowine a REMARK. For exampPle, the following statement:

100 REMARK Set A to 1 @ A=1

is totallvy a REMARK. The statement A=1 is taken as pPart of the REMARK
text and is naot executed.

The only exceprtion to REMARK tesxt being totally ignored is that a
backslash, "\", mav be used to continue the REMARK onto ancther line.
Hence, the fallowine is permitted: .

120 REMARK. This eprogram sorts an inpPut array \
and stores the sorted.cutput in \
a disc file.

Be «careful not to use a backslash in a REMARK bv accident, as it will
cause the next line to be igsnored, resardless of its content. This
feature of coantinued REMARKs is compatible with CBAZIC, althoush the
CBASIC manual does not mention that REMARKSs mav be continued.

An unlabeled REMARK statement maw follaw any other statement withaut
an intervenina colon. Such a REMARK turns the rest of the line after
the word REMARK into a comment. For examples-

ZORCH=YIBBLE+FRIZZBAT REMARK Compute sum

This feature is compPatible with CBASIC. HBASIC proarammers may +find
that "embedded comments", described btelow, are more convenient.

-

Z2.2.2. Embedded comments

PDBASIC treats all characters occurringe between a left curlw bracket.
"{", and a right curly bracket, "}", as a comment. The entire comment
will be treated by the compPiler as esuivalent to a single spPace. and
hence mav not be embedded within a name or constant. Embedded
comments are not recoanised within Strine constantss so curly brackets
mav be used in Strime constants without difficultv.

Embedded comments do not "nest". An embedded comment is terminated by
the first rioht curlw bracket encountered, recardless of whether anvw
mare letft curly brackets were encountered first. Embedded comments
may continue from line to line, and hence are useful for includins
larae block camments. The followine are examPles of embedded
comments:

A=B#ZIN(C) C Cohpute next element 3

 ““@=FN.DDMP(PREV.DATA { 214 data 2, TRANS.ID (Op code)

HBASIC User Guide

PRINT "Result is "3FINAL.RESULT { Print the result
ji from the computation and
label it for the user 1}

.t Constants

Constants are elements of the languagse that stand for values. There

~re three tvres of constants in @BASIC: INTEGER constants, which

i tand for Positive or nesative whele numbers, REAL censtants, which

represent decimal fractions, and STRING constants, which represent

STPIHSS of characters.

; 1. Inteser constants

gtaqer constants are whole numbers in the inclusive ranse from —-32767
+32767. Integer constants are written without a decimal Point, as

any number with a decimal pPoint will be taken as Real even if the

£r1ma1 fraction is zero and the number is within the Integer range.

teser values are stored by GBASIC as sixteen bit two’s complement
bxnarv numbers.

2}teser constants mavy also be written in hexadecimal by preceding them
with a leading zero. The followins are hexadecimal constants:

|
L,

Noate that a leading zeroc must not be used on a decimal constant. as it
(p31d cause the constant to be interrreted as hexadecimal. This
f;nvention for hexadecimal numbers differs from CBASIC, which uses a
trailing "H" to denocte such numbers. CBASIC”s trailine "B" for binarv
f?mbers is not suprorted in QBASIC. '

fl 0100 OFFC Q1BOC

3.3.2. Real constants

™

}}a] constants are of the form:

- [<sign>1<whole>.[<frac>I[E[l<esian>1{expPr>]

L

(here <sisn> is the optional sisn of the number (+ or =), <wholel Iis
the digits for the whole rPart of the number, <frac> is the digits far
e fractional pPart of the number, <esisn> is the septicnal expanent
?Sﬂv and <exP> 1is the power of ten to which the number should te
raised. '

j)te that a Real number must contain a decimal pPoint. The onl-
exception is that numbers with no decimal point are treated as Real if
theyv are too largse for Integer representation (absaolute value areater
ﬁﬁan 32767). Real numbers are stored by GBASIC as double pPrecisian

mbers with 14 or more digits of accuracy. The ranse of exPonenss
rermissible is between 1.0E-44 to 1.0E64. The followins are Proper:w
frrmed Real constants: .

;;;;;

R

0.0 1.0 -18.2133 1.238 .1 O.

:i 0.000121 3733731.223E4 -1.225E-54 999999

S . —12-

GBASIC User Guide ¢
3.3.3. Ztrine constants
A Strine constant ‘represents zero or more characters. A Strins
constant is written bv enclasing the characters in Qquotation marks,
("), A simpPle Strina constant might het

"Cosmic muffin”

A aquctation mark can be included in a strine by writina twe adiacent
quoates. For exampPle, the text:

"Halt", I said, "I“11 shoat”.
wanld be written as a string constant as follows:
"UUHalt"", I =aid, ""I“11 shoat""."

The string with zero characters is called the NUILL STRING, and 1is
written as: ’

Since all characters other than the guote mark are taken as pPart of
the string text,. string constants mavy not be continued onto multirle
Tines, nor mav they contain embedded comments.

Z.4. Variable names

VARIWBLE NAMES are user—defined names which may be assisned values.,
-As for constants, there are three tvyrPes of variables: Integers, Reals,

and Strinas. The tvPe of a variable name is 1indicated bv its last

" character.

Variable names consist aof a letter followed by letters, numbers, and
Pperiouds. A variable name mavy be of anvy lengsth, but onlv the first 321
characters of the name are sianificant. The last character of a
variable name identifies its tvre: if the name ends in a pPercent
sian, AL the variable represents an Integers; if the name ends irn a
dollar sign, "$", a Strings and if it ends in neither a Percent nor a
dollar sisn, a Real.

HBASIC s reserved words (statement names, function names, and sa an)
ma¥ not be used as variable names. At the end of this manual a
comPlete 1list of RBASIC reserved words is given. Because of the
canvention used to identify user—defined function names, na variable
name mavy begin with the letters "FN".

ExampPles of Real variables are:

J I INDEX NEW.VALLE .
MAXIMUM. MEASIIRED.S0.FAR J%920 @221.INDEX3

Examrles of Integer variables are:
CLOOP.CQUNTERYZ. J% T1902.B77%
Examples of String variables are:

;13_

< @BASIC User Guide
A% CUSTOMER.ADDRESS.LINE1$ @Q7..5..%
Mr%e that the sariables:

A I 1% . 1%

|
@LL all distinct: thevy represent a Real. an Intesger, and a Strina,
and may all occur in the same Prosram and have no connection with each
o her.

D
A11 variables have values associated with them at all times. If an
I=teaer or Real variable 1is used before it is assisned a value, it
W 11 have a value of zero. A String variable will have a value of the
nxll strina ("™). Inteser and Real variables take on values within
the 1imits described above for Integer and Real constants. String
Vv [riables may be assisned any strins desired. There is no limit on
t.le lensth of the value assigned to a strins variables the only
limitation is the memory available on the compPuter.

=
)
3;%.1. Subscrirted variables

V=riakles may represent vectors or arravys of wvalues by being
s lbscrirted. Subscripted variables mavy rerresent Intesers, Reals, or
Strinss, like anvy other variable, but must always be wused with a
siubscript 1ist which selects the specific vatue beins used. Unlike
djn—subscriPted variables, subscripted variables must be declared via
t.’e DIM statement before beins used (see the description of the DIM
statemetit " later in this manual for details).

{

ﬁ]e followine are examPles of references to subscripted variables:

METER.READING(3,12) TEMP(QRZL.DTIME.R+12)

| IVAL%(IDX%) CANNED.MESSAGES (CONTEXTY%.MLINEZ)

|

]

=

Ttbscripted variables mavy have any number of subscripts, but the
njmber aof subscripts used must agree with the number decltared in the
LiM statement. Subscript values must be numeric: an error will cccur
if a string is used as a subscrirt. If a Real value is used, it will
ﬂ raunded to an Inteser. For greatest efficiencw. all subscrirts
¢ lould be Intesers. Subscripts range fram zero to the hishest value
declared in the DIM statements a subscript outside the declared ranse
u}ll_cause AR error. ©

L B .

The handlins of each item in a subscrirpted variable is exactly as
f7scrfbéd“above for non—subscripted variables. '
wate that a subscripted and non—subscrirted variable are distinct,
<

zven if thevy have the same name and tvypre. For exampPle. the follawins
.?atement=

, V=v(2,3)
"} completely wvalid. and sets the non—subscripted variable V to the
value .0f .the designated element of the subscripted variable V. This
" 31les combined with the distinctness by tvrPes mentiocned above, can
{Jsu1t in statements as sillvy as:

j‘ ~14-

C

A o
i i)

- o

GBASIC User Guide

ARE=AS(A(AL) . AZ(A))

which cantains six completely different variables. lsers are warned
that extensive wuse of this "feature" can lead to progsrams that are
very difficult to comprehend and exPensive to maintain.

Z2.59. Expressians

ExPressians are combinations of canstants, variables, and functiaon
references, with OPERATORS. ExPressions, like constants and
variables, take on values of tyrPe .Inteser, Real, and 3String. The
rules for determining the tvprPe of an expPression will be explained
below.

The simpPlest expPression coansists of a single constant or variable
name. In that case, the expPression”’s value is simply the value of the
constant or the current contents of the variable. More compPlex
exPressions are formed by combinins values with operatars, which are
discussed in the followinge section.

L

Z.5.1. Operators

Operators are used, alone with the normal rules of alsebra, to modify
and combine canstant and variable values. dperators fall into several
subarouprs.

3.5.1.1. Arithmetic opPerators

o

+ = % / MOID

The arithmetic orPerators have their normal meanings of addition,
subtraction, multiplication, divisian, and expPonentiatian. If the two
values combined by the opPerator are both Integer, the result will be
Integer. If the values are both Real, the result will be Real. If
the values differ in twvprPe, the Integer value will be converted to
Real, then the operation will be done in Real arithmetic +wieldins a
Real result.

Naote that the result aof division of two Inteaers is the whoale pPart of

the result, with any remainder discarded. To et a Real result, one -~

orr both aof the Integers must first be converted to a Real before
Performing the division.

The result of the operator "MOD" is the remainder when the left
aperand 1s divided by the right operand. If either wPerand is Real,
the remainder will be calculated as a Reals for instance. 4 MOD 1.2Z2%5
will 9ive 0.23. The sigan of the result of MOD is the sian of the
first operand: -5 MOD 2 and <35 MOD -2 are both -2. "This rule, which
was not applied correctlw in earlier versions of RBASIC, assures the
identity:

172 = J% % (17%/J97%) + (I% MOD J%)

ExpPanentiation (Performed by the """ aperator) is performed in two

different wawvs depending on whether the operands are Integer or Real
(if thev differ, the Integer 1is converted to Real). Integer to

GBASIC User Guide

'Jnteser Power is pPerformed by successive multiplication. The base mav
be Positive or nesgative. . If the expPonent is negative, the result will
. zero. Real to Real power is pPerformed by taking the "~ asarithm of
kﬁe base, multirlyins it by the exPonent value, and then takins the
exponential of the result. Since the lssarithm of a ne=ative number
48 undefined, negative Real numbers should not be used as the base
«kth the """ caprerator. The value of O0~0 is 13 O0™X, where X 1is
nonzeros 1s zero.

_krins variables mav not be used with any of the arithmetic orerators
wixcept "+" and "#". For strins orerands, "+" has the sprecial meaning
of CONCATENATION. The result of the "+" operator on two strings is
fte string consisting of the left string with the right strins
. Prended to it. For examples in the followins Proaram frasment:

- A%$="Big bad "
}l B$="bear."
C$=A%$+B%
*&e variable C$ will contain "Bis bad bear."
The operator "#" can be wused between a 3Strins expression and an
\yteser exPression to duplicate the strina. Thus,: the statements
|
A$=ll 11*9
- I =7
‘J Be=(AS+"#")#(I1%+1)

(jaracters with an asterisk in everv tenth position and blanks
@l1sewhere, If a Real expression 1is used as the second caperand, it
will be rounded to an Intesger. ’

{

qle set A% to a strins of ? blanks and B% to a strins of eishty

iﬁe arperators "+" and "-" may be used as UNARY orPeraters. A unarvy
arPerator has no oPerand on the left, and one orperand on the right.
T}e "+" oPerator has no effect on the risht operand. and the "-"
{ Jjerator reverses the sisn of the risht operand. For example. if the
variable B has a value of 12, the statement:

| e

%511 set A to —-12.

|

3S.1.2. Relational opPeratars

) = ™ = L =

- -

) ER 5T GE LT LE NE

"ve relational orerators compare their two orPerands and return a valuoe
_Jpendins non whether the relationship beins tested holds for the
“1rerands surpplied. Either the algsebraic relational operators given in
*?e first row, or the mnemonic forms 2iven in the second row. mar b=

" led. Relational cperators mavy be used between Inteser,. Reals and
Sxring oPerands.

N
1

ZML an Inteser and Real are comPared, the Integser will be conQerted Ta

eal before the compParison is done.

‘\ -16-

Lo

|

L

‘_l

—

GBARSIC User Guide

If one orPerand is a String, both must be Strings. Strine comParisan
is pPerformed from left to risht, based on the A3SCII collatineg:
semuence. The end of a string is treated as if it were a character
that collates before any actual character. That is, ABC is less than
ABC:, where » is anvy character whatever.

The result of a relational orerator 1is alwaws an Inteser. If the
relation holds, the result is =1, which signifies TRUE. If the
relation does not hold, the result 1is 0O, which "signifies FALSE.
ExamPles of relational expressions and their result are siven in the
following table:s

.

ExPressian Result
1=1 -1
1=1.0 -1
1=1.01 0
1>12 O
1<12 -1
-1<= -1
llMell{IIM.Yll _1
IlAAII:IIAaII o
llzall>llz_ll _1

2.5.1.3. Logical aprerators

"'NOT AND OR XOR

"The 1n9ical operators pPerform bit-bwv-bit l1og9ical orPerations on their

orperands. The orPerands areé treated as 14 bit Intesers. Real aopPerands
will be converted to Inteser before the cprPeration is performed (note
that there is na test for overflow in this conversion, so if the Real
omerand is outside the range —-322743 to 22767, undesirable results will
be obtained). The oPerator “NOT" is a unary cperator which inverts
all the bits in its operand to the risht. The orPerators "AND", "OR" ,

and "XOR" perform the indicated cperations on their two opPerands.

Note that since the values for TRUE (-1) and FALSE (0) =senerated by
the relaticonal orerators are all bits set and clear resrectively, the
loaical operators mavy be wused to combine the results of relaticnal
tests into looical expressions. For exampPle, the following expPression
tests whether a single character strins, A%, is numeric:

A$ = "O" AND A% <= "9

Note, however, that NOT I% is DIFFERENT fraom I%=0. In fact, if the
value of IZ is neither O nor -1, then both I%Z and NOT IZ will have
TRUE (non—zero) values. There 1is no pProblem as lone as logoical
aoperators are applied onlvy to 0, -1, and the results of compParisaons.

In addition. the legical cPerators mav be used to perform bitwise
orPperations an intesers. Such operations are espPecially- useful when
dealine with hardware-defined items, since interface to them aften

involves testing, setting, and clearing individual bits.

D o=

2.59.2. Order of evaluation

-17-

|

{) WBASIC

o
When (RBASIC encounters an expPression cantainina more than ane

{'Perator, it applies a set of rules so that the ewxpression will have

| the value expected from the normal rules of algebra. For example. the
exPression:

Jser Guide

J)} A+BxC

is taken to mean that B and C are multiplied, then the result is added
f o A. The order of evaluation mav be modified bw 9rouping pParts of
| the expPression in parentheses. The expPression:

o (A+B) *#C
|
’ .
causes A and B to be added, then the result multieplied bw C. The
mFrder in which RBASIC will evaluate opPerators in an exPressiaon is

iven in the fallowing table.

o G,
| 2) -~
]\ﬁ 32) Unary +, Unary -
4) * /
7) MOD
15
) 7) = < <= >=

<>

- ER NE LT GT LE GE
" 3) NOT

- 3) AND

10) 0OR XOR

L}his order aof evaluation 1is the same as that used bv CBASIC excert
that Unary + and Unarvy - are pPerformed before multiplication and
(‘ivision by @BASIC, but in CBASIC thev have no priority over addition
_End subtraction. QBASIC s interpretation is in keerping with the rules
of alaebra and virtuwallvy all ather Progsrammins lansuases. '

(}hen ®BASIC Processes an expPression, all oprPerators will be evaluated
1n the order given in this table. Hence, all multieplications and
divisions will be done before anv¥ additions. The .fact that
Earenthesised subexPressions have the highest prioritw insures that
hey will be evaluated before anvthing outside the Parentheses.
Parentheses mav be nested to anvy level desired.

L}amiliaritv with the rules of opPerator hierarchy often makes it
Ppauassible to write verv compPlex expressians without pParentheses.
‘ﬁlthmush this is passikle, it is not recmmmended, since the next

ersan who examines the progaram mavy not know the rules as well as the

“author: and mav misinterpret the intent of the expression. OQOften
~includina pParentheses which are redundant can make an exPression
" rasier to folloew. Inclusion of redundant pParentheses does not atfect
gihe outpPut of the compiler in any wav, so there is no speed orr memary
Ppenalty far using them. As an exampPle, comPare the ease in
'Tnderstandins the followins two esuivalent expPressions: -

A+BC=B#2 OR B+C<=1% AND NOT A+4=3
\J ((A+B)<=(B#2)) OR (((B+C)<«<=1%2) AND (NOT (A+4)=3))

’I 13-

S

—

e A N e

ABASIC User Guide

4, Assignment and cqntro] statements

This chapter describes the statements which make up the "core” of the
ZBASIC lansuase. These statements pPerform the basic functions of
settine variables, making decisions, and determining which statements
will be executed and in what order. Later chapters will discuss
inPut, ocutput, and other statements.

Anv of the statements described in this charter (excert CIOMMON) ma-

have a 1line number, so line numbers will not be menticoned in these
descriptions. .

4.1. LET (assignment) statement
[LET] <variable>=lexPressian>

The value aof the <expPression> is comPuted and stored inta the
“variablel. If the wvalue of -the <exPression> 1is a String, the
<variable> must be a Strins variable. If the <expPression is Integer
and the <variable> is Real, the value will be converted to Real. If
the <expression is Real and the <variable> 1is Integer, the result
will be converted to an Integer by truncation: the fractional part, 1if
ANYs will be drorrPede This is one of onlvy two cases (the other beins
the INTZ function) in which Reals are converted to Inteser bw
truncation rather than roundins. ' '

The kevword LET is ﬁptiona] in the LET statement. The <variable> maw

be . subscripted, if desired. The following are exampPrles of LET
statements:

LET A%Z=1

A=R/0+4

As="Fea soup"

PLURAL . WORD$=SINGULAR. WORD$+"s"
XARRAY (2, C%+1)=VTAR(J%)

4,2, E0TO statement

GO TO <line number>
GOTO <line number>

The next statement executed will be the statement with the specified
“<1ine number>. ExamPles are:

GOOT 123
GOTO 003237326

4,2.- BOSUB statement

GO SUB <line number>>
GOSUR <line number>>

The location of the statement followine the GI =ZUB is saved. then
contnel is transferred to the statement with the named <limne number>.
Control mavy be returned following the GO SR by executine a RETURN
statement (described in the next sectien). Each GOSUR consumes memary

-19-

"‘ PBASIC User Guide

to save the return point. This memory is released when the
~— corresPondinag RETURN is done, so proarams showuld be careful to alwawvs
lRETURN from GO SUB calls.

4.4, RETURN statement
'1 RETURN

i”lThe RETURN statement causes control to be Passed to the statement
') following the most recent subroutine call. The subroutine call mavy be
a GO3IIB statement, anmn ON —— GOSIIBR statement,. or a multiple line

V function call (described later in this manwual). ‘

4.5, IF statement -

) The IF statement allows a prosram to perfoarm different acticns based
on the value of an expression. If the value is non—zero, the Pprosram
~ will pPerform some specified actions if it is zero, there mavy or may
i not be alternate actions to Perform.

QBASIC suppPorts two farms of IF statement. The first 1is the
M Sinale—-line IF, which is entirelv caontained on one line, Passibl-w
Ilextended tv continuation (\) characters. The second is the BRlack IF,

in which anv number of lines may appear between IF and ENDIF
{]statements.

—4.3.1. 3Zinsle-line IF

| IF <expPressian> THEN <stmt 1ist/line numberZ
o [ELSE <stmt list/line number>]

| | The <expression> is evaluated. then its value is tested asainst zerao.
\JIf the <expression> 1is nonzero, the action described in the THEN
clause will be taken. .If the <expPression> 1s -zera, and the ELSE
[1=lause 1is Present, the action described in the ELSE clause will be
. |takens 1if no ELSE clawuse is present. the IF statement will do nothing
““and control will Pass an to the next statement. The Jexpression in
(]an IF statement must evaluate to am Inteser ar Real. Normally the

expPression inm an IF statement is the result of ane of the relaticnal
—aperatars, but any Integer or Real exPression mavy be used,. I+ the
~ value is Real, it will be converted to Inteser by roundins.

JJThe <stmt list/line numberZ which follows the THEN and/or ELSE in an
IF statement mav be e¢ither a line number or one or more RBASIC
|jstatements (with multirple statements serarated by colans, as alwavs).

IJIf a line number is specified, execution of the clause will" transfer
T controel to the designated line number.

"{If a statement l1ist is used as the THEN or EL3E clause, anwvy number of
—~statements may make up the clause. The statement mav be continued
onte as manv lines as required bv using the backslash (\) character.
iﬂUnlike CBAZIC, GRBAZIC allows an IF statement to appear -in the - ELZE
_Jclause of ancther IF, or in the THEN clause of an IF that has no ELSE.
(These ~awkward restrictions are absent from the Block IF.) Alsa,
Yeither the THEN or the ELSE «<lause or both mary be line numbers.
JJCEASIC disallows an ELSE clawuse if the THEN clause is a line number.

o

r o
| . -z0-

RBASIC User Guide
The fallowins examples illustrate IF statements in EBASIC:

IF EFSILONZO. Q005 THEN 1200
IF EFSILON<O. 0005 THEN GO Td 1200

The abave two statements are equivalent.

IF CH%="s" THEN 1400 ELZE FRINT "Wruons!'"
IF J<K+3 THEN JI=k+2 ELSE 1200.20

IF NOT.DONE.YET THEN \
J=Jd+1 2\
IF .1+10 THEN \
FRINT "Overflow!'!" 3\
G0 TO 200

IF TIMESRQUITTING.TIME THEN \
PRINT "Time to 9o home!"™ : \
GOSUBR 1200 =\

TIME=0 =\
GOTO 100\
ELZE \

TIME=TIME+1 =\
GOSUE 2200

Note that no colon is required after the THEN nor before or after the
ELZE.

4.5.2. Block IF statement
IF <exPressionz
The Block IF allows multiple statements to be contraolled bv an IF

without the wuse of ":\" as in the pPrevious section. Linlike the
SZinale-line IF, the Block IF can be nested without restriction.

When a Black IF statement is executed, the <expPression> is evaluated
accardine ta the same rules used for the Single-line IF. If the value
is rnon—zero, the caode following the IF statement will be e=ecuted, up

to the next matchinea ELSEIF or ELSE statement (if there is oneds then
evervthing will be skipped until the matching ENDIF statement. If the
value 1s zera, the code following the IF will be skipped until there
is a matchine ELSEIF, ELSE. or ENDIF.

The folloawing examples illustrate simple IF bBlacks.

IF IMFUT.ERROR
PRINT "Bad inPut"
GOSUR 2100
GOsUR 2947

ENDIF
IF NOT.DONE. YET
J=d+1
CIF J>10
GOSUR 1000
J=1
-21-

\] HWBASIC User Guide
ENDIF

- GOZUR 2000

11 ENDIF

- The first example could be rerlaced with a Single-line IF, usinas some

\L ":\" sequences., The second, which has the GOSUB 2000 after the end of
") an IF condition, could not.

(W The Block IF can not appear inside a Single-line IF.

|

' 4.5.32. ENDIF statement

j‘ ENDIF

~_ The ENMDIF statement marks the end of a Black IF. See the description
}OF the Block IF abave far examples. ENDIF mav not appear within a

| Single—-line IF statement.

|l4'5.4- ELZEIF statement

ELZEIF <expPressian’>

)4IThe ELSEIF statement pProvides an opticonal alternative to the code
which is contralled bv a Block IF statement. ‘

flIF the <expPressioni in the pPrecedins Black IF or ELZEIF has a value of
! zera, then the <expPressionz in the ELSEIF is evaluated. If the wvalue

“is non—zeraos the code in the followina statements will be executed, up
[Jta the next matchine ELZEIF or ELSE statement. If it is zerao, the

code will be skipped uPp to the next matchins ELSEIF, ELZE, or ENDIF
statement. :

] I+ the <expPression in the Block IF was nan—zerno, then the ELSEIF and
" the statements fallowine it will be isnored. :

»LiThere maw be any number of ELSEIF statements in a single IF black.

The following is an examPle af the ELSEIF statement:

- IF NOT.DONE.YET
J=A1+1
ELSEIF ERROR.STATUZ
| FRINT "Error status"j;ERRIOR.STATLZ
ELSEIF INTERRUFTELD
: FPRINT "What did vou want to do?”
‘\ ENDIF

4,.%5.%. ELZE statement
‘J ELZE

1The ELZE statement. arpearine in a Block IF, provides anm alternative
Léto be executeéd 1if neither the matchine IF statement nor anvy aof 1its
ELZEIF statements causes anvthine to be executed. The +allowing

are
\ examPles of the ELSE statement:
|

IF INFUT.ERROR

{ l oo
22

QORASIC ser Guide

PRINT "Bad input"
GOSUER 2100
GISIIB 2747
ELZE
FRINT "oQg"
ENDIF

IF NOT.DONE.YET

J=J+1
ELSEIF ERRDR.STATUS

FRINT "Error status"3;ERROR.ZTATUS
ELSEIF INTERRUFTED

PRINT "What did wvou want to do?”
ELZE

PRINT "Done"
ENDIF

If the word ELSE .aPpears inside a Single—line IF, it is alwaws
interpreted as Part of that Single-line IF, never as pPart of a Black
IF. Tagether with the fact that a Black IF can not appear inside a
Zingle-line IF, this pPrevents anv ambiguitwy.

4,64, WHILE statement
WHILE <expPressionz

The WHILE statement causes all statements between the WHILE statement
and the next matchine WEND statement to be executed as lons as the
value of the <expPressiaon> 1is nonzeroe. If the value of the
s.expPressions> is initiallwv zero, the statements between the WHILE and
WEND will not be executed. Statements within the WHILE - WEND laop
mavy change variables in the <expPression>, as it is reevaluated everw
time the WHILE statement {s enecuted. WHILE - WEND 1loaps mav . be

nested.

The <expressian: on the WHILE statement must evaluate to an Inteser ar
Real value. If the wvalue is Real, it will be rounded to an Inteser
hefore beina tested asainst zero. '

The following are examples ¢f WHILE - WEND loopPs.

WHILE V%<10
PRINT "Startine pass "3V4
GOSUR 1.5400
V7%=V7%+1
WEND

-—~WHILE -1
TINPUT I
IF I>1000 THEN 1420
FPRINT I '
WEND

Note «that the second exameple is an "endless laar" which 1is escaped
onlv by the IF statement within it. Since the expression on the WHILE
statement 1s a nonzerae constant., the WHILE 1o will never itself

-
g

v} ; RBASIC llser Guide

terminate. There are no restrictions on Jumping into or out of WHILE,
- loaps; the effect is alwars what would be expected.

1 4.7, WEND statement
;W WEND

The WEND statement serves to mark the end of a WHILE — WEND loor. See
"t the description of WHILE above for more information about WHILE - WEND
l loors and exampPles. Note that the WEND statement is in effect a
declaration to the compPiler rather than an executable statement.
— Consequently, 1t must not apPPear as the abiect of a conditional
\! statement such as an IF. For examrle, the following statement is
INCORRECT

IF J1%>S THEN WEND

A cansequence of this fact about the WEND statement is that there must
f‘br one and onlv one WEND for each WHILE in the Prosram.

4.3. FOR statement

{] FOR <indexr=<expression> TO <expPression

- [STEP <expPression>]

i The FOR statement causes the statements between it and the

LY carresPanding NEXT statement to be executed a number of times
determined bwv the values of the <expPression>s used on the FIOR

statement. An <index> variable is set to a dlfFerent value for each
. jenecutiaon of the loorp.

T-When a FOR statement is initially executed, the <index> variable is
y i |lset to the value of the first <expression>»>. A1l statements in the
" laop are then executed. The <index> variable may naot be subscripted.
~,nar mav it be of tvrpe String. Either a Real or Inteser <index>
‘}]variable mav be wused, but the FOR statement will be much maore
Jefficient if the <index> variable and all <expression®s are Intesger.

|When the end of the loop is reached, the TO and, if present, the STEP

_JexPressions are evaluated. If the STEP exPression is pPresent, its
value is added to the <index> variable. If no STEP expPressian

TJaPPears, the <index> variable will be incremented by one. The value

»JOF the <index> variable will then be compared with the value of the TO
exPression. If the STEP expPressinn is pPasitive or no STEP expPression
APPEArs, then execution of the laop will stop if the <index™ variable

{lis areater thanm the TD exPression. If the STEP expPression 1is

" Jresative, execution of the lacr will stop if the value of the <index>
variable is less than the TO expPression.

(JThe TD and STEP exPressions are reevaluated at the end of each
gxecution of the loop. Hence thev mavy be changed from within the laoep
kv chan9inge variables which are pPart of the TO and STEP exPressions.

i [The <index> variable mav also be chansed during the loap.

<rnlike CBASIC, RBASIC does not require that the <index> wvariable and

all the <expPression>s have the same tvwpe. However, the pProgsram will
~“he maore eFF{cient if thevy do. If a STEP of cne is desired, it is more

;} | o -2
)

441 '

ey

RBAZIC User Guide
efficient to omit the STEP c-lause than to specifv a STEP of 1. If the
STEP clause is pPresent, the compiler must generate more complicated

cade than if the default of 1 is used.

The fallowing are exampPles of FOR — NEXT loops.

FOR J%=2 TO 10 :
FRINT "Yes, we have"s;J%s"bananas.”
NEXT J%

FOR VOLTAGE=10.Z0 TQ Q.0 STEP —-0.05
NEUTRION. COUNT=FN. LASERZAF (VOLTAGE)
FRINT VILTAGE, NEUTRON. COUNT

NEXT VIOLTAGE

4.?; NEXT statement
NEXT [<variable>,...1]

The NEXT statement identifies the end of the «clasest Previaus
urnmatched FOR statement. If a <variable> is specified, it must match
the <“index> wvariable on the corresponding FOR statement. Moare than
one variable mav appear on a NEXT statement, which allows one NEXT
statement te terminate multirple nested FOR l1aoaps. The action of such
a statement is identical to that of consecutive NEXT statements for
each variable.

As with the WHILE and WEND statements, e¢ach FOR must be balanced bwy
exactly one NEXT statement (with no variable list) or one item 1in a
list af variables an a NEXT statement.

The following illustrate various forms of the NEXT statement:

FOR I%=1 Td 10
FOR J%=1 TO 10 ;
FOR KX=1 TO 10

ACTZ, J., KL)=1
NEXT KZ%.. %, 1%

FOR I%=1 TO 10
FRINT I%
NEXT

4,10. EXIT IF statement
EXIT IF <exPression

The EXIT IF statement pravides a quick wavy . of escarping from a loap
without using a GO0 TO and a line number. When the EXIT IF statement
is executed, the <exmpPression® is evaluated in the same wawv as far
WHILE or IF statements. If the value is zero, the next statement is
executed. I+ the wvalue 1is non—zero, the pProgram exits from the
current (innermost) loop or block of statements, as described below.

If the current loop is WHILE, the exit is to the statement immediatelw
after the WEND statement.

() RBASIC User Guide
)

If the current locop is FOR>, the exit is to the statement immediatel~ (
—1after the next NEXT. If the NEXT statement is of the form:

NEXT <variable 1Z>,<variableZz>[,<variable 3>,...1

t en the EXIT IF will execute NEXT <variable 2:.

thé current block is an IF block, the exit is to the statement
11mmed1atelr after ENDIF. EXIT IF is not valid inside a Single-line

the current block is a DEF block (multi-line functiaen definition)s
the exit is the same as a RETURN statement.

—The followins is an examp1e of the EXIT IF statement:

WHILE 1
) X=X+1
31 Y=Y+Z . o
- EXIT IF X®Y>LIMIT)
GOSIIB 9900
{] WEND
4.11. ON statement
l} ON <expression> GO TO <line number>,...
— ON <expression> GO SUUB <line number>,... ' -
rzhe_DN statement Permits an expression to select one line number from
4 list. A GO TO or GO SUB is then done to the selected line number.

[The <expPression> is evaluated. If its value is Real, it is converted
' fo Inteser bv roundins. The <exPression mav not have a Strins value.

If the value af the <expression> 1is 1, the first 1line number is
F-e1ected. If 2, the second line number is chosens and so on. If the
erxPression} evaluates to less than 1 or greater thanm the number of

ine numbers in the list, an error will occur. Once the line number
r‘Eas been selected, the ON statement acts exactly like a GO TOA or GO

B ta the selected line number. The kevwords GO TO and GO SUB mav be
~written GOTO and GOSUB, respectively, if desired.

(}he foilowine are examples of ON statements:

ON JF.CODEY GO Ta 100,200,300, 400
{ ON V GOSUR 1.100,1.200,1.Z200
J‘ ON SELECTION. ZOOEZ+1 GO =SUBR O\
1200, 1200, 1400, 13500, 1400

()

}}.12. STOP statement
TP

Lixecution of a STOFP statement terminates a RBAZIC program, All orPen
files are closed, writing out anvy information still in memorvy, and
 jantral is returned to the operating svstem. Do not confuse the STOP
&tatcmnnt, which is an executable statement which terminates the
Pragram. with the END statement, which declares the end of the Prosram (

—

e——

L—

HBASIC User Guide

text. While a prosram must only have one END statement. which must be
the last s=statement of the prosram. anv number of STOP statements mavw
aPpear in a program, and these mav be the obiject of IF statements to
conditionally terminate the pProgram. Executing the END statement

("fallins off" the end of the PpProgram) is equivalent to a STOF
statement. :

The followinge are exampPles of the STOP statement:

STOP _
IF OFERATIONZ>1S THEN PRINT "Error!" : STOP

4,12. RANDOMIZE statement
RANDOMIZE [“<expPressionz]

The RANDDMIZE statement initialises the "seed" of the pseudorandom
number generation which 1is accessed bv the RND . function. If no
<expPression> 1is specified, or the value aof the <{exeression> is zero,
the generator will be seeded from a value compPuted from the random
contents of unused memary following the. program. This will normallw
result in a Proaram which behaves differentlv each time it is called,
which 1is 9¢nerally what is desired for same pPragrams. If a nonzera
“CexPression> is supplied, it is used as the "seed", which mav be
convenient when pPerforming statistical studies where it is important.
to be able to reproduce the exact sequence of pseudorandom numbers at
a later time. The <Lexpression> given to the RANDDOMIZE statement is
rounded to Integer before use if Real. In any cases the low two bits
of the Inteser are igenored. Hence, two values must have different
intearal values and different quatients when divided bv four to result
in different pseudarandom sequences. -

HBASIC s RANDDMIZE statement differs from that of CBASIC in that
CBASIC does naot allow the <expPression> ta bhe specified: and alwavs

seeds the senerator based on the tvepins time of the last INPUT

- statement. Naoate that in CBASIC the RANDOMIZE statement mavy nat be

used unless at least ocne INPUT has been done. There 1is noe such
requirement in GQRASIC. Since the seed mav be srpecified, if a hardware

randoem number <enerator is available, it can be used to seed the
pseudorandom 9enerator in GQRBASIC.

4.14., DIM statement
DIM <variable>(<exPression>recealsese

The DIM statement declares and allocates space for subscripted
variables. =Subscripted variables must be created bv executine a DIM
statement befare thev can be used in other statements. The <variable>
name is the name of the variable to be created, and the <expressionzs
specifty the maximum wvalue each subscript can have. The minimum
subscript value is alwaws zero. For exampPle, the following statement:

DIM IZ%(10), A(2,2), S5%$(100)
Bdeclares an Integer subscripted variable, I%4, which maw be referenced

s I4¢(0) throuah 1I%4(10), a Real subscripted variable with ? elements
(

a
A(O,0) throuah A(Z,2)> and a Strine subscripted variable, S%$, with 101

K PBASIC User Guide

elements 3$(0) throush Z$(100).

Note that the DIM statement is an EXECUTABLE statements it is nat a
 decltaration. Hence, the DIM statement must be executed before the
. variable it declares is first used in the pProgram. If a DIM statement
Iis Pperformed on a variable which had been pPreviously created with a

DIM statement, the storage pPreviously allacated will be released, and
~ new storagse will be assigned. This mar be used to alter subscriet
;Klimits, or %o declare the variable with a different number of

subscripts. Naote, however, that all data-in the variable before it is

redimensioned will be lost, and the new variable will be filled with
712eroes if Real or Integer> and null strinas if String.

)It is not necessary to set the contents of a Strine subscripted
—variable to the null strins ("") before reinitialising it with a DIM
j}statement: the library subroutines will automaticallwv recover all the
" “strins space which it was using. This is in contrast to CBASIC, which

fails to recover the space.

~INote that each element in a Strins subscripted variable mav 'have anvy |

desired lensth. Storage 1is assigned when a value is given to the
element: so no sPace is used unless an element is actually assigned a
value. '

variable mav have, nor on the number of elements in such a variable

““oather than that impPosed by the amount of memarv available in the

- machine running the pProsram. :

“/The <ewxpressianrs used as subscript bounds must be either Integer or
Real. If Real, thevy are rounded to Integer. The wvalue of each

{i{expression} must be non—nesative. There is no other restriction on
the expPression’ a reference to the array may be used in the 1list if it

makes sense.,

~jThere is no 1imit on the number of subscripts which a subscripted

! , _
j{Thefﬁallowins illustrate the DIM statement:

| " DIM METER.READING(10,2)
Jj DIM A$(I%+4), E$(JI%L)
- OIM ACACACO)))

4.15. CHAIN statement

|

CHAIN <expressionc

*{The CHAIN statement allows a QBASIC proaram to pass cantroal to another:
PrO9ram. That prosram may be a RBBASIC pProgram,. a pPragsram in any ather
Yanguage, aor one of the Marinchiep utility programs. :

|
|

Lhe <expression> is evaluated, and must be of tvee Strins or an error
will occur. The value of the expression should be the command to call
Fhe praosram to be CHAINed to, including anvy pParameters which mavy be
_mesired on the call line. In other words, the expression should be a
strima-identical te what would be tveed on the console to call the
Vrrqsram from aPerating svstem command mode.

Before transfterrine to the new pPrograms all files are closed, and the -

‘J ~23-

-

5

(o e -

MRASIC User Guide

BBASIC pragram is terminated exxactly as if a STOP statemerii v=re
execnted. Unlike CBASIC, the cantents of the print buffer are nat
last when a CHAIN is dane.

If the Program being CHAINed to is a GBASIC praosram. variables mav b
passed on to it by wusing the COMMON statement, described helowds
Variable wvalues mav not be pPassed in COMMON when CHAINing tao
non—GBASIC prosrams, but thev can often be Passed as parameters an the
caommand calling the progaram.

The contents of DATA statements are not pPreserved when CHAINing ta
another GBASIC progsram’ this is different from CBASIC.

The Foilowins illustrate uses aof the CHAIN statement:

CHAIN "FILEUFD"

CHAIN "ACZCTWORE: FROGS/FROOS OFILE=IFILE"
CHAIN "ASM CWORK . REL=CWORK"

CHAIN "EDIT "+50URCE.FILE.NAMES$

Note that in every case, execution of a CHAIN statement 1is exactlw
identical to executing a STOP statement. then typing the command from
the CHAIN statement on the console. However, a CHAIN statement must
e wused 1if ZOMMON variab]es\are to be Passed an to a GBASIC pProgsram
being chained to.

4,14, COMMON statement

COMMON <variableX, ...
The COMMON statement allows ane or more variables to be passed from
one HBASIC pProgram to ancther when the ZTHAIN statement is- used to Pass
cantrol between ZBAZIC Progarams.
If a pProaram has ane or mare COMMON statements, thev must be sraouped

at the start of the pProgaram, immediatelw after._anv ENTRY ar EXTERNAL
statements. .

A1l presrams which CHAIN from one to another must have compatible
COMMON statements, or none at all. COMMOIN statements are compatible

if thev contain the same number of variables, variable tvpes asree an

the statements, and variables occur in the same order. Variable names
need nat be the . same. The followineg twoe COMMON @ statements are
comPatiblet

COMMON 1%, d, S8, T%
COMMON INDEX%. VALUE, CODENAMES, LOCATIONY

The folloawinge pPairs oF_COMMGN statements are INCOMPATIELE:

COMMON I7%. J7%

COMMON 1% { Different no. of variables)
COMMON I%. R
eosddQMMON I, R% { Tvrpes doan”t match 7}
Subscripted variables mav be pPassed in COMMON. Thew must be
| -29-

”K RBASIC User Guide

identified in the COMMON statement bv enclosine a number in
“pFarentheses followins the variable name. For example:

COMMON I%. A(1)

\Eeclares a simple variable IZ and a Real subscripted variable called A
-4to be in common. In PBA3IC, the number in Parentheses has no meaning.
_but for compatibility with CBASIC, it should be the number of
{EubscriPts which will be used with the variable. The initial pProgaram
. must declare the subscripted variable in COMMON, then create it with a
D' IM statement. Once created, the variable will be Passed on in COMMON
ko all subsequent Progsrams. If a program which is the obiject of a
| EHAIN performs a DIM on the variable in COMMON, the values passed in
COMMON will be discarded and the variable will be reallocated with the
~new size. That new variable will then be passed on in COMMON to any
]jubsequent Programs.

Variables in COMMON are actually Passed between pProarams by writins
hem owut 1into the file TEMP2$ before exiting the CHAINins program
_then reading them back at the start of the proaram CHAINed to. Hences
TEMF2% must be pPresent when GBASIC pProgram with COMMON variables
Tpxecutes a CHAIN statement. Under the Network QpPerating Systems this
File will be autematicallvy created in the wuser’s warkine directorv.
Under the Disc Executive, however, the file must be created before the
(eroaram is run, with sufficient size to haeld all variables in COMMON.
ince there is normally a TEMPZ2$ file on the standard Disc Executive
savstem disc, if GBAZIC Programs are run with the svstem disc in Place.,
CEOMMON will work without any special effort by the user.

(-

|
|
1
|
]
|
B
|
|

—-Z0-

L .

-~ —
)

- i

r

{

— T

T

GBASIC User Guide

5. Predefined functions

This charter describes QBASIC s predefined functions. A functian
takes zero or more ARGLUMENTS, takes some action based on their values.
and returns a RESWULT. Functions are used within expPressians, and maw
be combined with other values using operators.

Functions will be described below based on the tyrPe of value thew
return as their result. Note that a function mav take. for example, a
Strins as an arsument and return an Integer as a result. I+ a
function returns a 3String result, it is called a "string function".
reagardless of the tvpe of its arsument(s).

Functions are called bvw referencing the function name, with the
arsuments following in pParentheses. Arouments are separated by
commas. Argsuments must asree in tvpe with those e=pPected bv the
function, ex=cert that Real and Integer values will be interconverted
when required. o

In the descriptions below, arsument twvres will be indicated bv the
samPle arsuments 9iven. Real arguments will be represented by X, Y,
Z, etc.. Integer arsuments bv 1%, Jd%, K%, etc., and String arsuments
bv A%, B%, C3, etc. Actual arguments used in a function call mav, of
course, be arbitrarily compPlex expressions as lons as thev have the
required twvere. If an arsument is indicated as beins Real, an Inteser
may be wused, and will be converted to Real. I+ an argument is
indicated as being Integer, and a Real is used, it will be rounded to
an Integer. SupPPlvying a Strine argument where a numeric argument
(Real or Integer) is expected, or vice versa, will cause an error.

The folloawine sections describe all of QBASIC"s general PurrPose
functions. There are several other functions in QRBASIC which are used
far specific Purpases in the Input and Qutput mechanisms and for
hardware interface. Those functioms are described in the arppropriate

_sectimns; thev are called accordine to the same rules described here.

S.1. Numeric valued functions

The functions described in this section return numeric values. If the
function name ends in "%4", the value returned will alwavs be Integer.
Otheéer functions may be Real or Integers where the twvre is not
specified in the descriptions, it is Real.

NOTE: EXF., LOSG, and the trigsanametric functiens are calculated in
single pPrecisions, te an accuracy of only about six decimal digits.

This is alsa true of the expanentiatian operatar () when used with
Real operands. '

=.1<.1. ABS(X) - Absalute value

ABZ returns the abscalute value of its araument. If X is areater than
ar- egqual to zero, X is returned. If X is negative, =X is returned.

S.1.2. ACOS(X) - Arccosine
ACDS returns the Arccoesine. in radians, of its arsument X. The wvalue

-31-

i GRASIC lser Guide

returned 1is Real. This function is unigue tao QABASICS CBASIC does not
(Ksuppnrt it.

S.1.2. ADRS(X) — Address aof variable

ADRS returns the actual memorv address where the named variable is
"stored. ADRS must be called with a variable, not an expPression.
_.ADR3, unlike all other functions, mav take an Integer, Real, or String

. |arsument. For an Inteser or a Real it returns the address of the
first bvyte of the number. For a 3tring, it returns the address of a
waord which cantains either (1) the address of the "string Lbuffer" or
'fz(Z) a =zern if the string is null. A strine buffer consists of an
initial word containing the lensth of the strina, and additional wards
containing the string text. Regardless of the . arsument tvre, the
ryvalue returned is an Integer.

" For more infarmation about the ADRS function, see the chapter aon
hardware and machine language interface later in this manual. :This
‘iFunction is unique to GQBASICs CBASIC dones not suppPourt it.

S.1.4. ASC(A%$) - ASCII code
liASE returns the ASCII code for the first character in the arsument

strina. If A% is the null string, an error will occur. The value
(yreturned is an Inteser.

S5.1.5., ASIN(X) - Arcsine

- B :

}gASIN returns the Arcsine, in radians, of its arsument X. The value

- returned is Real. This function is unisue to GFBASIC; CBASIC daes not
supPort it.

|

}5 1._. ATN(X) aor ATAN(X) - Arctancent
ATN (or ATAN) returns the arctangent, in radians, of its arsument X.
The value returned is Real.

(15.1.7. Co5(X) . - Cosine

| .

QS returns the Cosine of the arsument X, which must represent an
anale in radians. The value returned is Real.

WSS.l.B. CAOT(X) — Cotangent

-QT eturns the Cotangent of its arsument X. X 1is assumed ta
repreqcnt an angle in radians. The wvalue returned 1is "Real. This
Fun;tlon is unigue to WBASIC3; CBASIC daes not suppPart it.
I
J . 1. C3C(X) - Cosecant
Z3C returns the Cosecant of 1tq araument X. X is assumed to represent
jan angle in radians. The value returned is Real. This function is

unique to RABRASIC; CBASIC does not surport it.
[S.1.10. DATETIME(I%Z) - Date and time

))
DATETIME allows a pragram to read the date and time, then return

*ﬁ -32-

|

e [E—

HZBASIC User Guide

comPanents of 1t to the Progsram as Intesers. If runnine under the
[lisc Executive, DATETIME will work onlv if the CLE-24 clack/calendar
bkeard is installed in the svstem. Under the Network Oreratine Svstem,
DATETIME will alwaws work as lane as the user has set the time in the
svstem (or has a CLK-24 board). To insure that the time does not
change while Gbeine returned bv calls on DATETIME, the time is first.
read and stored by callins DATETIME with an arsument of zera:s

STAT%Z=DATETIME(O)

The result, stared here in STATZ%: will be -1 if a valid time was read
and stored, and O if the time was not available (no clock board under
Disc Executive or time not set under N2IZ). Once this call is made,
the time will stay the same until another call on DATETIME with an
arsument of zero is made.

Once the time has been read. DATETIME mav be called with nonzero
arauments to return the numeric comPanents of the date and time.
These arsuments return the following infermation:

Year (for example 1237)

Manth (1 to 12)

Davy (1 to 31)

Hour (0O to 23)

Minute (0O tao 39)

Secand (O to S9)

Day of week (O0=Sundawv, 1=Mondavy: ... A=Saturdavw)

N> p k)

Anv nonzero arsument other than these will return zero and be
otherwise isnored.

S.1.11. EXP(X) — Expounential

EXP returns the value of "e" (the base of the natural legarithms.
apPProximately 2.713221223) raised to the pPower X. The value returned
is Real.

S.1.12. FLOAT(I%) — Convert to Real

FLOAT converts its argument to a Real. The argument is exprected to be
an Integer. I+ the argument is a Real, FLDOAT first rounds it to an
Integer, then re—converts it to Real. Therefoare- FLOAT(REAL) will
reund REAL to the nearest Inteser, pProvided the absolute value is no
areater than 32747.

S.1.13. FRE — Tatal free sprPace availahle

FRE returns a Real number equal to the total number of bytes of free
space left to the pProgram. As a progaram runs. this number will vary
as arravrs and strings are allocated and released and files are orened
and closed. A pPraogsram can use the result of FRE to take action before
teins terminated due to running out of memorv. Note that FRE tells
the total free space available; due to frasmentation of storagse the
largest available block mav be less than this size. See MFRE below
for information on how to obtain that value.

FRE takes no arsument. No argument list should be supPPlied.

—23-

7&
@BASIC WUser Guide

i5.1.14. INT(X) - Inteser rart of Real

(KINT returns the whole Part of its Real argument; that is, it truncates
lanvy decimal pPlaces in the arsument. The result returned is Real.

715.1.15. INTA(X) — Convert tao Integer

INTZ converts i1its Real argument to Integser. Note the difference
between INT and INTY%: INTZ actually returns an Integer, and will
}Esenerate invalid results if the arsument is ocutside the ranse -3274%
" "tae +32747. INT simply truncates the fracticnal part from a Real, and

mayv be used on numbers of any magnitude.

l5.1.16. LEN(A$) — Length of strins

{ELEN returns the lensth of its strine arsument. If the arsument is the
. Jnull string, zero is returned. The value returned is an Inteser.

Urlike the corresponding function in CBASIC, LEN returns the actual
rFensth of its argument, including leading blanks.

)

IV5.1.17. LOG(X) — Natural losarithm

Vkﬁﬁ returns the natural legarithm of its areument. The value returned
L4is a Real. Note that the caommon 109 (log to the btbase 10) can be
abtained by dividing the value returned bv LOG by LOG(10.0).

i

LJ-I.IS. MATCH(A%,B%,1%) — Search for pPattern in strins9

(MATCH searches string B$, startins at character pPasition I%, lackine
| for the first oaccurrence of the pPattern A$. The value returned is an
Inteser. If the pPattern A$ is found in string B%, the value returned
~yil1l1 be the character pPosition that the occurrence of A% starts in BS.
'}F the Pattern is not found, zero will be returned by MATCH.

(IZ specifies the charactervposition in B% where the search should
L ttart. If 14 1is ne=sative or zero. an error will accur. I+ IZ is
.Jreater than the lensth of B$, MATCH will alwavs return =zero. To
start at the besinnins of B$> I% should be 1.

[jhe pattern in A% is made up of text characters and/or "wild card”
pattern matchine characters. Text characters must match exactly.

fgi]d card” characters match classes of characters, as described
lNelaows A

[
pu

Matches anv disit (0 — ?).

A Matches anv letter (uprer or lower case).

‘F Matches anv character.
|

The Pattern matchine characters may be “forced” to be tested as text
rvaracters by pPreceding them with a backslash (\). For example, ta
“tarch far the strins "Gadzoaks!"™ in variable INTXT%, the fFfollowine
7all might be used: ‘

j FPOSZ=MATCH("Gadzaoks\'", INTXT$,1)

JA ' o —34-

\

—

e

QBASIC User Guide -
Comparison of letters by MATCH is case sensitive, that is, 2 "ower
case letter will match only a lower case letter. MATCH mav be made t«
rperform a case—insensitive match bv convertine both its arguments to
the same case before callins it, as in:

FZ=MATCH(UCASE$(A%) ,UCASE$(B%)>1)
S.1.19. MFRE - Largest memorv black available

MFRE returns a Real equal to the number of bvtes/in the larsest blaock
left in free space. Like FRE, described above, it mav be used bwvw a
Progaram which wishes to take some special action to avoid beins
terminated due to running acut of memorv. MFRE, as opPosed to FRE, is
nseful when a pProgram is about to DIM a large arravw or create a verw
lona strine and wishes to make sure that a large enoush black exists
te hold the new variable. Since BPBASIC arpends control storagse to
strings and arravs, the user must allow extra srpace (sawv 15%) ftar this
storage when testins the size of the variable asainst the wvalue
returned kv MFRE.

MFRE takes no araument. N arsument list should be suPPIiéd.
5.1.20. RND - FPseudorandom number

RNDO returns a unifarmlwy distributed pPseudarandom Real number between O
and 1. Each number returned derpends on the last number generated.
The generatar is initially "seeded" by the RANDOMIZE statement. See
the description of the RANDOMIZE statement for more information on
initialising the senerator for the RND function.

The RND function takes no arsument. No arsument list should be siven
followinae it.

S5.1.21. =SADDO(A%) — =tring address

ZADD returns an Integer value which is the actual memory address of
the butffer containing the surprlied String arsument. I+ the arsument
is the null string, the contents of the address given will be a zero,
indicating zero lenath.

Note the differences between SADD and ADRZ: SADD can take anvy strins
exPression as an arsument, while ADRS takes only a variable, which can
be aof anvy tvepe. ZADD gaives the address af the string buffer, while
ALRS =gives the address af a variable, which in turn - if a . Strine
variable = contains either the address of a strina buffer or zera.

SAND is provided mainly because it exists in CBASIC. Though it can be
used in condunction with the LEN and PEEK functions in dealinge with
string data at the machine languagse level, there are better ways of
doing swch things: as the charter "Hardware and machine lansuage
interface" shows. SADD must NEVER be wused with POKE to modify a
String. :

T5.1.22. SEC(X) - Secant

SEC returns the Secant of its arsument X, which is taken as an anale
in radians. The value returned is Real. This function is unique to

-25-

. WBASIC User Guide
\

MBASICS CBASIC does not . suppPort it.
-~ _
135.1.23. SGN(X) - Sian

S5N returms an Integer value representine the sign aof its arsument.

XThe argument to 3GN mavy be either Inteser or Real. If the argument is

SGN returns 0. If the arsument is negative, SGN returns -—-1. IFf
~the arsument is Positive, SGN returns +1.

K5.1.24. SIN(X) - Sine

T SIN returns the Sine of its arsument, which is assumed to be expPressed
ll radians. The. value returned is Real.

ii 25. ESRR(X) - Ssuare root

SR returns the square rooct of its araument. If the araument 1is
negative, its absolute value will be taken and its ssuare root will be
- freturned. 3SGR alwayvs returns a Real value.

l- -

S5.1.2A4. TAN(X) = Tangent

L%AN returns the Tansent of the arsument, which is assumed to be an
anale expressed in radians. The value returned is Real.

[
[%.1.27. VAL(A%) — Value

VAL scans 1its strine arsument as a number, and returns a Real value
v&qual to the value of the number found. Characters are scanned and
onverted wuntil either the end of the string is encountered or an
invalid character is found. Leading spaces are isnored in the string.
('F the string does not beoin with a valid number, zero 1is returned.
Fhe rules for numbers scanned by VAL are identical to those for Real
numbers read by the INFUT statement. VAL does not recoganize
(wexadecimal inPut.

kNote that the value returned by VAL is alwawvs Real, even i# the strina

¢fr9ument specifies a value the compiler would treat as an Integer (for
}}xamPle "14") .,
=

S String valued functions
}hg Following functions return 3tring values.
ﬁj . CHR$(I%Z) - Character from ASCII code

CHR$ returns a ane character stringa. The character making up the
,strins “is the character with the ASCII code of the arsument I%Z. I+ a
f}ea] airaument is supPPlied, it will be rounded to Integer.

CHR$ 1is aoften used ta place ASCII control characters in strings. For

xamPle, CHR$(7) is a one character strine consistine of - the ASCII BEL
~lode. CHR$ is also frequentlv used in hardware interface code where
it ¢i= ~desired to convert a character received as an Integer inta a
}trins for use within a Prosram. ‘

2 -
e ol w

2. COMMANDS — Command string

|

—_—

{ {

—

.))
| S | ———

FBASIC User Guide

ZIOMMAND$, which takes no arsuments. returns the command line wsed to
call the ocurrentlvy executinse prosram. The command line returned
derends upon which aorPerating svstem is being used. llinder the Netwarlk
dperating Swvstems the entire command line is returned. For examprle,
if a pProgsram were called:

PRIMES 11,1000 FASTMODE
The followine programs

PRINT "<«<"35COMMANDSS 23"
would Print:

<PRIMES 1,1000 FASTMODEZ>

IInder the Disc Executive, the command stringe returned starts with the
first character followinge the pProaram name. If the same Prosram were
run under the [isc Executive, the ocutput would hbe:s

< 1,1000 FASTMODEZ

RBecause a space will alwawvs precede the command string under the Disc
Executive, Praarams may be easily written which will run under both
svstems by simpPly discardina all text in the COMMAND% strine before
the first space, then examining the balance of the strine.

Unlike CBASIC, 1if a ©CHAIN is done to another pProgram. that prosram
will "see” its own call line (from the CHAIN statement) rather than
the line used tao call the original pPraosram.

S.2.3. LEFT$(A%$,I%) - Left part of strins

LEFT$ returns the leftmost I7% characters of string A%. I+ A% i1s the
null string, or I% is zeros the null string will be returned. I+ 1TI%
is greater than the lenath of A%, the entire stringa A% will ke
returned (but it WILL NOT be Padded bv blanks to lensth 1%, beware!').
If 1% is nesgative, an error will accur.

S.2.4. MID$(A$:1%.J%L) — Extract substrins

MID$ extracts the substrine starting at the 1% th character of A%, J%
characters long, and returns it. If I%4 is greater than the lenath of
A%, the . null string will be returned. If there are fewer than J%
characters between the I%Z“th character and the end of A%, the rest of
At startina at the 1% th character will te returned. The tirst
character of A% is .number 1. If J/ is zera, the null string will be
returned. If either 1% or J% is negative an error will occur.

Note that MID$ can be used to truncate characters from the start of a

string bv specifving a J% value much largser thanm the strina lensth.
For exampPle:t .

BE=MIL%$ (A%, =, 2000)

sets B%$ to all characters in A% after the first ane, unless A% is an
extraordinarily lang string.

-27 -

”1 HBASIC lUser Guide
S S.2.9. OVERLAY$(A$,E$,I%Z) - Dverlav strine

‘LVERLAY$ returns a strine which is egual ta B$ except that characters
startine at position IZ are replaced (overlaid) with characters +from

_As%. (ComPare the order of arguments in the MATCH function) In most
| fases this is Just a much faster way of aetting the effect of

LEFT$(B%, 1%~1)+As+RIGHT$ (B$,LEN(B$)—-(LEN(A$)+1%~-1))
(}ar example, in the pProgram frasment:

oLDs="ARCDEFG"
NEW$=0VERLAY$&("!!'!",0LD%$,2)

EW$ is set to "A!'!'!EFG".

T

he result alwavys includes all of strins A% and has a lenath of at
least I7-1+LEN(A%). If the lengath of string B 1is 1less than that,
hen the result is langser than B%$3 cotherwise it is the same lensth.

the lengath of B$ is less tham I%—-1, OVERLAY$ will add blanks and
hen arrPend A%. Therefore, the following expPression will Produce a
tring of twelve blanks: ‘ -

C;d:‘ll'HL—-—\r—-H

DVERLAY®("","",13)

f I%Z is negative or zero, a value of one is used instead.

L

{}.2.5. RIGHT$(A$,I%Z) — Risht Part of string

nRIGHT$ returns the rightmost 1% characters of strina A%. If A$ is the

(‘ul] string or 1% 1is =zero, the null string is returned. I+ I% is
Lgreater than the lensth of A%, all of A% will be returned (kut WILL
DT be Padded with blanks on the left).)

] s 2e7a STR$(X) - Strine representation of number

:TR$ returns a strins containing the edited representation of the

latue of the Real arsument X. The format of the result returned b
’JTR$ is the same as that used by a FRINT statement used to pPrint the
same value, with one excerpticn: STR$ does not edit a pPositive number
jJith a leadins blank as PRINT daes (this is compatible with CBASIC).
| Jf the arsument is an Inteser, it will be cenverted to Real. 3STR$ is
normallv uwused by pPrograms which wish to pPerform their ocwn formattins
g]F numeric informatiaon.

S.Z2.3. UCASE$(A%) — UPPer rcase.

{FASE$ returns a string esual to its arsument but with all lower case
’ etters converted to uprPer case. A1l characters other than lower case
letters are unchansed. IWAZE$ is especially useful when pPerfarming a
Jtring comParison where case is not to be sisnificant. Convertins
kjnth strines with LICASE$ before the comparison will achieve the

desired guoal.

i
i —-o2-
’L ,l

|

¢ H -

BBASIC lUser Guide

&, User defined functions

ZBAZIC allows the user to define functions which mav be called within
exPressions in the Progsram. RBASIC functions are very pPowerful, and
permit comples sequences aof code toa be called repeatedly without
rerlicating them thraugshout the pProgsram.

A user defined function must be DECLARELD. A function declaratian
specifies the FUNCTION NAME bwvw which the function wil)d be called,
names DOUMMY ARGILMENTZS to stand for the arsuments which the functian
will acceprt, and then specifies the calculaticons to be pPerformed when
the function 1is INVOKED. A function is invaoked by being used in an
exPression.

A1l functions in QBAZIC return a value. The value returned bv a user
defined function mav be Integser, Real, or String, with the functian
tvpe indicated by the last character of the name. faollowine the HBASIC

.namine conventions.

A1l user defined function names must besin with the characters "FN".
Following the "FN" mavy be any sequence of letters, numbers, and
Pperiods desired bvw the user. Onlvy the +irst 21 characters includins
the "FN" are significant. The fallowing are exampPles of valid user
defined function names:

FNA

FN4zZO1R

FN. PACK.JSER.NAMES$

FNCOROS$

FN.OEVICE. INDEXY

FN.J%
FN...THIZ.CAN...GET..SILLY....%

Nate that Real function mames end* in no special character, Strins
function names end in a dallar sian, and Integer function names end in
a Percent sian.

There are two tvrPes of user defined functians: single line functians
arnd multiple line functions. The declarations aof these functions
differ, so they will be discussed separately below. There is no
difference in the wawv the two kinds of functions are called.

A0 1. Sinale line functians

-Sinsle line functians are used when the result of the function can be

written as an exPression in terms of the function arsuments. A single
line function declaration is aof the foarm:

DEF <function nameX[(<argars...)l=exPressiaon>
where <functicon name> 1is the name by which the function will be

called, <arg> are the dummv variable names, and <expression®> is the
expPression in terms of the dummy arsument names which =2ives the value

=¥ -the function. The tvwpe of the dummy arsuments is indicated by the

last character accordins ta the normal rules. The names wused far
dumm+ arsuments have sisnificance only within the function. Thev mavy

._3'9_

ZBASIC llser Guide

Juplicate variable npames wused elsewhere in the prosram and no harm

will be done. A function may have anvy number of dummy arsuments, or
Tt mavw have none at all. If it has no dummvy areuments. the declaratian
should contain no pParenthesised araument list, nor should a call aon
the function specifv arsuments.

}he tvrpe of the arauments used to call the function must agree with
the tvrPe of the dummy arsuments with which it was declared. A comman
rror is to proavide an Integer arsument (such as 1) where the function
prects a Real (such as 1.0). This will cause the eprogsram to fail
with an error code of 0109.

]he followine is an example of a single line function declaration and
‘rts use within a Prasram.

;"! DEF FN.HEIGHT(AZIMUTH, RANGE)=RANGE#SIN(AZIMUTH)
PRINT "Plane now at ";FN.HEIGHT(TRANR,RFRDG):" meters."

inale line functions may alse have string results. The follawing
ring function returns the Portion of its string araument A% to the

left of the first occurrence of arsument B%$.

!] DEF FN.LPART$(A%.B$)=LEFT$(A%.MATCH(B%,A%,1))

There are no restrictions on the cantent of the <expression> used in a
inale line function. BBASIC permits recursive calls oan singsle 1line

wnctions, even thoush CBA3SIC does not.

f}Z. Multiple line functions

i .

A multiple line function allows consthuction of more campPlex functions
rvich may wuse virtually all GBASIC statements and facilities in
. mPutina their result. Multiple line functions maw also be used as a
subprogram facility far more pPowerful than that offered by GOSUR.

{lmultiple line function declaration consists of a function header
ne, the function bodv (the statements that make up the function),

and a terminatine FEND statement. The function header line is of the
I srms

DEF <function name>C(<ar9®>...)]
i
| Jere <function name> is the name by which the function will be called
and <are> are the names of the dummy arguments. The rules far
fynctiaon names, tvpPes, and arsument tyvrPes are identical ta thaose
{tPlained above for single line functions. A multiple line functian
r<« identified bv the fact that no =<exPression® for its value apPpears
an the DEF line.

J11awineg the DEF line for the function are any number of statements
thich make up the function baody. Arnvy valid BBASIC statement with the
‘Yeertion of DEF, 1ZOMMON, END, ENTRY. EXTERNAL, and SUBPROGRAM mav
Jpear with a function bodv. Great care should bhe exercised when
'aing Gthe DIM statement within a function bodvy. First of all, it is
wpixssible to DIM a dummy arsument name. excert when using call b
ference, as described in the next sectian. Second, a DIM perfarmed
£thin a function declares an arrav slobal to the entire proaram. not

J -40-

|

L~

HHEASIC User Guide

lacal to the function as are dummv variables used within the functiaon.
As a result, functions whir* :s& the JIM statement mav not be used
recursively (at least without =reat care in Prosrammin=), and thew
must be careful not to use a mname used in the rest of the pProsram, as
the DIM statement would erase a pPreviously existing variable.

As alluded to above, multieple line functions mavy be used recursivelw

without restriction (that 1is. they mavy call themselves). Each
invacation of the function will have its own dummy variables, so 1in
HBASIC recursive calls work as intwuiticon would swuagest. Dumm-v

variables may be used freelwv as lwcal variabless that is, their values
mav be changed at will.

The value for a multiple line function is returned by assigning it teo
the function name. as declared on the DEF line. If more than one
assignment to the function name cccurs, the last value assigned will
be returned from the function. If no value 1is assigne:! ta the
functiaon name bv the time the function returns to the caller, zZerao
will be returned if the function is of tvrpe Integser or Rezal, and the

. nuell string will be returned if the function is of tvpPe String.

The assignment to the function name is a special kind of statement,
and should not be taken to impPlvy that the function name is a variahle
within the function bodv. Using the function name within an
expPression will NOT retrieve the last value assigned te it, but will
cause a recursive call ta the function!

A multirPle line function returns to the lirne which called it by
executing a RETURN statement or by "falling coff" the end aof the
function. and executinag the FEND statement at the end of the function.
In CBASIC executing the FEND causes an errors; in @BASIC it pPerforms a
normal return. An EXIT IF statement which is on the autermaost level
of the function definition (i.e.s not in a WHILE, FOR, or IF block
within the function) can alsoc cause a return.

The end of a multiple line function is marked bv a FEND statement,
which is simpPly written:

FEND

Zince a multirple line function maw contain virtually any sequence of
RBASIC statements, it is hard to illustrate all the thines that can be
done using them. The followins example is a fairly tvpical use af a

"multiPle line function. The function declared below takes twa Strins

arauments, LINE$ and WORD$> and returns an Inteser equal to the number
of occurrences of WIRD$ within LINES$.

DEF FN.WORDO.COLUNTZ(LINE$, WORD$)

‘17%=0 { Jdccurrences found J
K7%=1 { Offset into strine for search 2}
WHILE 1

JA=MATCH(UCZASES (WORDS) , ICASES (LINES) , K7%)
EXIT IF J%=0 '
) I17=17%+1
P K%=J%+LEN(WORD$)
WEND
FN.WOIRD. COLUNTZ=1%

|

“] . BBASIC User Guide

FEND
: k.S. Function calls

_A user defined function,. whether single or multiple line, mav be

}_a11ed within anv expPression. The call on a function must use the

! same number and tvyrPe of argsuments as there were dummv arsuments in the
function declaration. Arguments wused in function <calls mav be

| Rrbitrary expPressions (of the required tvpre)s the onlwv exception is a

}Eummv variable that uses call by reference, as described in the next
sectian.

i he most common error in calling functions is to provide an Integer
aroument where a Real was expPected, or vice versa. This will Cause

l,Trr*v:nr- termination with a status of 010%9. Given the definition line:

|
3 DEF FNX (NUMBER)

{The followine calls are INCORRECT:

X FNX(1)
FNXCIZ)

y X
(‘ I7 = FNX(LEN(AS$))

{]he following are CORRECT:

|

Sometimes a multiple line function is used Purely as a subroutines
That is, it 1is used to invoke a sectiomn of code rather than to compute
value. Since all functions must return some value, such a functian

is normally called in an assignment statement referencine a dummvy
{~ariable, such as:

FNX(1.0)
FNX(FLOATC(IZ))
%Z = FNX(FLOAT(LEN(A%$)))

X
X
I

DIIMMY%=FN. UPDATE.MASTER.FILEZ (MFILE$. TRANSFILES)
}‘.4. Call bv reference

Function arsuments,. as described in the Previocus section, wuse the
\ anvention of CALL BY VALUE: when a function is invoked, the arsuments
i Ire -evaluated and stored in an area that is pPrivate to the pParticular
function call. There is no way to Pass a whole arravy as an argsument
(Athouah single elements of an arravy can be Passed), and a chanse in
} he value of a dummy arsument has no effect outside the function.
Both of these features can be chansed bv usins CALL BY REFERENCE.,
‘Which is similar to the handling of arsuments in Fortran.

|
|

—'o define a dummv variable as wsins call by reference, "~ pPlace an
asterisk before it in the DEF statement. If the duommv variable is a
hole arravw, it must be tallawed by emptw Parentheses. :-For example.

@ followine defines a function of a Real value, an Integer called by
~aferences-—-and a Strine arrawv: ’

T

} DEF FNAC(X, *#I%, #¥A$())

| -42-

e

WBAZIC User Guide

The following function reads a specified number of lines from the
console. The inpPut is returned in a strine arrav, the number of lines
containineg a guestiaon mark is returned in a variable suppPlied in the
function call, and the function value is the number of non—blank lines
read.

DEF FNREADLINEZZ(NLINEZZ, #LINESS (), #IERIESA)
OIM LINES$(NLINESZ) '
NONELANESZ = 0
QUERIESYZ = O
FOR IZ%=1 TO NLINESZ
‘ INPUT LINE LINES$(IZ)
NIONELANKSESZ = NONBLANKSZ+SSGN(LEN(LINES$S(IZ)))
GUERIESYZ = QUERIESZ+SGN(MATCHCO"\?",LINES$(I%)-1))
NEXT I% ' :
FNREADOLINESZ = NONBLANKSZ
FEND

In any function call the arcaument list must match the dummy variable
list in the DEF statement as to the tvpPes (Real. Integer, and String)d.
In addition, for any Jummy variable which uses call bw reterences the
corresPondine arsument MUST be a variable (not an expression) preceded

b+ an asterisk. The followine would be a valid call on the functian
defined in the example above:

LINESREADZ = FNREADLINESZ (WANTEDZ+2, #SARRAY$() , #*IUIERIESA)

The first arsument can be an expression because NLINESYZ is not called
kv reference. The main eprogram daes not need a DIM statement for
SARRAY$ becawuse the function takes care of it. The third arsument 1in
this examPle harrens to have the same name as the dummv variable.

When a dummv variable is a whole arravy, the arsument supPlied in the
call must also be a whole arravy.e The fallowine calls on FNREALDLINESY
are NOT VALID: ' '

I%
1%

FNREADLINESZ (J%, #5$ (1), #K%)
FNREADL INESY (1%, A%, #KL)

:W RBASIC User Guide

f1. InPut and Quteput Statements
"This chapter describes the basic inpPut and ocutput facilities of
AHBAZIC. =Statements described in this chapter allow data to be read
'Irom the wuser”s terminal or from data tables stored within the
| rogram. and to be displawved on the terminal or sent to a printer.
The next charter will describe QBASIC”s file inPut and output
acilities. Understanding the oprPeration of the statements 1in this
. thapter is necessary to understand the tfile oriented statements, since

the latter are simplvy extensions of the statements described here.

{}.1. Console and printer inpPut/cutput

TThis' araouPp of statements pPermits data to be read from the user”s
Jerminal, and to be displaved either on the terminal or on the
standard printer (PRINT.DEV).

H.1.1. PRINT statement

' PRINT “<ex=pPression> [{serP> <exPressicon>*l... [<sepr>]

The. PRINT statement Prints the values aof the <expressicn®s on either
+he terminal or the pPrinter. Where the infaormation is pPrinted depends
[n whether a CIONSOLE or LPRINTER statement was executed last (see

Belaw). The <«<expPressicon>»s to be pPrinted mavy be Inteser, Real, or
String. -

whe formatting af data printed by the PRINT statement is controlled bvw
the serparator character, <sepP}, used between multiple exPressions 1in
(oe statement. If a comma is used. the expPression followins the comma

i11 be pPrinted in the next column of 20 characters. Thus, outpPut mav
ke pPlaced in columns by using commas between exPressions. If a

=micolon is used as the separator, ome spPace will be output after
I mbhers (Integser or Real) and no spPace after Strinas. Note that when
a number is pPrinted, either a spPace or a minus sign alwavs Precedes
t[ne number.

tbrmallys, after pPrintins all items in the statement, the output line

will be ended, and the terminal or pPrinter will advance to the next
ne. If the last item in the statement is a separator, either comma
--semicolon, the terminal carriage will be left extended or the end

of line will not be sent to the Printer. This mawv be used to build up

(tPput lines with multirple PRINT statements, or to print "pPromepts" for
Lﬁer inPut an the terminal.

vs 1s "PRINT"), a blank line will be printed (or if information has

xiready been printed on this line, it will simply advance to the next
Tine). ; ~

rF no " <expressiaons apPpears on the PRINT statement (that is, all it

I
|

Ll]ike CBAZIC. RBASIC does not automatically check tor outeput which is
T araerthan the output device width and break it intoe two or more
} nes. GBASIC will simPly send coutput ta the device, and the action
‘" Jken if the outpPut 1is longer than the device“s 1line lensth is
“ependent an the characteristics of the cutput device.

L} . ' —-44—-

—

HBASIC lser Guide

An Inteser expPression mav be pPrinted as five hexadecimal digaits by
fallowina it by a sharp sian (#).

The followine are exampPles of PRINT statements:

FRINT

FRINT A,EB,LC

FRINT "And the answer is"j;THE.ANSWER

PRINT "Ruasiviable metararameter index="3L0MPI%
PRINT "Enter value for Point"s31%s

PRINT V1(J1%4),

FRINT "Hardware status ="3;3TATZ#

7.1.2. FRINT IIZING statement — formatted output
PRINT USING <faormat strins 3 <exPressions...

The FRINT LISING statement permits ocutput to be written in which the
userr has complete control aver the presentation of the information
written. The PRINT USING statement takes a Strine expression called
the FORMAT STRING, which describes how the ocutpPut is te apPrPear,. and
edits-an output line by inserting the data. <expression>(s) inta the
outpPut line edited as described.

The format string may contain boath "literal data" which is simeply
coried to the wuteput unchanged and "data fields" which are replaced by
edited representations aof ‘the <“exPressionxs ta be output. Anv
character not described below as a data field character will simPly be
corpied to the output unchanaed.

7.1.2.1. ' - Sinsle character strins field

The "!" character in a format string causes the first character of the
next expression to be edited in the outeput. For exampPle:

F$="This radiao receives '.!."
PRINT USING F$ 5 "Frequencv", "Madulation"

would pPrints

This radio receives F.M.
7.1.2.2. /eoo/ — Fixed lensth string field

Twas .stashes in a farmat stringe delimit a fixed lensth string field.
Any characters between the slashes are ignored and simPly serve tuo
jefine the width of the field.

The strine expPression will be edited into the field left—Jjustified and
sPace filled. If the strine being edited is longer than the field
suprPrlied, characters will be truncated. The followins exampPle
illustrates fimed lensth string fields. Co
F$="The time is8 /.eee.. ceo /"
TUTUPRINT USING F$ 3 "10 P.M."
PRINT LUSING F$ 5 "toco late"
PRINT IZING F$ 5 "fourscore and seven vears agaao"

45—

L

|

HRBASIC User Guide

- This prosram would print:

‘ The time is too late
_N The time is faurscore
‘7.1.2.3. % - Variable length string field

The entire

outerut line.
strings in

(n ampPersand (%) specifies a variable lenath string field.
'zontents of a string expression will be edited into the

The followine is an example of use of variable lensath

~rutput.

Fe="1 don“t have enoush % to do it."
PRINT USING F&5 "time"

ﬂ PRINT SING F$; "monev"
- PRINT UISING F$3 "g9ood reasons”

' This prooram would print:
t?
I don“t have enough time to do it.

B I don’t have enocugh manewv to do it.
‘) I don”t have enoush soed reasons to do it.

|

{
L,

Z7.1.2.4. Numeric fields
. l :

umeric Fields are made up of sharp sigans (#) and aother characters
which se€lect editins

aPtions for the number pPrinted in the field.
}

he simplest numeric field consists of one or more sharp sians,
aPtinnally with a decimal point included in the field. Numbers
(’Pinted within the field will be raunded tao the number of decimal
| Maces indicated by the field and printed with the decimal alisned as
specified by the field. If the number Printed is rmesative, a minus

jrsn will be pPrinted in the field to the left of the most significant
iait.

Ife fallowine is an examPle of simpPle numeric fields:

—

Fe="H##4#4 ##44. 44 444, HEHHEE"
A=1

PRINT IISING F$35 A.A-A
A=2.713231332

FRINT USING F$3 A-A-A

A==A#10

PRINT USING F$;5 A-A-A

_—

L L3 L=

is eprogram will print:

i 1.00 1.000000
3 2.72 2.713232
-27 < =27.1z -27.122312
If¥ one_.or more commaskaPPear within a numeric field, the

number will
Pprinted with commas sepParating each garoup of three digits befure

e decimal pPoint. The Placement and number of commas in the field

s no effect on the wav the number is printed; it will alwaws he

. =

GBASIC User Guide

Pprinted the conventional wawvw. Nate that each camma included in the
field reserves one- pPlace in the number, so 1f the field is to
corresPond with the number being pPrinted, the commas should be
included where thev will appPear in the number.

The followine is an exampPle of numeric fields with caommas:

Fe="HHH4#HH#H# #4, ##8, ##3 #F &, HHHSHHHHR"
A=1.23457
FOR I%=1 TO 7
FRINT IJZING F$3 A-A-A
A=A%*10
NEXT I%

This pProgsram will eprint:

1 1.23 1

12 12.35 12

1232 123.46 123
1235 1,234.57 1,235
12346 12,34%5.67 12,246
122437 1232,456.70 123,457

1224567 1,2324,567.00 1,234,567

A numeric field mav be asterisk filled (check protection) bv beginning
it with two asterisks (#%¥). A field will be Printed with a flaoatins
dollar sign if it begins with two dollar signs. The asterisk fil1l1 and
floatina dollar sian opPtions may be combined with sharp signs, commass
and a decimal Point in a numeric field, but mavy not be used tosether.
I+ the number entirely fills the field, nao asterisk or dollar sian
will be Printed. If the number is negative. the dollar sign will be
printed before the - sians this is different from CBASIC and mavy be
changed in a future release. The following is an exampPle nf asterisk
fi11 and flocatina dollar sian:

Fe="ssH#, HH#. ## #EHHEHHEHA"
A=12.36

FRINT USING F$5 A.A

A=73332.32

PRINT LISING F$3 A>A

A=—A

FRINT USING F$3 A.A

This pPragsram will eprint:

363ttt 2

$12, 24
$7,3532.32 #3333t 7353
$-7,353.32 #¥#HR=-7252

If a minus sian is appended to the end of a numeric field, the number
will be pPrinted with a trailing minus sigan i1if negative. I1f the number
is pPasitive, a blank will be erinted followinse the number. The
followine is an examPle of trailing minus sians:?

Fe="HEH4. H4 H##. #3-"
A=123, 454
FRINT LISING F$3 AA

RBASIC User Guide

A=-A .
. PRINT USING F$3 A.A

This pProgram will print:

il 125.4ﬁ 123.464
‘ 122.46 1232.46—

PF a number to be pPrinted within a numeric field is sufficiently large
that it «cannot be pPrinted within the designated field without

truncating digits before the decimal pPoint, it will be replaced bv a
rrield of all asterisks (#). For exampPle

PRINT USING "###"3 12345.6
%Lou1d prints : <

L

LL.I.Z.S. Faercina field cantrol characters

]Env of the field control characters mentioned in the above sections
av be pPrinted as literal text data by pPrecedine it with a backslash
(\). The backslash wcauses the next character to be pPrinted as a

ri1iteral character resardless of what it is. Note that to Print a
[}acks]ash, it must be forced, so two backslashes must be used. :

prr exampPles

Fe="Gosh\! Jar \### has a ##"" & in it."
N PRINT USING F$; 12, 14, "bullfros"
Ll :

culd Prints

f Gash! Jar #12 has a 14" bullfroo in it.

(

"Note that the 9uote character had to be forced into the strins
Tonstant, but since it is noat a field character, did .not have to be
receded by a backslash. The exclamation pPoint and sharp sisn did
Tiave to be forced, as oatherwise they would be treated as field
characters.

10206, Matching of exPressions and fields

f <<Lexpressionys to be edited into it. If there are mare
“<expPression>s than data fields in -the format string, the format strine
vill be reused from the start. Hence, many items mavy be pPrinted with
he same format without rerpeating it for each item. For examples

tjrocessins aof the format strims is controlled bv the tvepe and number

F$="Point #E=H##{H. 44 "
‘l FRINT USING F$5 1,1.232,2,-3.01,3,22.37

will erint:

AJ Point 1= 1.23 Paint 2= -32.01 Point 3= 22,27

[- [

S

. l

—

—

[- — 1 [— » T

HDRASIC User Guide

Each <expPression> is evalwvated, then the format string is searched
from the current pPosition for a data field of the corresponding tvre.
For exampPle, if the <expPression> has a numeric value (Integer ar
Stringa), the farmat string will be scanned for the next numeric field.
If a string field is encountered first, it will simPlvy be output as
literal characters. The same holds true if the expressian has String
value! numeric fields will be woutput as literals as the scanner
searches for a string data field. If no data field of the right twvre
is found in the format strins, an error will occur. This somewhat
bizarre feature has been included for compatibility with CBASIC. When
all the <expPression>rs have been edited, any remaining characters 1in
the format string will be pPrinted literallw.

7.1.32. CONSOLE statement
CONSCOLE

The CONZSOLE statement directs subsequent output from the PRINT
statement to the user‘s terminal. This mode is in effect ‘initiallvy
when a pProgsram is called, so the CONSILE statement is necessary only
to restore output to the terminal after havina used the LPRINTER
statement (see below).

7.1.4. LPRINTER statement
LPRINTER [WIDTH <expPressian>)

The LPRINTER statement directs all subseauent cutput from the PRINT
statement to the standard printer device. PRINT.DEV. COutpPut mavy be
restored to the user“s terminal at a later time by the CONZOLE
statement (see above). If PRINT.DEV can not be assigned (far
instance, if another wuser is using it under NIS/MT). the Prcesram is
terminated in error.

The WIDTH clause aon the LPRINTER statement is used by CBASIC to
specifv the line width aof the pPrinter. As discussed above in the
descrirtion of the PRINT statement, GBASIC does not wrap arcund cutput
based on the line width, so the WIDTH specification, if pPresent. is
ignaored.

7.1.5. Cansaole/printer cutput functions

The followine twoe functions allow the column Pointer used by the PRINT
statement to he examined and chansed.

Reevy

7.1.5.1. PO%Z functioaon
FOS

The PQS function returns the current value of the column Pointer used
bv PRINT. It can be used anvwhere in a pProgsram, includine a FRINT
outrPut 1list. The leftmost column on the Pase is column 1. and the
number returned is the column number where the next item pPlaced in the
buffer bv PRINT will start. For example, in the fellowine PpProegram
frasment:

FRINT "One small step far a man, "3

—49-

[QRASIC User Guide

3 A=F0s : :
3 PRINT "ane 9iant leap for mankind."”
B=P013

Tvm variable A would be set to 27 and B wﬁu]d be set to 1.
7.1.5.2i TABR function

- {

li TAB(<exPression)

The TAB ftunctioen mav arppear onlwvy within a FRINT statement. It sets
lhe column Pointer used by PRINT to the wvalue of the <expression>
Liven as the Parameter. The <expression> must be either Integer ar
Real. If Real, it is rounded to an Integser before being used. If the
(lumn Pointer is already at a column hisher than that sepecified by
[=xpression}, the line will be pPrinted, and the TAB will be done on a
new line. The fallowine are exampPles of the TAB function:
tl PRINT "G@t+"5TAB(10)5"Name"5 TAB(40Q)3 "Price"”

FRINT TAB(INDENT.CQUNTZ)s TEXTS$

PRINT TAB(4S+SINC.1)#40) 5 " #"

nLe last example illustrates how pPlottine mav be done wusine the TAB
function.

(11.@. INPUT statement

. INPUT C[<prompt> 31 <variableX>;...
ll INPUT C<prampt> 3] LINE <variablez

| fores it into variables named ‘on the INPUT statement. If na {prompt>
‘ spécified, the wuser will be prompPted for ineput with a suestion
mark. If <prompt> is speciftied, it must be a Strina CONZTANT. Note
]tat an exwPression cannot be used for a <prompt>: nor mav the <promptl:
- Integer ar Real (this can be achieved by pPreceding the INFPUT with a
PRINT statement with a trailing semicolan, then wsina the null string
! the <prompt> in the INPUT statement). After the <prompt> GBASIC
L']] Pprint one blanks even if the <prompt is null, the user will see
a promPt of a sinale blank. The extra blank, which is included far
FRASIC compPatibilitwy, can be suPPressed; see the section "External
<§riab1es in the librarv".

zFe INPUT statement reads data entered by the user on the terminal and
s

In the First form of the INPUT statement, wvalues entered on the
’=rmina] will be scanned and assigned ta variables in the aorder named
. the INPUT statement. Items entered aon the terminal must be
separated bw commas. If the value entered 1is an Integer and the
{ riable is a Real, it will be converted to Real before beine stared
'n the variable. If the variable is an Integer, the value entered on
the terminal MUST NOT contain a decimal point or an exPonent. Leading
~lus sians mav not be tvyrPed on numbers uwsed with INPUT. =Z=tring
' hriables read with INPUT mawvw simplvy be words separated by commas.
Ztrines mawv be enclosed in 9uotess as strine coanstants in QBASIC
sroarams are written, and this is the onlv waw for a normal INPUT
i tatement to read a string with leading blamks and/or embedded commas
~tut see the INPUT LINE statement below for an alternate approach).

LJ _ -S0-

o Co o S

RBASIC User Guide

The number of values entered on the terminal must be the same as the
number of variables on the INFUT statement. and values twvrped must be
separated bwv commas. If inPut disagrees with the variable list or is
badlv formed, an error messagse will appear and the information must be
reentered correctlv.

The fallowing are exampPples for the first form of the INPUT statement:

.

INPUT A

INPUT A, I%.V(T%+1)

INPUT "Enter part number:"s3; PART.NO

INPUT "Last name, first name,. age?"5;LNAME$, FNAME$., AGEZ

If the LINE specification appears on the INPUT statement, anly cone
variable may be srPecified. This variable must be a =String variable.
The entire line of inPut twveped on the terminal will be stored in the
String wvariable. No <+ormat conversion will be dones if suates are
tvped on the consoles, thevy will be Placed in the String variable. The
LINE form af the INPUT statement is used when entering information
which will bhe examined bv the praogram and for which FBASIC s normal
inPut scannina is undesirable or inadequate: and also is freguently
nsed when reading String data which might contain characters to which
the normal INPUT scanner is sensitive, such as commas. If the user
simPlwv .responds to an INPUT LINE statement with a carriase return, the
variable will be assiganed the null strina.

The faollowinge are exampPles of the LINE form of the INFUT statement:

- INPUT LINE A%
INPUT "Enter Citw, Ztate. Zip codet "3 LINE ADDZ2%

7.2 Direct canscole inpPut functians

Twoe Ffuncticons in RBAZIC pPermit direct inpPut from the user’s terminal.
These functions allow a WBASIC proagsram to read characters from the
terminal bvypassinas both QBASIC s and the operatine svystem’s normal
inPut scanning. These functions are similar to those provided b
CBAZICS differences will be noted.

7.2.1. CONSTATZ function

The CONSTATY function waits until a character is tvped, remembers its
value, then returns an Inteser value of -1,

In CTBAZSIC, CONITATZ alwawvs returns immediatelw, returninag QO if no
character is available and -1 if a character has been tveed. HBASIC s
imPlementation 1is equivalent for all programs which use CONSTATZ in a
wait looer before Processing the character. Note that ina multi—-user
svetem a pProgram which is waiting on CONZSTATZ will not tie up the
whole compPuter.

In a single user svstem it mav be desirable to make CONSTATZ - function
as it does in CBASIC. Far exampPle, a pPraogram makine a lanz
compPutatiaon might check CONSTATA occasionally to see if the user wants
to interrupt. The section "EXTERNAL variables in the librarvy" tells
how to do this.

-51-

|

f] OEASIC User Guide
e

2.2 CONCHARY function

{}he ZONCHARY function returns one character from the user s terminal.
The value returned by CONCHARY is an Inteser egqual to the ASICII code
“tar the character. The character 1s echoed to the consale when tvpred,
gn]ess it is a control character (ASCII code less thanm OZ0).

AHnlike CBASIC, GBASIC actuallv waits for a character te be tvred when
ONCHARYZ is called, so it is not necessary to test CONSTATZ before
“+2allinge ZONCHARY.. If CONSTATY has been called, IZONZHARYZ returns the
value that CONSTATZA saved.

|

{Jhen a character is . entered wusina CONCHARYZ or CONSTATZ, the standard
svstem actions on control characters, such as Control=-X and Coantrol-C,
]?re supPressed,

o wark in bath QRASIC and

LThe followine program frasment, coded t
-WBASIC, illustrates direct console inpPut.

PRINT "Enter data: "3

) F.w$=|| "

(J 110 WHILE NOT CONSTATZ

a WEND
CZ=CONCHARY

[IF CZ=13% THEN 20O REMARE CARRIAGE RETURN

;I IF C%=127 THEN \ . ‘
PRINT CHR$(2)3" "3CHR$(2)35 \

- ELSE \

{J FWS=PW$+CHRS (C7)

GO TO 110
200

]

““his proaram uses the direct cansale inpPut feature to read data froam
the wuser, bwvepassing the normal svstem action on control characters,
flnd treatina the ASCII DEL character as a backspace.

L

When a character is inpPut throush CONSTAT%. 1t is echoed on the

irrminal unless it is a cantral character (ASCII value less than =2

acimal). This is compPatible with some releases of CBASICS CcomPare
the cansale inPut cade in the Osborne commercial packages as

yiginally Published. If vou need comPatibility with aother CBASIC
;:%]eases which do npnot echa, or vou Jjust dan't want echaoing, see the
section "EXTERNAL variables in the librarv.”

}J.E. Program data inpPut statements

The READ, DATA. and RESTORE statements allow HBASIC erogsrams to read
i* ta stored within the praogaram itsel+. This feature 1s usetful far

ﬁ_nitialisins progaram variables, or tao praovide tables commoanly searched
v a Pro9ram.

M

1}3.1. DATA statement .

DATA <canstantx,...

LLe OATA statement is used tao declare the data which is read bv the
‘EAD statement. The <constantis used in the DATA statement mav be

| eae

|

—— —
1 i !

DERASIC User Guide

Integer, Real, ar String. Ztring constants need nat be enclosed in
quotes as lana as .thev contain none of the following: blank, commas,
quaote, cm]qn, backslash, aor vertical bar (1).

Zonstants declared on the DATA statement are not checked b+ the
compPiler, but rather are stored in svmbolic form and Processed at
execution time when the READ statement is done. Consequently, svntax
errars in the °“DATA statement will not be detected until execution
time. This is compatible with CBASIC.

I+ a DATA item is a String and the correspondinge variable on the READ
statement is an Integer or Real, the results are indeterminate. If
the DATA item is numeric and the variabkle in the READ statement 1is a
String, the number will be read as a strina of digits, in the same wavw
as anv String noet surrounded bv suate marks. A value containing a
decimal pPoint or an exPonent can not be read inte an Inteser variables
anv numeric value can be read into a Real variable.

In 2BAZIC, unlike CZBA3SIC, the DATA statement rneed not be the oaonlwv
statement on a line. A colon which is not inside Quates is recognised
as a statement terminator, Just as in ather statements. The CBASIC
manual e=Pplicitly states that DATA statements cannot be continued from
line to line. Nevertheless, the CBAZIC compiler supports continuation
of DATA statements, and so daoes QBASIC.

As many DATA statements maw be used in a program as are reguired to
declare all the data needed. Data will be read from the statements in
the order thev arpPear in the source progsram. The DATA statements need
not appear first in the program, nor need thew appear in a blocks the
comPiler will araup the DATA taoagether. DATA statements are not
executable: if control Ppasses throush a DATA statement nothing will

" harPen.

The cantents of DATA statements are nat pPreserved throwsh a CHAIN
oPeration. SUBPROGRAMs mav not contain DATA statements.

The fallowine are examples of the DATA statement:

DATA 1,32,12.3273,-23.4,132.03E-2

DATA Mercurv,Venus,Earth,Mars, Juriter

DATA Zaturn,Uranus,;Pluto,Neptune

OATA "InpPut pPhase", "Zart phase", "Output, edit pPhase"

7.3.2. READ statement
READ <variableX, ...

The READ statement reads information from DODATA statements intao
variables. Information is read inte variables in the order 1t arpPears
in the DATA statement(s), and the Painter is moved as the data are
read. There need be no correlation between the srouring of constants
in OATA statements and variables in READ statements. An attempt to
READ past the end of the last DATA statement will result in an error
termination. The faollowine progaram fraament illustrates how DATA and
REAT-miwht be used to initialise tables in a Prooram.

ODIM COLOURS (), DIGITA(Y)

- =

o
b P

|

{ RBASIC User Guoide

FOR I%=0 T =
READ CﬁLUUR$(IZ)1DIhITZ(I/)
NEXT I%
OATA BLACK, O, BROWN, 1, RED, 2, JRANGE
OATA 2, YELLOW, 4, 5REEN, S, BLLUE, &
ODATA VIOLET,7-.GRAY, 2\
WHITE, %

RESTORE

: The REZTORE statement resets the painter into the DATA in the prasram
so that the next READ statement will start back at the first constant
in the first DATA statement in the Praogram. This allaws a Praaram to
read the DATA over and over asain. For example:s '

I7.3 %. RESTORE statement

RESTORE
J IF 1%3=% THEN RESTORE
(_

.4. Arrav input/outeput
- ‘
| .
. Pregrams that deal with arrawvs frequentlvy have statements that luook

like

7

;J FRINT X(1)3X(2)3X(2)53X(4)sX(E)sX(A)sX(7)s X)X ()53 X(10)53X(11)

= To make the program shorter and more readable, GBASIC allows a FOR —
NEXT loap to be included in anv I/0 list. Speciticallw, an element of

{
L an I/0 list can be af the form:

{} FOR <indexi=<expPression> T “expression> [STEP <expressionl]
‘ <sepr <i/a list> <sepx NEXT

(he item <i/a listl can cantain anaother FOR — NEXT ‘list. nlike the
j—knrmai "FOR lwoep, the FOR - "NEXT in an I/0 list does not allow
constructions such as "NEXT IZ" ar "NEXT X.Y".

(bn a PRINT statement the spacing of output is not affected bwvw the
choice of comma or semicalaen as <sep> atter the FOR and the NEXT.
! Ter afore, the following two statements are eguivalent:

1
L PRINT X, FOR I%=1 TO =, Y(IZ), NEXT, Z

FRINT X, FOR IZ%=1 TO =53 Y(IZ), NEXT; Z

}%he followine statement is not eaquivalent, as it will Put Just ane
T space after each Y(IZ):

iJ FRINT X, FOR IZ=1 T0O 32, Y(IZ); NEXT, Z

The following exampPle, more realistic for file input than for console
inPut, illustrates inpPut to a two-dimensional array -usine nested
loopssl

\ INFUT DIM1%Z, \
L FOR I% =1 7O DIM1%, X(IZ).DIMZ2%Z, \ A
FOR 04 =1 TO DIM2%, Y(IZ,.04)>,Z(I%,J %), NEXT, \

’} -54-

\]

GBRASIC User Guide

NEXT

—~—— P

=
-S5—-

‘*] CBASIC eser Guide

'}8. File inPut/cutpPut

This chapter describes the BBAZIC statements which provide the abilitwy
-~to tramsfer information to and from files., The files used byv DBASIC
are maintained bv the aperating swvstem under which GRAZIC runss and
“hence the namins conventions wused for files must agree with the svstem
~under which BBAZIC is used. Mast examples aiven in this manual will
luse Disc Executive file names. as thewv are simpler. When usina WBASIC
nnder the Network DOrerating Svstems, refer tao the Network Qperatins
~Svstem user guide for an explanation of file nmames under that swvstem.
|
CJHBAZIC files mawv be wuwused without resard to the actual phwsical
prorperties of the devices used to store them. DBAZIC pPrograms need
Mot be aware of the record length aor addressing of the devices used to
F'held files. Of course, applications must be designed not to use more
starage space than is available on the svstem intended to run them.
EBASIC file access statements exist to apen and/or create files (OFEN,
CREATE, FILE, and GETFILE), to transter data to and from files (REALD,
_PRINT, GET, FUT)>, and to close and optionally delete tiles (CLOSE,
{EELETE). Faorr use under the Network OpPerating Svstem there are
t Btatements to chanse discs (MOUNT and DISMOUNT) and te protect files
against simultaneous updates by different users (LOCE, LINLI2CE) In
Tmrdditian, two functians, RENAME and SIZE, Allow file rmames to be
EEhanaed, and file size to be determined bv a pPrasram. A1l of these
. statements and functions are swupPPurted on both the Disc Execontive and
~Ehe Network OpPerating Siwvstem. Even thougah the Disc Executive cannot

-
i
I
(.

iarmally dvnamically create or rename +iles, GBASIC is able to pPraovide
“these functiocns throush sPecial interfaces to the svstem.

{F.1. OPEN statement
L.

OFEN <expression [RECL <expressionsl,LOCKI]
’1 AS <ex=Pression> [BUFF <expPressiaoncl
[LRECS <expressionsl,...

ess bv a WBASIC Program. The first <expressiany must be a Ztrine
exPression, and 1is the name of the file to be DOPENed. The value af

is string expPressian is the tile mame, ir the format noarmally used
Fpv the operating svstem. " A1l qualifications and defaults permitted b
“the opPeratinga system are allowed here.

(Ihe JPEN statement makes a file which alreadw exists availahble for
I
|

" [he wperating svstem 1s asked to aren the named file. I+ the svstem
Ljndicates that no such file is Present, a test is made whether an IF
END statement has been pPerformed on the file number fallowing the AZ
| yHPr2SS1lnn. I+ sy control will be transferred to the Tine rnumber
Jesisnated on the IF END statement, otherwise an error will occur.
See the description of the IF END statement below tar more details.

io]]owins the kevward AS 1s an <e=xpPression’> reterred to "as the FILE
-JUMBER. This e=pPressian must have a Real or Integer value, and 1f
Reals it is rounded tao Integer before use. File rnumbers must he in
:}he inzlusive range from 1 to 20, Each file activated by an OPEN ar
| JREATE statement must have a unisue file numbers i¥ another file is

already oaren with the same number, an error will occur. The file

SN

(N

HBAZIC User Guide

number specitied on the OPEN statement will be wused in subsequent

REALD, PRINT., SET, PUT, CL=ZE, and DELETE statements to identify the
file.

The number of files that mav actually be oren at one time depends on
the configuration of the opPerating system» not on RBASIC s internal
tables. The 1imit is wusually ten.

If the wptional RECL clause is included in the statement, the +file
will be written with a fixed recard lenath specified bv the value of
the <ex=pressionr Ffollowine the RECL kevword., The record lensth
exPression must be Inteser or Real, with Real values beinga rounded to
Integer before use. If the RECL clause is specified, the file mav . be
accessed either sequentiallv or randomlv. . If the RECL clause is
omitted, the file mav be accessed only sequentially. When reading and
writing text files intended to be compPatible with all other Marinchie
saftware, the RECL clause must not be used. Files written with REIZL
specitfied mawvw be wused onlvy within QBASIC programs.

If the option ",LOCZK" is arpended to the RECL specification, the file
will be eligible far record Jlackine under the Netwark Qperating

Zwstem, as described in the next chapter. This aoption does not by

itself cause anv kind of lackinga, but causes the records to accupv ane
more bwvte of disc space than the number given in RECL. A file written
with LOZK must alwavs be orPened with the LOCK optioan, even if the
proaram does not lack or unlock records. When wsed in the Disc
Executive., the LOCK aption reserves space far the lack bvte, so that
the resulting file can later be transferred to NIZ by the ZONVERT
ytility and used with recaord lockins. .

The optiocnal BUWFF clause makes it possible to control the amount of
buffer spPace used bv a file. IUsuallwy it is omitted, resultine in a
buffer of 234 bytes. If it is included, the <expressioen’ must be
Integaer ar Real, with Real values rounded to Integer befare use. The
value of the <expressionr is multieplied bv 122 to aive the number of
bvtes in the buffer. The buffer size is compPletelvy inderpendent of the
record size 9iven in the RECL clause, if anv. A large value in the
BLUFF statement can improve the pPerformance of many progsrams by
reducineg the number of disc accesses. A value of 1, ar anv odd value,
may seriously degsrade pPerformance aon double density floappw discs.

The RECS specification is isnored by QBASIC and should be omitted when
writing new Programs. It is included in the svntax for comPatibility
with CBASIC pPrograms.

The buffers wused to accesstiles are allocated when a +ile is [OFENed
and released when a file is ECZLOSEd. Hence, to conserve memaory sPace
files should be CLDSEd whenever thewv are no longser needed by a
ProaSram. '
The faollowing exampPles illustrate the OFEN statement:

OPEN "INFUT.TXT" AS 1

CEFEN "2/ +CUST.DATAS AS =
OFEN ACCT.DATABAZE® RECL 145 AS Z, "TEMF1s$" AS 4

’W DBASIC User Guide
APEN "Z2/WIDGIN. ZOT" AS 2 BUFF 10 RECS 12a
| OFEN MULTI.SER$ RECL 293, LOCKE AS 11

MZ.2. LCREATE statement

|

' CREATE “expPressians [RECL <expressionC,LINZK]

— Az <expression [BUFF <expPression]

\1 [RECS. <empPressianl,...

_The CZREATE statement is identical to the ©OPEN statement described

Bbave emcept that the file name need not exist before the the CREATE

’statement is Performed. If a file already exists with the name 321ven
bv the first <expression> it will be deleted. In anv case, a new ftile

[Mwith that rname will be ZREATEA. The meaning of the RECL., LIOCK, AS,

}EUFF, and RECZ specifications is identical to that in the OPEN
statement. .

hMPDRTANT NOTE FOR DISC EXECLUTIVE LISERS! 'V Zince the Disc Executive
Preallaocates files and does naot pPermit dynamiic exPansian, the CREATE
_statement MUST specifv the size af the file being CTREATEd. This is
jone bv appending a file size specification to the file name in the
L TREATE statement. The +ile size is given in terms of 122 bwvte blaocks,
gxactly as wused by the CREATE command im the Disc Executive itself.
I+ the file is created on a double density disc, the size will be
| founded te the ne=t even number so that phvsical sectors will nmot be
split.between files.) For examPle, to create. a file named "NEWDATA" on
~—drive 2, and reserve 120 blocks af storage, each 122 bvtes in lensth,
\Fhe follawing CREATE statement would be used: '

_ CREATE "Z/NEWDATA, 130" AS 1

The file size mav hbe pProvided bwv the pProsram by usine the strins

concatenation and editing facilities aof GQERASIC. Far examele, ta

[freate a file whase name is in the variable NEWFILE$ and whose lernath
s specified bv the Inteser variable NFLENY, the following statement

might be used:

1

CREATE NEWFILE$+","+ZTR$(NFLENYZ) A= S

{The.File size needs tn be specified anlv when creating files under the

Iisc Ewmecutive. IUnder the Netwoark Cperatina Svstem, the file size ic
‘ot reauired, and the CREATE statement is exactly compatible with

CBAZIC. If a file size 1is specified wunder the Netwark Mreratine
‘:vstem, it will be isnmnoareds hence pPragrams mav hbe capnstructed which
L2111 wark under either svstem without modificatian.

The faollowins are examples of the IZREATE statement:

CREATE "MYFILE.DAT, 20" AS =

CREATE "FILE1,100" AZ 2, "Z/FILEZ,25" A3 =

CREATE "PAYROLL/ZHECHEZ/MARZ0O" RECL 150 AT 12
LJ
Nate T that the last examPle can be used anlv under the Natwark
Pperatina Swvstem, and hence the file lemath is nat specified.

—

3. FILE and GETFILE statements

Ln

D)
|

BBEASIC lUser Guide

FILE “<variable>[(<expression>)l:...
GETFILE <e=pressian.s [RECL <expressiaonx[,LOCKI]

AS CeXPressianziees

The FILE (or GETFILE) statement orPens an existing file, if Present.
I+ no +file with the spPecified name exists, a new file is created bew
that name, then opPened. Naoate the difference between the FILE
statement and the CREATE statement. I+ a FILE statement is used and
the named file already exists, it is arened and data in it mawvw be
read. If a CREATE statement is wused, all data in the file are lost,
as the CREATE statement deletes anv pPreviouslv existing file with the
name 9iven.

The FILE statement is caompatible with 1ZBRASIC, while the GETFILE
statement is an extension wunique to HBASIC. We will discuss the twao
forms separatelw.

The FILE statement supprlies the file name in a Strins <variableZ. If
a Parenthesised <expPression> follows the file name, it specifies the
record lenath and marks the file as fixed recard lenath, eguivalent to
the RECL clause on the DOPEN or CREATE statements. You will note that
there isn“t anv specification of file number in this statement. The
FILE statement oavercomes this omission bv assigning each file the next
LUNLSEDD +file number. If a FILE statement is performed at the start of
a pProgsram, the files will be assigned numbers 1, 2, 2, and so an. I1f
some files are CLIJZEd, then another FILE statement is done, the files
it orPens will be assioned the currently unused numbers in ascendins
arder. One suspects that this statement is mare the result of histary

than conscious desian. Nevertheless, CBASIC has it» and so daes
GBASIC. In CBASIC, the <variableZ mav not be subscripted, nor mavy 1t
be an expression (not evenm a constant!'!!'). RBASIC daes not have these

silly restrictians. Of coaurses the file name expPressian must be a
Stringas; and the record length expPression must be [nteser or Real, with
Real values beina rounded to Integer before use.

HBASIC offers the GETFILE statement, which takes on the form of the
CREATE statement. In this form. all the comments in the descrieption
af the CREATE statement appPly, except that 'if the file already exists
it will bhe wPened rather than deleted and re—created. In new
Proarams, this is obvicusly the form to use, since it eliminates the
"file number roulette" of the aoriginal CBASIC FILE statement.

When using the FILE or GETFILE statement under the Disc Executive, the
file lensth must be .spPecitied as pPart of the file name as tor the
CREATE statement. The file length is needed only if the file must be
createds so it mav be omitted an files known to already exist.

The followins are examples of the CBASIC form of the FILE statement:

FILE INRECZ$
FILE FOXBATS. BAL}FIRE$(1LO7)

The fallowine illustrate the FILE statement with extensions permitted
b HBAZIC, but naot CBASIC:

FILE "NIDNUTS. INF, 120", “VEEELE, 124" (J%+9)
FILE IFN$+", 333" .

BBASIC lser Suide

The following examples demonstrate the GBASIC GETFILE statement:

| SETFILE "2/BOGGLE, 120" A 1, "YOYO, 10" RECL 34 AS 2
GETFILE MBFN$ AZ MENZ

(L.4. READ statement

—The READ statement used with files has four forms dependine on whether
\ he data from the file are being read sequentially or randomlw, and
whether individual variables are beino read, ar entire records from

he file are beine read into Strine variables. Each form of the READ
(ﬁtatement will be discussed separatelv below.

2.4.1. Sequential file variable READ

|
r] REALD # <expPressionz> 5 <variableX,...

equential file. The <expression>, which must be Inteser or Real
(Real is raounded to Integer), specifies the file number to be read.
iEhis file number must correspand with the file number used aon the

f}his form of the READ statement reads one or more variables from a

FPEN, CREATE, FILE, or SETFILE statement used to activate the file.

ariables read from the file mavy be Inteser, Real, or Strins. The
tvpe af the <variable should agree with the tvpPe of the data beina
[}ead from the file.

- As in-CRASIC, a sequential READ from a file which was corened without
he RECZL specification reads data items ane by one inte <variablels

| hamed on READ statements without resard to recerd bouyndaries. Hence,
none READ statement mav read pPart of a record or many records,
erpendine cn the number of <variablelXs named and the number of data

(Items Pper record in the file being read. This is different from

“releases of BPBASIC befoare 2.0, which did not ignare record boundaries
in stream inPut.

:lote that this form of the READ statement can be used both with files
intended for sesuential access (no RECL specification) and with files
[jor which randaom access is permitted (RECL specification pPresent).

The faollowing are examPles of the sequential variable READ statemernt:

-
%l READ # 15 FART.NAME$, UON.HAND, CON.DQRDER. PRICE

READ # IFILEY: KEY$, RECTEXTS$
k.4, 2. Sequential file line READ
}} READ # <expPressionX 5 LINE <variableZX

This form of the READ statement is esuivalent to the LINE foarm of the
CINPUT statement. It reads the next record from the file number
}esisnated bv the <expPressiony into the Strine <variableée’ named after
"the kevword LINE. The <variable> must be of tvere String.

| The data placed in the <variablel will be the characters makine up the
~ecord in the file being read. The end of recard will be delimited b
'the end of record character in the file (this character will naot be

/.__D_

HBASIC User Guide
Placed in the variables onlv data characters are transferred).
The follawine are exémp]es of the sequential line READ statement:
REALD' #435 LINE FROG. TEXTS$

READ # IN.FILEY 35 LINE ITEXT$(I%)

o

.4.2. Random file variable READ
READ # <exPression>, <expPressianz §3 <variablel,...

The random file variable READ statement maw be used onlv on files
activated with the RECL specification. The action of the random Ffile
variable READ 1s identical tno that of the sesuential file variable
REALNl, exzert that the second <e=xpPression> after the file number
selects which recard is to be read from the file. '

The first <expPression> specifies the file number, and must corresepond
to a file number pPreviously activated with the JPEN. CREATE. FILE. o
GETFILE statement, sPecifving ‘a record lenath. The second
CexPression selects the record number to be read. This ex=Pression
must have an Integer or Real value (Real is rounded to Integser),. and
must be in the inclusive range from 1 to 22767. The first recard in
the file is record 1.

The <“variable>s named will be read from the selected record. An
attempt to read bevond the end of data in the record will Cause an
error termination.

2.4.4. Random file Tine READ
REALD # <exmpPression>, <expPressian> 5 LINE <variableX

The random file line READ statement mawv be wused onlv on files
activated with a RECL specification. It acts e=xactly 1like the
sequential file Jline READ described above exceprt that the second
“lexPressions selects which record from the file is to be read into the
named String {variable>.

The faollawine are examPles af the random file line READ statement:
REALD # 7, 1 35 LINE FILE.TITLES$
READ # CUST.FILEZ,. CUST.INDEXY% 5 LINE CUZST.NAMES$
2. 5. IF ENIOl statement
IF END # <expression> THEN <line number>>
The IF ENLI. statement allows the user to specifvy the actiaon to be taken
when the end aof a file is reached. The <expPression> &specifies the
file number that the IF END candition is te apelw to. When a READ
statement attempts to read sequentiallwv past the end of that file
AuUmte&T - centrol will be transferred to the <line number> spPecified in
the IF END statement. If no IF END condition has been specified faor a

file and an attempt is made to READ pPast the end, an error will oaccur.

41—

M

‘; HEASIC User Guide
\

If an IF END statement is performed on a file number before an OPEN
fwstatement is Performed on that number, then if the OFPEN fails tao find
' Jthe file in the directorwv contral will Pass to the line number named

on the IF END statement.

F An IF END statement mawv also be uwused on an output file. I+ an IF END
" condition is in effect, it will be triggsered by a FRINT, PRINT IISING,
—or FPUT statement which attempts to write off the end of a contisucus
}lFile, orr which exhausts the free space aon the volume the file resides
M

ﬂpnv number of IF END statements mav be executed on the same file
_dnumber. nlv the maost recent IF END statement will bhe effective. The
IF ENI' condition is droprPed when the file is clased.

|

F

eh. PRINT statement

e W

he file PRINT statement is used to write information from variables
nto files. There are two Fforms of the PRINT statement, used
respectively faor writine files sesuentiallw and randomlv. Each form
_[kF the FPRINT statement for files will be discussed separatelv belnw:

2. A0 1. Sequential +file PRINT

C} FPRINT # <exPressiaons 5 <exPression’i...
~The seauential file FRINT statement writes the values of variables
'bnto the next recerd of a file. Note that this form of the FRINT
statement mavy be used an files cwrPened with or without the RECL clause.

.-

|The first <expPression> specifies the file number, and must be Inteser
~hr Real (Real is rounded to Integer), and must correspond tao a file

number currently oPen. The <expression>s following the semicolon are
(the values to be written into the file. Anv number of values mawv be
' #iven, as long as their total lensth when pPrinted does not exceed the

recard lengath of a file opened with the RECL clause.

E Alues pPrinted will be sepParated bv commas. Strings will be enclosed
in guates. The format in which the values are printed is compatible
with that expected bw the READ statement, so a file mav be written
Jﬁith PRINT and then read back with REAL.

-

HBASIC contains two extensions in the PRINT statement mot provided by
]KBASIE. If an <expPression with an Integer value is fallowed by a
jhare si9n (#), it will be pPrinted as a hexadecimal value. I+ an

ewpPressiony with a String value is followed by an exclamation pPoint
(’!), the _string will be pPrinted without suotes. llse ot the latter
eature mav result in a file which cannot be read with a READ
‘statement but mav be useful as input to other Marinchip software or to
RBASIC Proaram usine the LINE input option. These features can
TFten remave the need for a PRINT LIZING statement. ’

The fallowine are exampPles of the sequential file FRINT statement:

FRINT #13 A.E,.J%, Vs, T%

PBASIC User Guide
PRINT # OFILEZ 5 DAT$.M
FRINT # OTEXTY ;'LINE$!
2.6.2. Random file PRINT
PRINT # <expPressionl:, <expPressianrx ; <exPressionr,...

This form of the FPRINT statement mav be used onlwv with files activated

.with the RECL clause. The first <exPressianr> specifies the file

number being written. The second <expPression> specifies the record
number being written. Recard numbers must be in the inclusive range
from 1 to 322747. If either the file number or record lensth
“exPression> is Real, it will be rounded to Integer. If either is a
Ztring, an error will woccur.

The <exPressianz(s) following the semicolan will be written ta the
file as described above for the sequential file PRINT statement.
Since the random +ile PRINT may only be done tao files used with the
RECL specification, it is impPortant to make sure that the RECL
specification is lons enocush to accommodate the lonsest record written
to the file with a PRINT statement.

The fallowing are examPles of the random file FRINT statement:

PRINT # 1,1 5 DATE., FILE.TITLES%
PRINT # INVFILEZ. RECNOZ 3 PARTNAMES$. QTY

3.7. PRINT LISING statement

The FRINT WUSING statement mav be used with files to write formatted
data to a file. While such data mavy mot mormallw be read back with a
REALD statement, it 1s useful when writing files intended to be read bvw
other lansuases or utilities, ar when pPreparine a file to be pPrinted .
offline aor saved for later printina. The PRINT LIEING statement faor
files wuses format specification strings identical to those used for
the normal PRINT USING statement for the consele and erinter, (44}
format strings will not be described here. Refer to the discussion of
PRINT LISING aboave for complete information on format strinss.

PRINT USING mav be used with both sesuential and random files. The
two forms of the statement will be discussed serparatel-w.

2.7.1. Sequential file PRINT LISING

PRINT USING-{EKPPGSSiGH} 5 # <exPression> 3

CeXPresSsianre..

The sequential form of the FPRINT ULZING statement takes the first
<expression® as the format strine, the second {expression> as the file
number- and the <<expression>s fallowing the second semicolan as the
values to be edited and outeput according to the format specifications.,

The first <expressionX, the format strins, must be of twvrPe Strins.
The " rest aof the statement adheres to the same rules described above
for the Sequential file PRINT statement.

T =63-

MI GRASIC User Guide

The followins are e=ampPles of the Sequential file FPRINT LSING
'Ftatement=

PRINT LSING "Amount cwed SSHA##.##" 5 # 13 AMT.OWED
— PRINT USING FMT1$; # RPT.FILEZ ; C.NAME$, C.ADDRS, \
) C.ZIP, C.BAL

uf.7.2. Random file PRINT IUISING
FRINT LSING <expPressions: 5 # <expPressionry. <expPressian 3
CEeHPressionts ...

\

;Ghe random file FRINT UZING mavy be used anly an files activated with a

RECL spPecification. The action of the random file PRINT IIZING is
Midentical te that of the sesauential form described above exceprt that
the second <e=pression> following the sharp sign (#) selects which
recard (from 1 to 22747) the output will be written into.

Ehhe following are exampPles of the random file PRINT LUISING statement:

PRINT USING "## "5 #1, J%45. ITM.NO%. NAME.TAB$(ITM.NO%)
PRINT USING FORMAT1$ 5 #ZFNAL, @43 A, B, C

\:F.B. PUT statement
|

The BT statement writes data to a file in internal format, without
~vwditing numbers into decimal form or Putting Quote marks around
f%trines. The resultine record canm NOT be read bw anvy standard
“Marinchip saftware exceprt the GET statement in @BASIC, described
_bkelow.

Because decimal conversion invalves a 2ood deal of compPutation, the

use of PUT can increase the speed of a prosram that does much writing
fﬁ? numeric values. PUT can also reduce the record size im a randam

ccess files since the size of a numeric field is alwavs predictable
and usually smaller than that pProduced by PRINT. Specificallw, an
‘Inteser values wuses 2 bytess a Real uses 2, and a String uses
LRE+LEN(string). There is no comma between tields, no end of record
" character, and no end-file record.

;?.3.1. Sequential file PUT

%X FUT # <expPression> 5 <expressioni,...
L .
The sesuential file PUT statement behaves like the sequential file
- FPRINT statement in all respects excert that the <JewmpPressionks are
Critten in internal farmat and nat edited into a standard ASCII
representation.

bhe following is an examPle af the sequential FUT statement:

_jg .

LJ . -4

FUOT #13 A,B..JL,V$, T4

[y

2 Random file PFUT

GBAZIC lUser Guide

) PUT # <exmPressions ,» <exPression § < exPressicons...
P The random file PUT statement behaves like the random file PRINT
\ statement in all respects excert that the <empression>s are written in

internal format and not edited into a standard ASCII representation.
R
%B The followine is an exampPle af the random FUT statement:
- PUT # INVFILEZ, RECNOJY%Z 35 PARTNAME$, &TY
2.9. GET statement
The GET statement is wused to read records that have been written b
the PUT statement, described in the Precedina se;tion. Data fields
are read directlvw, without any format conversion or tvpe checkinag.

- Therefaore, the GET statement should have exactly the same I/D list as
?l the PUT statement that wrote the record.

W

0

1. Sequential file GET

}I GET # <ewpressionl 3 <expPression ...
| .

The sequential file GET statement behaves like the sequential file
. READ statement in all respects excert that the <ewpPressioni>s are
assumed to have been written in internal format by a PUT statement.

r} The faollowine is an exampPle of the sequential GET statement:
GET #15 A-B,J4.V$, T4

{i 2.9.2. Random file GET

{I SET # <expPressiaon’> » <exPressians 3 4eMPressions...

|

The random file GET statement behaves 1like the random file READ
: statement in all respects excert that the <expPressionrs are assumed to
‘ have been written in internal format by a PUT statement.

The followinga is an examPle of the random GET statement:
Fg GET # INVFILEY,. RECNOZ 5 PARTNAME$. GTY
[J Z.10. CLOSE statement

CLOSE <exPressinnz...
i! The CLOSE statement deactivates an apen file. Each <expressiand an
‘ the CLOSE statement must be an Inteser aor Real (which is rounded to an
Inteser befoare beine wused) and refers tao the filé number of a

currentlv oprPen file. An error will occur if the file number is nnot
GPEM.

|p—

A CLOSE statement will release all file buftfers and return the file tao
an 1dle state. For sequential files being written, an end of file

6.5

R - B

)

'I QEASIC User Guide

record will be Placed at the end. More pPreciselw: an end of file will
rte written if the last operation on the file was a FRINT and the file
_has not been accessed randomly since it was opened.

(The fallowine are exampPles of CLOSE statements:

CLOSE 1,2,3
- CLOZE INPUT.FILENQ%, OUTPUT.FILENDZ
|

LHASIC will automaticallv close all files when a STOP or CHAIN

statement is executed, aor the pProgram is terminated bv tvpina Contraol
| 2« Files WILL NIT be closed if the pProgram is terminated bv a runtime
_lerrar.,

"E.11. DELETE statement
L .
DELETE <“exPression>;...

- ‘
“hhe DELETE statement deletes aren +files from the file directorwvy. Each
TYexPressians an the DLDELETE statement refers to a file number of a

currently active file. In additiaon to claosine the file as described

-

] forr the CLOSE statement above, the DELETE statement will cause the

Loperating svstem to release all space assianed to the file. Its name
will be dropped from the file directorwy. ‘

8 .

iiLnder the Network DOpreratine Swvstem an error will occur it the user wha
makes the DELETE request is not pPermitted to delete the named file.

rhhe faollowinge are exampPles of DELETE statements:

- DELETE 1,2,3
t] DELETE TEMPFILE.NQZ

~2.12. MOUNT and DISMOUNT statements
tj MOLUNT <expressionz
ODISMOUNT <exPressionz
S{Jnder the Netwark Operatine 3Svstem disc valumes may not be chansed
without the use of the MOUNT an DISMOUNT commands. The SRBASIC
~statements MOUNT and DISMOUNT execute those commands and should be
}

t
d

nsed wherever the user of the svystem is instructed to change volumes.
In the MOUNT statement the <expression must be a String which gives
the wunit amumber, a colan, and (opPtionallw) the name of the vaolume to

:ke maunted. In the DISMOUNT statement the <expPressiony must name
zither the unit or the volume name, faollowed bv a conlan.

\ I+ the aperating svstem returns an abrnaormal status for MIUNT or

S DIZMOUNT opPerations, i1t will cause an error termination of the prosram.
Reasans for an abrnormal statwus include the specification of a

~pon—existent disc unit or the mounting of the wrongs disc by the user.

;ﬂhhe CMIUNT and DISMOUNT predefined functions, described at the end of

““this chapter, can be used to avoid error termination.

' The Disc Executive 1anores these statementss therefore, Pragrams may
bhe written to be comPatible with baoth svystems.

LJ | s
]

(

—_—

L_‘\, .

GEAZIC llser Suide
The following are exampPles:
MOLNT 12"
MOLINT "2:PRODLUCTION"
ODISMOUNT LINITS
DISMOUNT “FPRODUJCTION:S

13, LOCK and LINLOCK statements

0

linder the Network COpPerating Swvstem it is pPossible tao lack a file or a
single recard to assure that onlvy one user is updating it at a time.
llse of this feature is discussed in detail in the next charpter.

nder the Disc Executive svstem the LOCE and INLOCE statements have no
effect. : ' '

2.12.1. LOCK FILE statement

LOCK FILE <exPressianz>
The LOCE FILE statement uses facilities of the Network Deperatinag
Zwvstem to assure that onlw one user is accessing the file at a time.
The' <expressians must have a Real aor Integer value; if it is Real, it
is rounded to an Integer. The result must be the file nmumber of a

file which 1is currentlv opPen.

If the +file 1is not locked, or this precaram alreadw has it laocked,

“IBATIC will lock it and return control to the pProsram. I+ another

user has the file locked. the proaram will be suspended until the file
is unlocked, and will then lack it and coantinue.

The followine are exampPles:

LoCkK FILE 1
LoCk FILE INVENTORY%

2.12.2. UNLOCK FILE statement

W

UNLOCK FILE <expressianz

The LUNLOCEKE FILE statement unlocks a file which has been lacked b+ the
LOCK FILE statement. The <expression> must be an Integser value ar a

Real value (which will. be rounded to an Integer) and must be the

number of a file which is currently opren and locked.
The faollowine is an exampPle af the UNLOCK FILE:

UNLOCK, FILE RECEIVABLESY
2,133, LOCK record statement

LOCK #<expPressions,<exPressioncs
The LOZK record statement assures exclusive access to a record in a
file which . has been opPened or created with the LOCK optian. Both
JenpPressionrs must be Integers or Reals (which will be rounded to

Integers). The first <expression> must be the number of a currentlwy

.

’1 DRASIC User Suide

;bpen file. The second is the number of the record to be lacked. Nate

“that this operation can onlvy be used on a file with fixed record
enath.

T‘F ~the recoard is alreadw lacked, the proaram will be suspended until
}Ehe recard is available.
. <

The followina are examples af the LOCK record statement:

LoCk # FILE1%Z, 93
LOCK #4,RECNOZ+Z

'£.13.4. UNLOCK record statement
LUNLOCK #<expPressions,exPressionl:

’lhe LINLIDCK, recard statement releases the exclusive wuse of a recaord
hich has been locked by the LOCK statement. Both <expPressionks must
? numeric and are interpreted as in the LOCK record statement.

T

he following is an examPle of the UNLOCK record statement:
UNLOCEKE # PAYABLES=Y,REIZCNDOZ
r].14. File related tunctions
)

- _BRASIC contains four predefined functions related to file handlins.
FThese functions are described in the following sections.

|
'2.14.1. RENAME function

| RENAME (NEW$,0LD$)

\

The RENAME function takes two Strins arguments and returns an Integer
Malue. The Ztring ex=pression ILO$ represents the name of an existing
[Ji]e. The RENAME <function causes that file“s name to be changed to
‘the name 9iven bwv the String exPression NEWS. I+ the RENAME aperation
s successful, —1 is returned bv RENAME. If the RENAME cannot bhe
| lone, O is returned. Hence, an IF statement mav be used on the result
Yo f RENAME to test whether it was pPerformed successfully. The
Fallowing is an example of the use of RENAME:

+
J AZ=RENAME("NAMEFILE.DAT", "TEMPZ.WRK")
@J.14.2. SIZE function

SIZE (NAMES$)
| he SIZE function takes a String argument cantaininse a file name and
Teturns an Integser value equal to the size of the named file in "K”
(blocks aof 1024 hvtes). I¥f the named file does not exist, SIZE will

eturn zero. SIZE returns the amount of space allocated to the file,
wouynded up ta the next 1024 bvte boundarwy. IUnder the Disc Executive,
this "WiT1 be the size allocated to the file when it was created.
;rder the Network Operating Swvstem, the number returned will reepresent
i¢ hishest address written in the +ile.

Lj o o -ta-

(T

. T ! !

- 7

PBASIC lser Guide

Under QRASIC the file name 2iven to SIZE must hbhe an explicit file
name. The ©CBASIC feature of permitting names designating aroups of
files is not imPlemented.

The SIZE function is especiallv useful when creatins files under the
Disc Executive. For example, the fallowing pProgram fragsment will
CREATE a file named "UPDATE.DAT" with the same size as the existins
file "CURRENT.DAT". ‘ '

S$=STR$ (SIZE("CLURRENT.DAT") *£&)
CREATE "UPDATE.DAT"+","+3% AS 1

Nate that in the above exampPle we multiplied the value returned b+v the
SIZE function by 3 because SIZE returns blocks of 1024 bvtes (ta be
comPatible with CBASIC) while CREATE requires a file size in units of

.

= b".’tes .
S.14. 3. MOUNT and DISMOUNT functians

MOUNT(<CexPressionz)
DISMOLNT (ZexPressianl)

The MOUNT and DISMDUNT functions have the same effect as the MOUNT and
DISMOUNT statements described above, but return an Integser value
indicatine whether the orPeration was pPerfoarmed successfullyv. If the

~aperation i1s successful - (mormal status returned bw the operating

svystem), the function will return a value of —1 (true). If it fails
for anvy reason, it will return a value of QO (false) withaut causing
Praaram terminatian.

The follawing pPraogaram fragsment is an exampPle of the use of the MOLNT
function:

WHILE MOUNT("Z2:GOODDISC") =0

INPUT "Mount the risht disc and pPress RETLRN"3 LINE A$
WEND

._6';/_

;7‘1 BBASIC User Guide
1 Usins GBASIC files
)

[}

The pPrevious chapter has described the file—ariented facilities in

HBAZIC. Effective use af these facilities requires more thanm a simple
}enumeratlun af all the statements and functiaens available. This

chapter’ expPlains how BBASIC files are implemented, how the statements

access them, and how they should be used when designing applications
;z and writins progarams in @BASIC.

V i. General file characteristics

=

I Regardless aof what modes are selected and which statements are used tao
read and write files, certain characteristics of QBASIC files remain
(Iun-hanqed.
|
A1l GRASIC files used with the READ and FRINT statements are written
in character farmat, usina the ASCII code wsed throushout all
JMar1nLh1P saoftware. Strina data is written as stored in the pProgram.
and numeric information is edited to the character representation and
written as an ASCII number. Strina data 1s written surrounded b
| lauote marks ("). 0On inPut, BWBASIC scans numbers inte internal farmat,
LJdand Processes quated stringas accardina to the nermal rules.
Non—auoted strings may alsao be read from files, but thevy mav not
chontain commass which are used as delimiters for such strings.

L Because HBASIC uses quote marks to delimit strings in a file, a string
(cantaining an embedded auate mark receives special treatment from the
| \svstem. In writine such a string, BBASIC will replace each embedded
quote with two successive suotes; an inPut, Pairs of guaotes will be
_reduced to one quote. This opPeration is invisible to the GQRASIC
] Proarams however, the strings will occupy more spPace on disc than it
~did in memory, which mawv cause a fixed-lensth record to overflow.

{IFiles-used with the GET and PUT statements are written in an internal

ﬂlFﬁrmat which cannot be read by anwv other standard Marinchip software.
The advantage of such files is that thewvw are caompact and can be read

ryand written more quickly than AZCII files. The pProgram must determine

} where the end aof file is, since WBAZIC does not write an automatic
end—file record as it does when a file is written sequentially with
~PRINT. If GET and FUT statements are mixed with READ and FRINT in
Jarrccqlnq the same file, it is the respansibility of the pProgram to
know which records are in which faormat.

Wrﬁll HRASIC files are made up of RECORDS. These records may be fixed
lenath or variable lengath, dependinge on the file typre, and mav be
accessed either sesuentiallv (in order of aPPearance in the file) or

(yrandomlw (in anw order whatseever) depending on the +tile tvre and the

\l&BASIC statements used to Access the file. :

data wvalue. The number of fields in a record is limited onlw by the

. Fach RECORD consists of ane or more FIELDS. Each field represents ane
Jlensth atf the recard.

‘;9.2. File arganisation
—J

The arganisation of a file refers to how the records that make up the
W(-70-

|

|

‘,44
(R L

—

RBASIC Lser Guide

file are phvsically stored an the medium on which the file resides.
PRASIC aoffers two kinds af arganisatian, ZTREAM (orr variable)., and
.FIXED.

Pelel. Stream files

A HBASIC stream file 1is a file activated without the RECL

specification in the OPEN, CREATE. FILE, or GETFILE statement. Such a
file is written as a free—format stream of characters, hence the name.
Records are variable length, with records being serarated by carriage
return characters. The end of file is indicated bv a record with an
EOJT character (ASCII 4) in column 1. For comepatibility with ©CF/M
files, a record with an AZCII SUB character (hex 01A) in .clumn 1 willd
also ke treated as an end of file. .

This method of file starage is exactly compatible with that used by
all aother Marinchip utilities and lan9Quages, sa RBAIIC Programs mavw
interchange progsrams with these other saftware components.

Stream organisation is the most efficient in terms of disc spaces a
stream file will alwavs use less disc storasge than a fixed file of the
same number of records. However, since stream file records mav all be
of different lengths, there is no way to directlv lacate a record
without readine all records pPrior to its that is, there i1s no way to
randomlw access a stream file. This is the reasan why stream files
may not be used with the random access forms of the READ, PRINT, GET,
ar PUT statements. ’ v

When using GHBASIC to read and write files intended +to be wused with
other Yansuages, outpPut files are normally written with the PRINT
UZING statement. and inPut files are normally read with the LINE
aption an the READ statement. . Since other languagses use different
conventians for storins data in lines, it is npormally necessarvy to
treat the file data as strinss which are composed and scanned within
the BBAZIC pProgram itself.

2.2 Fixed files

All recards in a fixed file will have the same lengoth. The term
"fixed file" refers to the fixed lensth of the recoerds within the
file. Fixed files are normally used where random access is resuired.
The format of fixed files is unique to UBASICS it is not in seneral
Ppossible to interchanse fixed files with other Marinchip lansuases or
atilities. :

Fixed files are declared bv using the RECL clause in the CREATE. DOFEN.
FILE, or ©GSETFILE statement. Once a fixed file has been initiallwy
created, it must alwavs be used subsesuently with the same record
lenath (RECL specification). Failure to do so will lead to strange

‘and undesirable results. The same appPlies to the LIOCK option,

described later in this chapter.

Fields within records in fixed files are written exactly as described
for stream files abuove. However, for fixed files each record will be
radded to be eaual to the RECL specified number of characters. The
data used to pad the record will be whatever random characters haepPen
teo be in a buffer at the time. The user must insure that the lanagest

-71-

1 QEASIC User Guide
)

Arecord written to the file will be shorter than the RECL lensth by at
'KTeast ane character (to allow far the carriage return character at the

Jend), wor else the pProgram will be terminated in error. If the RECL
specification is much larser than the longest record in the file, much
ryisc space will be wasted because each recerd will consist mainly of

E sarbage to pPad the record tao the specified lenath.

ile is to be used entirelwv for sequential access, it should be made a
tream file, since making it a fixed file onlv wastes disc space. It
is qu1te caomman to intermix sequential and random accesses on the same
[z file. For examPle, a file ma-v be initiallw written
qequent1al1 » then uprdated and searched randoml-v.

;f1xed files mawv be used with either sequential or random access. If a
(3

arL should be taken when usins the IF END statement with fixed files.
the file 1is read and written seguentially and never accessed
randum1v IF END will work as expected. It is unwise to wuse IF END
~when a file 1is being updated, extended, or accessed randomlv, as
]Fesu]ts may be verr difficult to understand. It is much better to
“maintain a variable in the progaram which keeps track aof the hiahest
record number in the file, which is then used to test for accesses
[Past the end of the file.

%rq

If +wou must have an end—-file recard at the end of a file which 1is
‘ ccessed randomlv, the fallowing statement will write anet :

FRINT FILENOZ,LASTRECY+13 CHR$(4)'!

fﬁn this example LASTRECYZ 1is the number of the last record that
rontains 2ood data. READNina LASTRECZ+1 will trigger IF END. For
_compatibility with CP/M files, a record with an AZCII 3SUB character
}(hex 01A) in column 1 will also be treated as anm end of file.

f.j. Arrending to a stream file
}Jt is pPossible to read part aor all of anv file, using the standard
sequential READ statement, then beain writins to it with sequential
TRINT. The fallowina pProgaram fragament illustrates this:
OFEN A% A= S
" IF END #S THEN 22
| WHILE 1

= READ #5353 LINE DUMMY$

| WEND

?f? PRINT #5353 "One more recard"
L CLOZE S

| FBASIC allows the writing of a stream file to besin onlv at the start
| pf the file (before anvy READ) or after end of file 1s detected.
MBASIC allows writine to besin at anv point. 0OF course, anv records

after the pPoint at which writing begins will be lost. An attemept to
| tead a stream file after writins has besun is an errar.

. "Device files

:l
_&ar1nuhlp aperatina swstems allow devices (e.2.> terminals and
Pprinters) to be assigned as files. The standard file inPut/output (

5} -72-

,

LBASIC lser Guide

facilities in GRASIC allow for the fact that devices are senerallw
used differentls from discs.

Dperations on a disc file use a buffer which is private to that file.
Ta g9et the best execution speed, actual reading and writinsg of the
disc take pPlace anlv when necessarvy; if the buffer is bis enoush, it
will be pPossible to read or write several records with only a single
disc access. '

On a device ftile visibility is mare important than execution speed. A
line pPrinted on the consale should not be held in a buffer until the
buffer fills upP, but should ga on the screen immediatelwv. The same
arprplies tao the last line of a report aon the pPrinter. Therefore, everw
aoperation aon a device file will cause a singles immediate creration on
the device, at the start of a READ or -the end of a FPRINT.

Because nothine is held in a buffer between oapPeraticons, all devirce .
files wuse a common buffer, and the BLIFF specification in the OPEN
statement is i=nored.

At Ppesent devices must be treated as stream files., with wvariable
recard lenath. The concept of random access or fixed record lenath in
a device file is not defined.

2.5, File and record lockine

lnder the Netwark UOpPerating Svstem several pPragsrams or several cories
of the same Pragram mawy be running at the same time. If two of these

Prosrams try to update the same file at the same time, .unPleasant
thin=s can hapPPen.

For examprle, cansider an on-line inventory maintenance svystem.
Salesman A gets a request for 40 widoets from a customers he asks the
inventorv pProgram for the current count of widgets. finds that there
are 0 in stock, and starts negotiating a pPrice. While this is gaing9
an, salesman B sells 20 of the S0 widaets and has the inventory
Pprogaram reduce the stoack of unsold widgets to 20. Now A finmishes
neaotiatineg the sale of 40 widoets and has the pProesram reduce the
count from. 50 to 10, B“s transaction has disappeared, the widaets are
oversubscribed, and saomeane is goins ta be upset.

Obviouslv the inventory program should not remember the count of SO

_widsets for ten minutes while A is nesotiatine; it shauld reread the

count from the file immediatelw befare it removes the 40 widgets from
stock. Then it will ¥ind that there are nao lonser SO widasets, and the
file will not get wpdated wronsly. Of course, A's customer will be
disaruntled when the deal suddenly evarorates! Worse wvet, .the problem
of file intesritw stild isn“t solved. There is a moment between
reading the recoerd and writine it back — mavbe a very laonse moment,
dependine on the vasaries of comPuter time sharine — in which someane
else might uprdate the record without A“s pProgram detectins it.

What A needs is a way af loacking evervone else out of the file for at
least a shart time while he updates the file. The LQCEK and UNLOCK
wtatements in ZBAZIC enable the author of the inventorvy eProsram to

Provide such protection.

-73-

\

z HDBASIC llser Guide

It must be stressed that LOCE and UNLOCK pProvide a wavw of writine well

lbehaved pProarams that do not interfere with each other, but thevy deo

CNOT pProtect against renegade praograms which misuse or coampPletelwy
ignore LOCK and LINLOIZK.

i‘%.ﬁ.l. Using file lack

fﬂhe simplest wavy of pProtectine a file against conflictine updates is
j ﬁm lock the file, as in the following prosram frasment:

- LOCK FILE Z

zz READ #2,RECNOZ; DATAFIELD, ANDTHERS
FRINT #2,RECNOYZ3 DATAFIELD+1, ANDTHER$

UNLOCK FILE 2

—

L:kile lockina is a simPlée and efficient technique. It can be Perftormed

on anv open file and does not require extra disc space or disc
"accesses. Its only drawback is that vou mav not want to lock up a
Lphale file for a long times in that cases vou mav need to use record
"lacking, described in the next section.

}ﬁFile locking is handled on a first come, first served basis. If a

“Jpraaram tries to lock a file that anather Prosram has already lacked,
it is susprended until the file is unlocked. If manv Progsrams are

r1tr"vin9 to lock the same file, each one will eventuallv gset its turn.

" ~A-fide 1s unlocked under the following conditions: (1) the pProgram
T MUNLICKs the files (2) the prosram CLOSEs or DELETEs the files (2) the
éjprosram takes a normal exit, which automatically claoses all filess (4)
the operatine svstem is relaoaded. If the pProaram takes an error
—~termination, files mav not be reliablv wunlocked. This is a scad
i \reason for not keerins a file locked unnecessarily. (Zee the section
““'an the UNLOCK prasram.)

.

S.2. Using record lack

[N
Y]

ometimes lockina a whole file 1is too drastic. In the exampPle af
alesmen A and B the inventory record for widgets needs to be locked,
ut there is no need to lock the whaole inventory file. If the widget
ecord is lacked without lackins the whaole file, rPearle who are trving
sel]l =sadgaets and blivets can 9o about their business while A 1s
| jnesotiating.

&)

.—}- = E’Am DX

D (¢

© s Recard -docking 1s allowed onlwv in files which have been CZREATEd and
}3GPENed with the LOCK option. Such files have extra spPace in each
—record, bevond the lenath given in the RECL specification, to hold a
lock. The followins program frasment illustrates record lockina:

{(Ask the user for a part name and laaok it upl

LOCE #1, RECNOZ

READ #1, RECNUO%Z:; FART.NAME$, CUOUNTZ

FRINT "How manv "3PART.NAMES$; '

INPUT "s did wou sell?"; =S0LD% - S e

|
C_(OPEN "INVENTORY" RECL 11Z2,L0CK AS 1

jj IF =SOLDY>COUNTZ THEN \
- UNMLOCE. #1., RECNID% AN
GO TO 9999
)
8 7a-

[

i ,
e

Sy

GIBASIC User Guide

FRINT #1, RECNOZ; FART.NAME$, COUNTZ-S0OLDY
LINLOCK. #1. RECNOZ

If the user spends a longa time thinkine abaut his answer to the INFUT
statement, other PeorPle trying to access that record will be held ue,
but the rest of the file will be ayai]able.

Note that in case of error (selling more widsets tham are available)
this program unlocks the record without bothering to write any new
data.

Record lockina presents far more hazards than file locking in terms of
recovery from error conditions. For instance, a locked record is NOT
autoematically unlacked when the file is clased or the proaram exits.
Program bugs, svstem crashes, and the chance. that the user mav kill a
program with Control—-C all contribute wawvws of leaving a record lacked
indefinitelv, causins prosrams to hans when ther try to access the
record later. Therefore, the desianer of a data base that will use
record locking must work cut pProceduires for recovering from all tvres

of crashes and must be sure that the users of the svstem will follow
those procedures.

Whern a new record is added to a file, there are +two conditions that
require special attention. First, whatever procedure 1is used to
allocate a record number for a new record must obvicusly must be
executed under a Tlock, so that two users will not simultaneously
allacate the same srPace. Second,» the new record space mavy cantain
random 9arbage in the record lock field. In Particular, surPose that
the file contains records 1 through 23, and for some reason vou decide
to write record 41 nexts, leaving the intervening space empty for the
mament. When vou write record 41, the svstem will allocate disc spPace
for records 24 througsh 40, and the contents of that spPace mav or mavy
not loak like recards that are already locked.

To avaid these problems, we stronsly recommend this procedure:s

« Lack the file.

. Execute the pProcedure to allocate a new recard rniumber.
. Lock the new record.

« Unlock the file.

« Write the new record. .-

« Unleck the new record.

U D WM -

Siters 3 and 4 use a special case in the recard locking svstem: while
the file is 1locked, any attempt to lock a record will immediatelw
succeed, even thouah the record mavy alreadv be marked as being locked.
For this reason, file lockine and record loacking should be used aon the
same file ONLY when executina procedures such as this.

7.5.323. The UNLOCK proaaram

The_ UNLOCK pragrams. pProvided on the NOS/MT GEBARSIC release disc, is
designed for manual recovery of error conditions in which a file or
record is left lacked. It can be run immediatelv after an error by
the same user who was running when the error occurred, and it can be
used bv a pPrivilegaed user to clear up error canditions left bwv any
user in any file.

-

-75-

z GBASIC User Guide

HNLOCK will act on commands to unlaoack a file or a spPecified set of
ecords in a file. It will also lock or unlock all the records in a
‘Jile. For more information, execute IUNLOCK, which displawvs its own
oprerating instructions.
:WNLGCK is Primarilvy a tool for the use of a data base manaser doing a
manual cleanurP. For a simpPle svstem usins file lockinsg it mav be the
Ml tool needed. It will not take the pPlace of careful Planning of
jecovery Procedures, which is necessary in any data base swvstem
whatever. For more compPlex systems, or for any system that wuses
(ﬁecord locking, it will almost certainly be necessary to write

jﬁecoverv Pprograms which are to be 1invoked, as automatically as
~ossible, after any crash.

—

RRASIC User Guide

10. Hardware and machine language interface

This chaprter describes the features in HBASIC which permit PZRASIC
progarams ta directly interface with hardware devices, and to <calil
subroutines written in assembly language.)

Since MBASIC is a true compiler, assembly lansuase subroutines mav be
written with much areater ease than with CBRASIC, and the interface 1is
much more pPowerful, permittineg argsuments to be pPassed to them.
Assembly langsuagse routines are called by name, not by address, sa

Proarams are much easier ta maintain and update.

10.1. Memary inspect gnd change

The PEEK function and POKE statement allow direct access ta svst
memory, and data transfers to memorvy—maprrPed pPeriprherals.

m

n

The PEEK and POKE functions both reference actual machine addresses.
These addresses are in the range from O to 45535, the address range aof
a user sPace on the machine. The exPression for the address is
expected to be an Integers if it is a Real, it will be reunded. Since
an address is a 14 bit unsigsned number and an Inteser is a 146 bit
sianed number, it is not pPassible to directly specify an address
areater thanm 32747 wusing an Inteser without some trickerv. To
represent an address areater than 32747, it is necessarvy to use the
nesative Inteser which corresponds to the desired unsigned address.
For example, address &5S534, which in hexadecimal is FFFE, would be
addressed as -2, since -2 is the Inteser whose bitwise representatian
is FFFE.

A much more straightforward way of specifrine addresses faor PEEK and
POKE is to use GIBASIC s hexadecimal constant feature. WUsing this
feature, an address is simply written in hexadecimal with a leadins
zero. Hence, the address FFFE can be written as OFFFE rather than -2.
This is generally much easier to understand when readinga the pProearam-
at a later date.

10.1.1. PEEK function

FPEEK (LexpPressian>) -
The PEEK function returns an Integer value esual to the 16 tit woard at
the address given by the <{expression>. The address <expression> must
be Inteser or Reals if Real, it will be rounded to Inteser betore use.
If the address given to PEEK. is add, it will be rounded down to the

precedina even address to form the address for the word returned by
FEEK.

RBAZIC s PEEK function differs from CBASIC s in beine ward—-ariented,
as befits the 14 bit compPuter on which ZBA3IC runs.

10.1.2. POKE statement
CPOKE expressiond,<expPression
The first <expPressian> specifies a ward address within computer

HUBARSIC lser Guide

“hemary, -and the secand <expression? sives the 14 bit value to be
jtared there. Both <expPression>s must be Integser or Real, with Real
values being rounded to Integer before use. If the address
fexpression> is odd, it will be rounded down to the precedina even
1 \ddress to form . the word address where the information is stored.

Note that POKE alwavs stores 146 bits. To replace only a single bvte,
' the word should be read with PEEK, the data should be masked into the
‘ward using the legical operators, then the word stared back with POKE.

“}BASIC’S POKE statement differs from CBASIC“s in that it 1is word
'Jriented rather than byte oriented.

Mo0.2. Hardware input and outeput
\ ‘ .
lo .
The INP function and OUT statement allow direct bvyte transfers to and
fﬁrom inPut/outrput Ports on the machine. These mechanisms work onlvy
| lor S-100 portss CRU devices such as the Quad SIO board resuire an
'assembly lanauasgse interface. '

qcx.z. 1. INP function
7 INP(<expPression>>)

{Jhe_INP function returns an Inteser value which is the result of
reading the 5-100 I/0 pPort with the address given by the <expression>.
Jhe <Lexpression> must have an Inteser or Real value, with Real beins
!]nunded to Integer before use. I/0 Ports have numbers between O and
255, so only numbers in that rangse will produce valid results.. The
value returned by INP will be between O and 255 if the Port read is an
}] bit device, and will be a full Integer value if the Port is a 16 bit
device. :

\ﬁF.2.2. OUT statement
L

OUT <expPression>,<exPression>
{ke QT statement sends the value of the second <expressian> as outrut
to the 5—-100 I/0 port whose number is aiven bv the first <{expression>.
[Rﬁth {expressions> must be of tvre Integser or Real, with Real values
| eing rounded to Integer before use. Since I/0 ports have numbers
vetween O and 235, only values in that ranse will result in correct
action bw the OUT statement. The entire 146 bits of value of the
i ecand <{expPression> will be sent to the autput rport. If the Port is
'Jm 3 bit device, only the low order 8 bits will be used. If the Part
is a 16 bit device, the entire ward will be used.

{
|
' 0.3. Assemblv lansuase interface
SHRASIC pragrams may call assembly languaage subroutines. These
wbroutines are separately comeiled suberagarams which are LINKed with

rauments to be passed to these suberggrams. .

|

1 . . L i .
LLAHIL’S assemblv lansuage linkase facilities are totallv different

from those of CBASIC, which suffer from the fact that CBASIC is reallw
,‘r interpreter. In BRASIC subroutines are called bv names naot by
|

]

=-73-

~

‘dhe RBASIC pPraogaram before executione. The subeprogsram linkase pPermits

J

—
{

HBASIC User Guide

address, and memoary for them 1s assiganed bv the Linker, not by a
"mechanism" such as the CBASIC SAVEMEM statement,

10.2.1. ZCALL statement
CALL <name>[(<ara>;...)]

The CALL statement is used to invoke an assembly lansuagse subroutine.
The <name> used in the CALL statement corresponds to the externalised
name of the entrvy Point to the assembly languase subroutine and must
not duplicate a variable name or anv name used in an ENTRY ar EXTERNAL
statement. 3Since this name 1is used as a Linker external name, onlwy
the first six characters are siganificant.

The name mavy be followed bv an optional list of arsument exPressions.
Arauments mavy be Integer, Real, or String, and any expression desired
may be used as an argument ‘to an assembly languase subroutine.

The CALL statement does not pProvidz an explicit wavy for an assemblw
languagse subroutine to return a wvalue. This restriction can he
overcome by use of the function ADRS. The function ADRS returns the
address of its argument. so the address of a variable can be pPassed.,
rather than its value, pPermitting: a coopPerating assemblv langsuage
subroutine to store a result into the variable. For examprle, we might
have an assembly languagse routine called CPYFIL which caries one file
inte another. This routine misht be called with: S

CALL CPYFILC(INFILES,OUTFILES, ADRS(STATLISA))
IF STATUSZLS0 THEN PRINT “"Failure!™ @ ...

The address of the variable STATUSA was passed, allowing the assembly
lanauage routine to return a status code in it.

10.32.2. MWriting assembly lanzuagse subroutines

When a CALL statement 1is executed, each arsument expression is
evaluated and their values are placed on the runtime stack. Resgister
R10 is the stack pointer,. and alwavs pPoints to the next available word
an the stack. Arguments will be pPushted on the stack with the last
arsument on top (highest address).

“An Integser uses 2 bytes of stack space’; a Real takes 35 a String takes

2 brtes. Meals are stored in the standard IEM 370 long farmat used
throughout the systems and Integers are stared as 14 bit two’s
complement numbers. The 2 tivtes used for a Strine arcument consist of
the address of a string buffer which actually contains the value of
the Strine argsument. The first word of a string buffer holde the
lenath of the string in bytes: and the actual text of the string
starts 1in the second woerd and cantinues foar as many words as are
required. (Certain rules must be strictlvy observed in creating or
modifying strings. Read this entire charter hbefore wou eéeven consider
such operations.) ’ S

"The assembly language subrautine is called by Performine a BLWP to the

sgbroutine name used in the CALL statement. Hences, the extermal label
should be a BLWP vectar, nat the first executable instruction of the
subroutine. Since the assemblv langauage subroutine is called with a

t BRASIC llser Guide

D-R12 with no danger of revister conflicts with QBASIC. Since the
‘assembly lanouage routine must find 1its arguments on the runtime
stacks, it should capvy the caller s R10 from 20(R12) into its own R10.
f F must then pPop the arsuments from the stack, decrementing R10 as it
i_izes (nnte that ABASIC”s stack usage is compPatible with the P3HR and
POPR pPseudo instructions in the Assembler). Before returninsg to the

1ler, it. must then store the final R10 with all arguments PopPred

om the stack back into 20(R13). The actual return to the calling
program is effected by Performing a RTWP instruction.

{uis is actually a Jlot easier to do that the above explanation seems
to imPly. - Examining the following examPle should make things much
Pore clear. In this examPle, we wish to write an assembly lansuasge
Ebroutine which will pPerform a circular shift on an Integer argsument
with the shift count being surpPlied as a second argument. We will
2all this subroutine from GBASIC with a call like:

,EFNP, it has its own pPrivate regaister set, in which it mav freelw use
)

r
L CALL SRC(ADRS (VALLUEZL) » COUNTZ)

here VALUEYZ is the variable—we wish to shift and COUNTZ is the number
} bits we wish to shift VALUEZ risht circularlv. We would code this
subroutine as follows:

(Cidt "SRCY
— dstk - R10
[}rc* data . ress.srel BLWP vector +for entrv
srcl mav ©20(r132)5r10 , load caller“s stack pointer
M PUPP ro pap shift count inte RO
| POGPP r1 ‘ PoP arsument address into R1
mav #rl,r2 1oad argument value
src r2 shift RZ by count in RO
T- mov : r2,%#r1 store back in variable
moyv ri0,20(ri13) urdate RRASIC stack pPointer
= rtwp . , return to caller
|
Lkess bss 32 s register worksprace
\1 end .

Fxamination of the above subroutine should illustrate how an assembl
. ﬁ navase subroutine is called{ how it accesses its arsuments, how it
| gturns values throush ADRS arsuments, and how it updates the stack
7nd returns ta the prosram which called it.

‘¥te fact that the ZALL subroutine has its «own worksPace Prevents
zonflicts with register use by RBAZIC, but is sometimes inconvenient.
"ar instance, the WBASIC librarwy routines, which operate in the main
tEPkSPaC67 are not directlw available. The QBASIC librarv provides
o raoutines which make it easier to link to the rest af the librarwvy.

(p get into the main workspace, simply BLWP SYSWS$. Upon return Vo
he st

| prve direct access ta the RBRAZIC librarvy, t ack (R10Q), and RO-RET.
_Other regaisters must NOIT be used.

L . =320-

)

CIBASIC llser Guide

Toa return to the eprivate waoarksepace from which SYSWZ$ was calleds
simelw BLWP LSRWE$. From there, a RTWP will return to the callins
Rrxaram.

Re
For canvenience, a CALL routine which has transferred ta the main
workspace wvia 32SYSWSE$ can return directlv ta the calline progsram b
executing a RTWP. That is, these twa seauences are equivalent:

(1)
Blwp svsws$ enter svstem warkserace
blwp usrwss$ back to local worksrPace
rtue C back to caller

(2)
bBlup svsws$. enter swvstem workserace
rtwe . directlvy back to caller

10.2.2. Writine assembly langouage functions

RABAZIC provides a reasanably simpPle interface for writing user defined
functions in assemblw lancouace. These functions are called in exactlw
the same way as functions written in BBAZIC and returnm a value of tvpe
Inteser, Real, or Strins.

The entry to an assemblv—-lansuagse function loaks likke this:

namex mav rit,ri
b1 fentr$
<string pParameter definitions>
<terminator> '
<start of code>

The‘ekit is simplw:
b rets

The function executes in the main warkspace and should use anly RORS,
R11, and the stack —— don“t fargset the directive "DSTK R10". - When the
rautine starts executinag at <start of caode>, the arouments to the
rontine (if anvy) are in ascendine locations starting at the address to
which R7 points. As alwavs, Intesers and Strines take 2 bytess Reals
take =.

The function result is at —4&(R7) if it is a Strins or an Integer. aor-
-12(R7) if a Real. At <{start aof code> the value is pPre—set to O (ar
the null string). Nermally wour function will stare a functiaon
result, tut it does nat have toa. If the result is a Strings, do nat
simpPlw stuff a strina buffer address in —-&(R7)3 use the library
routine AZ%, described in the next section.

The <string-rParameter definitions> are omitted if the function has nao
string—-valued arsuments. If it has, then for everv Strins arsument ta
the function there must be one DATA word giving the location aof the
argument within the block that R7 pPaints ta. See the exampPle below.

The <terminator> has the hicsh bit (0O2000Q) set. The next bit is set

HBBASIC User Guide

OCZ000) if and onlv if the function result is a Strine. The rest of
he bits 9ive the tatal lenath of the arsument blocks; this allows
ENTR$ ta catch a garossly wrong call.

he routine which illustrated the ©CALL subroutine, except that it

Phe fallowing example illustrates function linkage. It is the same as
returns its result as a function result, not throuah an ADORS arzsument.

idt "RSHIFT"

dstk r10
r;rc* mav rii,ril coPYy the return address
! bl fentrs initialise
. . . no strina ar=euments A
[data 02004 _ terminator: 4 arsument bytes
T ‘ (2 Intesers)
mov 2(r7)>r0 ' " load shift count
(mav #r7,r1 l1cad arsument value
\1 src ri shift R1 by count in RO
. mov rl,—-4(R7) : store function result
{J b rets return
| end .

(te Prﬁsram that calls this function must use an EXTERNAL statement;
2fined in a later charter, to link to 1it. It might contain the
following twoe statements:

[} 'EXTERNAL SRC=FNSHIFT%
A% = FNSHIFTYZ(B%,2)

Eﬁ.3.4. Librarv entries

Arn assembly—lansuase routine orerating in the main workspace can call
4 ny GBASIC library routines, 'some of which are described here. A
=ALL routine must call SYSWS$ before calline library routines, in
order to get into the right workspaces a functign is automatically in
Ere risht workseace.

Ta allocate and release free memary sPace for any Purpose other than

r}rinss, use ALB$ and RLB%:
\

L

11 rOo,<lenath>
[S R albs _
LJ <block locatian in r13>
11 rl1,<location of block to release>

L] b rlb%

The rest of this section describes strine—-handline routines. Anv
(psembly lansuage pProgram that creates, deletes, assigns, or modifies
| Strins MUST use tRese routines. Anv attempt tao duplicate their
fynctions mav destrovy all Strings in the Program. In Particular, a
2eaaram must never modify the coantents of an existimae Strines instead,
t} should capy the String with STCOFRS, then modity the copvy.

A1l the Strine handline routines Preserve registers RZ-RT.
\

[

-~
.{_

B

_]

GBBASIC User Guide

ARZ% 1s used to assign a new value to a String variable. It is called
with the rnew value (a pPaointer tao a string buffer) on taor of the stack
and the address of the variable in RO. AS$ takes care of releasing
the value Previausly assigned to the Strine variable. If vou define a
Strine variable in an assemblv—-lansuase routine, be sure to initialize
it with "DATA .OY.

SR$ places the value of a String variable on the stack. It is called
with the variable address in RO. Do not stack a String with a simprle
PSHR <variabtle address>.

SC% puts a Strine constant on the stack. The call is

b1 sc$

data 02001

data <text length>

text "Ctext strinal>”

even —

The canstant mavy naot be modified in any wavy.

STNEWS$ creates a string of a specified length, containing random data.
It is called with a count in RO, and returns with a string pPointer 1in
R1. The character count that was given in RO has been corPied into the
count field of the strina (at #R1)5 wvou need only to copy the desired
text into the text space startine at 2(R1). Having prepared the
string, da something with it: leave it on the stack for somebody else
te pPick up, or assign it to a String variable with AS$ (see below).
If vou want to save its address for uwuse in a later call aon vaue
routine, do NIJIT simply store the address in a lacal variables do a
formal string assignment using AIS. '

STCIP$ creates a copv of a given pPiece of text. It is called with a
count in RO and text address in R1. It returns with R1 Paintina to a
strine into which the given text has already been corPied. You mav
madifv . this strins in any way vou like, excert increasing the lensth.
Then do samething with it, as after STNEWS.

STNULS places a null string on top of the stack. NQOTE that a Strins
variable nmnormally holds a null string as 2 bytes of bimary 0, but a
null string on the stack must not be a simpPle 03 it must be a Pointer
te a string with lensth 0. '

The follawine example 1illustrates function linkage and strine
handling. It takes a strine and an inteser as arsuments and returns a
string which i1s a capvy aof the string arsument excert that the first 2
bvtes are rerplaced with the 146 bits taken fraom the inteser.

mboi s mov rii,rl
b1 fentrs call the entry routine
data 0 first argument is a string
data 0004 : strina value.,
. . 4 bvtes of argument
mav #r-7.r1 aet address of strins
miav #rl1+,r0 length ta rO,
. text address to ri1
ci 0,2 is the string langs enouah 2

|
]

[

RBARSIC User Guide

J1t mki9. no. Don”t try to store L.
b stcor$ make a copry of the strinsg
pshr ri save address on stack
mav 2(r7),2(r1) store integer in bytes 1-2
maov r7.r0 find arge block base
ai rQ,—6 Ppoint to result cell
bl ‘as% assian the result

ki? b- , rets$ that‘s all

0.3.5. Linkina assembly lancuage with GBASIC

hen a R(BASIC eproaram which calls assembly languagse subroutines is
INKed, the assembly lanauacse relocatable files must be named on the
ommand to LINK or GLINKER. For exampPle, if we are linkina a QBASIC
roaram called IOTEST which calls the subroutine =SRC detined abave

and assumina that the SRC subroutine has been assembled into a file

named SRC.REL), we would use ane of the followinas

]
|

)

1 J

|
L J 4

L

1
|

L

L

GLINKER 2/IDTEST,2/5RC
LINK 2/I0TEST=2/I0TEST.REL,2/SRC.REL,CRALINK

£ there are more than two assembly lansuase foutines, the LINK
acmmand should be used.

—

1

—

=

FBASIC User Guide

11. ComPiler directives

1,
CaomPiler directives are special statements which contral the GRASIC
camPiler. These statements take action at caompile time rather than
execution time.)

ComPiler directives all beain with a pPercent sigan (4). The rercent
sian may start in any column of the .inpPut line (in CBASIC, it must
start in calumn 1). There must not,. however, be a line number an a
comPiler directive line. Any information on a line after a compPiler
directive will be ignared, so camPiler directives should be Put on
lines by themselves.

11.1. ZINCLUDE - Coapy source file
ZINCLUDE <filename>
The Z%ZINCLUDE directive causes the named <filename> to be included into

the compilation at the line where the ZINCLUDE directive appPeared.
The <filename> may be any valid file name for the operating svstem

~under which BBASIC is beins run. Note that the file name does naot

aPpPear 1in gSuotes. For example, a EBASIC eprogram might include a

"library of file accessing subroutines with the statement:

ZINCLUDE Z/FILEUTIL.RAS

Nate that unlike CRASIC, QBASIC makes no assumPtions abaut the form of
the file name used on an INCLUDE statement. If the file-name ends ;n
".BAS", it must be sPecified en the INCLUDE directive. ’

GBASIC daoes not pPermit an INCLUDEd file to ZINCLIIE ancather file
(nested includes). This is a restriction not pPresent in CBASIC. which
allows includes to mest up to six deer. GRASIC does ncot, however,
impPpase anvy . restrictions on the total number of includes which maw be
done in one Proaram.

The ZINCLUDE directive is very useful when maintaining large svystems
of pProgsrams. Subroutines, functions, and variable defimitions used
throushout a svstem of pProarams may be placed in INCLUDE files, sao
that when thev are changed, thev mavy be incorporated in all pProsrams -
which use them simply bv recampPilinge. This eliminates all the extra
wark, bookkeering, and probability of error that occurs when multirle
corPies of one pPiece of code exist. .

INCLUDE is alsa extremely useful as a means of including assisnment
statements which specify system standards and the external environment
in which the pProgaram is run. This makes reconfiguring progarams much

mare straigshtforward.

The INZLUDE directive mavy be used to include ENTRY. EXTERNAL, and
COMMON statements at the besimning o«f a Program. '

11.2. YDERUG - fFrint line numbers in error messases

The YDEBUG directive causes the compiler to insert additicnal cede in
the program which permits the inclusion in runtime error messages of

1
o

|

,lhe source program line on which the error occurred. The ZDEBLG
‘directive should be Placed befare the first executable statement of
rthe progsram. WUse of the ZDEBUS directive adds to the size of the
(lomPiled Progsram, but has little effect on execution speed. BRecause
| Jt is far easier to find Prosram errors when the line number is known,
ZDERBUG shauld be wused in all Pprograms excePrt those known to be
{Mxtremelv reliable or where memory size is critical.

QBASIC User Guide

If several serarately compiled routines are linked tagsether into one
MIrGaram, and some but not all contain ZDEBUG directives and an error
“ ccurs in a routine where 7ZDEBUG was acomitted, the line number ePrinted

will be the last line executed in a routine comPiled with “DEBUG.

!]F a Proaram contains %INCLUDES, lines within the included text will
‘de numbered from 1, and the number of the ZINCLUDE, counting ¥from the
top of the Prosram, will be arPrPended to the error messase.

(JI.E. ZDIAGNOSTIC - Compiler debussing feature

he ZDIAGNISTIC statement 1is designed to=aid Marinchip in debu=ecing
he compPiler. It causes the compiler to identify the intermediate
cade 9enerated by the first pass of the compiler with the statement
hat generated the code. This statement has no other use, and
[jroduces na infaormation of use in finding pProgramming errors. It is
wmentioned here only for completeness. '

{

LJ1.4. Ianared compiler directives

The following compiler directives are used by CBASIC, but are 1ignored
v @BASIC. Their aPPearance in a program will have no effect on the
| lomeilatiaon.

o ZLIST — Turns on CBASIC listins

LJ - ZNOLIST - = Turns off CBASIC listins

- ZPAGE — Sets CBASIC pPage lensth

o ZEJECT — EJects CBASIC listing Page
LJ %CHAIN — Sets CBASIC storagse sizes

The CHAIN directive is unnecessary since a QBAS}C chain comPletely
Erplaces the old program with the new: so there is no need to specifwy
| lemory sizes in advance as is required in an interpreted lansuase like
CRASIC. .

]
L

_:\‘

)

r_,_'_! J—
e —

e

HBASIC lser Guide

12. Serparatelw compriled routines

A RBASIC pPraogram can be campPiled in several Pieces, which are then
linked together by the svstem LINK Progsram, Just as is done in
languages such as Fortran. This should not be confused with the CTHAIN
facilitvy, which allows a prosram to call another presram into memorys
sa that both pPreograms will not have to be in memory at the same time.
The PurprPose of the features in this section 1is not to save memory
spPaces, but to write pPregrams more reascnably.

In writing and maintaining a large program it is essential to avaeid
using the same variable name for different Purposes in different
sections of the pProgram. Failure to do so leads to errors that can be
almast imPassible to debus. If the Progaram is written in several
Pieces af reasonable size, the problem is solved by brute farce: the
variables in each Piece are completely inderendent unless vou take the
trouble to share them by means of ENTRY and EXTERNAL statements.

A one—=line chance in a bie proaram means editine and recompiling the
whole thing, unless it was written a several small modules. It 1is
much maore fun to recamPile a small routine than a big cone.

A gracur of related erograms, such as a business accounting svstems
will have many rcoutines in common. These can be handled Gty the
ZINCLUDE statement, which cories them at compile times but if ané of
these routines needs to be charnged, it becomes necessary to recompile
every pProgsram that uses it. If the routine is compPiled separately, on
the ather hand, the proarams that call it need anly to be re—-LINKed .
with the new version.

But the most important advantaze is the simplest: small Progsrams are
hetter than bis ones.. A set of small, well—-Planned modules is easier
te writes debus, and change than a° areat. unorganized hear of code.

12.1. Main Programs, subpPrograms: and modules

In this charter a MOOIWLE will mean any serParately compiled pProasram.
wvhether a main prcegram or a subpreogaram. A QBASIC progaram consists of
ane or more modules: a main Progsram and zero or more subkpProgarams. A
simpPle, CBA3IC—-compatible Pragsram is a main Progsram with no
subProsrams.

When a Program is executed, the action begins at the top of the main
Program and Proceeds according te whatever statements are in the
Program. Some of these statements maw call functions which are
defined in another mcodules this is the only way that control can gset
inta a subprosram. The subprooram itself can call functions that are
defined in other subpruarams or in the main program.

In addition, a module canm make any of its variables available to other
madules. This feature is distinct from COMMON, which makes variables
available ta a new program which is invoked bv CHAIN.

12.2. SUBPROGRAM statement

SUBRFROGRAM <namezs

;{ GBA3SIC User Guide

“Nhen two or more seParately compiled modules are to be linked
~tosether, all but wone of them must be subProsrams. The ZSUBPROGRAM
‘statement simplw declares that this is not the main Prosram. The
“Aname> 1s a name of wuwuP to eisht letters and digits, which will

j dentify this procaram in the listine generated by LINK.

A subprogaram mav naot have DATA or COMMON statements.

’)

LJhe SUBPRIOGRAM statement must be the first statement in the Pragsram.
arart from blank lines and REMARKs.

-
ﬁ}z.s. ENTRY statement
rl ENTRY <external name>=<internal name>,...

ENTRY statement declares which of the variables and functions
Adefined in this module will be available to other madules. The
1interna] name> is the name of a variable or function which appears in
“Jhis madule. The <external name> is a name of no more than six
letters and disits, beginning with a letter, which uniquely identifies
{]HE’variab]e or function to the outside world.

If the <internal rname> is followed bv Parentheses, then the <Jexternal
{'ame> refers to the subscrirpted variable, not the simple variable of
L he same name. For consistency with the COMMON statement, there mavy
be a single Inteser constant inside the pParentheses, but it is isnored
kv the compiler. A function name in an ENTRY statement should not be
’jol1owed by Parentheses. reaardless of whether or not the Ffunctiaon
‘dakes arsuments. ‘

—re +011nw1n= are examprles of the ENTRY statement:

ENTRY VOOO1 PRUbRAMMER NAMES$, VOOO2=NIUMBER. OF . SNAFUS
[" ENTRY WO0O1=FN.DOCK.PAYZ, BOBBLE=EOBBLE
} ENTRY A=X,B=X%,C=X$,D=X(),E=X%Z(1),.F=X$()

Any prosram module, whether a main Program or a subpProgaram, may have
LPTRY statements. ENTRY statements must be aroupred at the beginning
6f the.pragram (after SUBPROGRAM if anv) with EXTERNAL statements and

etfore COMMON statements (if a main pProsram).

i)

12.4. EXTERNAL statement

! EXTERNAL <external nameX>=dinternal name,...

The EXTERNAL statement has exactly the same form as the ENTRY
rFatement and the compPlementary meaning. That is, it declares that
internal rname> is not defined in this module, but is defined in some
podule which has <external nameZ in an ENTRY statement.

Af’ -

TLe following statements would aﬁlpw a module to use same of the
variables and functions defined in the ENTRY statements above:

|

) EXTERNAL WOO1=FN.DOCK.PAY7Z :
EXTERNAL VOOOZ=NLUMBER. OF . ZNAFL1Z, VOOOQ1= PRDGRAMMER NAME$
f EXTERNAL A=Y,RB=I%,F=VERYLONGNAMES$ ()

_:3:3 -

[
[

RRASIC llser Guide

The examples illustrate that neither the order of declarations nor the
chaoice aof internal names is impartants the same obdect is called X in
aone praogram and Y in the other, but thev are linked by the <esxternal
name> "A". QOf course, it is 9aad pPractice ta use the same internal
name consistently for the same obiect.

Orn the other hand,. the obiects linked by ENTRY and EXTERNAL must be of
the <same ¢tvpPe: if the second program said EXTERNAL A=YZ or EXTERNAL
WOO1=VARIABLE (instead of an Integer functicn), the results would bhe
disastrous.

The restrictions on the pPlacement of EXTERNAL statements are the same
as thaose for ENTRY statements.

12.5. Linkine serarate modules

A1l the modules that sc inte a eproaram must be specified in the LINK
Pracess. For exampPle:

GLINKER MAGIC=S0RCERER.,ZPELL1,WAND —

This example assumes that ZPELL1I.REL and WAND.REL are files containing
caompPiled SUBPROGRAMSs. Note that the name used is always a file names
not an <external name> or the <name> in a SUBPROGRAM statement. :
Ne mare than twe external routines should te named on the BLINKER
caty. If there are more than two: use LINK: =

LINK MAGIC=SORCERER.REL.,SPELL1.REL,WAND.REL, HUIMBLIG . REL, @AL INK
Under NIS, use @IIGBASIC/GLINK instead of CRALINK.
Bv usina the LOC and FETCH functions of the.LINK routine it is

Passible te set up a library of BBASIC routines so that the user does
nat have to twvpPes or even to know, the names of all the madules that

‘his pProaram requires. The use of these functions is described in the

LINK section of the manuals for NIZ and Disc Executive. For a
practical example, see file GLINK on the QBASIQ release disc.

12.4&. EXTERNAL variabtles in the litrarvy

The runtime library that handles I/0 and aother standard operations for
GRASIC defines some words that GRASIC proaarams can access as Inteser
varitables by usina the EXTERNAL statement. These allow the ZBASIC
pragaram to determine its aperating enviranment and to chanse some
crPperating modes of the librarv.

NOSFLGS contains a O if the pProgaram is executing with the Disc
Exér-utive librarv, and a -1 if it 1is wusins the Netwark Operatins
Svstem librarvy. A Proaram can include code to handle the file namina
canventions of both svystems, wsing NOISFLG to determine which code ta
use.

CCHECH determines whether CONSTATYZ and CONCHARY will echa characters
as thev are tvped in. Initiallv it is non—zerao, and all printable

chharacters (ASCII wvalue areater than 21) will be echaoed. If the

...;5".:./_

W‘ HBASIC User Guide
. .
HBRASIC Pprogram sets it to O, no characters will be echaed. CCHECH can

e examined and modified in the same way as any Integser variable.
|

LSWAIT determines the oPerating mode of CONSTATA. Initially it 1is
oon—zera: CONSTATZ will wait for inpPut before returninae control to the
i 11ine pProgram, and will alwavs return a value of -1. If the 2BA3IC
Yroaram sets CCWAIT to zera, CONSTATZ will return immediately after it
is called, exactlwy as in CBASIC; the value will ke -1 if an inPut
fﬁaracter is available and O otherwise. CONCHARZ, however, will
i Twavs wait for inPut to be available, rather than return a nonsense
value. '

™

{?RSPC controls the extra blank that is edited after a user—specified
prompPt in the INPUT statement. Initiallvy it 1is non—zero, and the
ajiven promPt 1is alwavs followed by a blank. If the GQBAZSIC Progsram
pts it to 0, PrompPts will be siven without the followins blank.

L)

The following are examples of the use of library external variables:

{

EXTERNAL NOSFLG=NOS%, CCHECH=CCHECHZ, CCWAIT=CZ4

(, 4
e !

— . IF NOS%=0 THEN PRINT "Dan”’t run this under Disc Exec"
C] SAVE.ECHOYZ = CCHECHZ: CCHECHZ = O :
C7Z = SAVE.WAITZ

—~

;' -90-

132,

The following words are reserved far
These wards maw

ARS
ACO3S
ALRS
AND
AsS
ASIC

SIN
ATAN
ATN
BUFF
CALL
CHAIN
CHR%
CLOZE
ZOMMANLS
COMMON
CONCHAR
CONSOLE
CONSTAT%
s
0T

"TREATE

CcsC

DATA

DATETIME
DEF
DELETE
DIM
DISMOUNT
ELSE
ELSEIF
END
ENDIF
ENTRY

EQ

EXIT
EXP
EXTERNAL
FEND
FILE
FLOAT
FOR

FRE

GE

GET
GETFILE
GQ

GQ=UB

not be

1

HBASIC User Buide

Reserved words (kevwords)

the

exclusive

use of BBEASIC.

used for variable names within GBASIC Programs..

SQTa
GT

IF
INP
INPUT
INT
INTZ
LE
LEFTS$
LEN
LET
LINE
LOcK
LOG
LPRINTER
LT
MATCH
MFRE
MID$
MaD
MOUNT
NE
NEXT
NQT

N

OFEN

OR

ouT
OVERLAY$
PEEK
FOKE
FDS
PRINT
PUT
RANDOMI ZE
READ
RECL
RECS
REM
REMARK
RENAME
RESTORE
RETURN
RIGHTS
RND
SADD
SAVEMENM
SEC

SGN
SIN
SIZE
SR
STEP
STOP
STR$
=B
SUBRPROGRAM
TAB
TAN
THEN
TO
LUCASES$
UNLOCK —
USING
VAL
WEND
WHILE
WIOTH
XOR

’}' GRASIC User Guide

ﬁT4. Error messages

—44.1. Compiler error messages

'When the GBASIC compiler detects an error in the prasram, it prints
~the offending line with a Pointer to the apPProximate pPosition where
iThe error occurred. In most cases this 1is enoush to show that a
‘reserved word has been misspelled or a statement has been badly
faormed. In addition, some errors generate an error message before

rtrintins the l1ine» while others de not appPly to anvy one 1line 1in
| tarticular; these are explained here.

\]abel 3$XXXX not defined

G070, GOsIJB, or IF END referred to a 1ine number which was never
(efined. The field S$XXXX in the message is a coded form of the line

Tiumber. To find the actual line - numbtier, remove the "S%" from the
beainning and then make the following substitutionst

B For Substitute
$.

IRR

- Jp—

(]unction XXXX not defined

A function was called or (or named in an ENTRY statement) but uwas
."ver defined im a DEF or EXTERNAL statement. To decode the name
~XXX: translate the last three characters as follows:

[} For Substitute

sIF YA

‘$RF nathing
L sSF 3
n

the rest aof the name. change "$" to ".".

Llrav XXXX not defined

élreFerence was made to an array which never arreared in a DIM, ENTRY,
{ KTERNAL, or COMMON statement, ner as a dummy variable or actual
arsument to a function. Therefore, it is impossible for the arravy to
I properly defined at runtime. This wusually results from a
n}sspellins of an array name. The name XXXX is decaded as in the case

«F an undefined function, above, except that the last letter of the
raded nmame will be A, not F.
|

Tmerorer blaock nesting
!

“Jblock is a WHILE — WEND, FOR — NEXT, IF - ENDIF, arr DEF - FEND
cequence, One of these began or ended within a2 Sinele=-line IF, but

.
——

——

LRASIC User Guide

was nut entirely contained inm 1t.

XXXX was expPected

A block of statements was ended incarrectly. Far instance, if a FOR-
loor ends with a WEND statement (or is not ended befure the end of the
Prearam), the messase will be "NEXT was expected.” N

14.2. %Second Pass errors

When the BRBASIC coampiler detects no errors in the eraaram,. it
aencerates the messase:

P2 <program>.REL=TEMFP1%
No messases should appear between this and the next svystem prampt. If

any messase does aPpPears it should ke reported to Marinchip Svystems
with as complete documentation as pPassible.

.14.23. Runtime errar codes

"When an error is detected by GBASIC at executian time, the Prasram

will be terminated and an error code will be printed. The table below
lists the error codes given by GBASIC for runtime errors.

Code : Meanins
0100 Memary Full
0101 More RETURNs than GOSUBs or function calls
0102 Range error in ON...GOTO or ON...503UB
0103 Wrons number of subscriepts)
0104 Subscrirt ocut of range -
0105 - Array not dimensioned ’
01046 Null strins as argument to ASC
0107 . BRad format string in FPRINT USING
. 0103 Negative dimension in OIM
0107 Lenath of function argsuments is wrons
9110 Too many string expPressions in a statement
0111 Too manv nested GOSUBRs aor function calls
01z0 Incomratible COMMON statements
0121 - Could not read COMMON variables from TEMPZ2$
0132 CHAIN failed '
01332 Could not write COMMIN variables in TEMPZS
0141 End of file, no IF END given
0142 JPEN: Ffile cannat be found
014z OPEN: file was already oren
0144 FILE: all unit numbers in use alread-vw
0145 CLOJSE: file was not open
0144 CLOZSE: swvestem =ave error status
0147 Unit rnumber cut of range
014% I/0 ta non—oPen unit number
0149 . Write errar
01350 Read error

|

r] HBAZIC User Guide

0131 Seek error
0152 DELETE error
[0135% DOPEN: RECL was less than 1
0154 1/0 in a function called from an I/0 list
— 0155 READ bevond end of DATA
| 0154 Attempt to read or write bevond end of fixed record
0157 Random I/0 in stream file
__ 01358) READ after PRINT in stream file
[0159 Could not orPen PRINT.BEV
0140 MOLUINT failed
[10161 File was not orPened for record locking
L_Oléz I/0 error locking or unlocking record
‘then a2 proaram is terminated with a runtime error, the line number of
[ﬁhe last proaram line executed will be pPrinted in the error message if

the Z“DEBUG statement was pPresent at the beginning of the pProgaram in

hich the error caccurred. If the error occurred in a block of source
{Wode coried into the pProoram with an ZINCLIUDE statement, the number of
vhe ZINCLUDE (the #first is numbered 1) will be given. Note that in
praarams _with several serarately compiled routines, it is up to the
Jlser to determine which routine the pProgram was in when the error

ccurred so that the line number can be traced to the routine in which
he error was detected. :

-]

I+

— I 4 2

BBASIC lser Guide

15. Comparisaon of RBASIC with CBASIC

This sectian attempPrts to summarise all the differences tetween the
BBASIC and CBASIC lanouases as seen by an application Progsrammer. It.
is not concerned with imPlementation differences, such as the
difference between an interpretive compiler and a compiler that

aenerates machine code, excePt where such differences affect the
language srecifications.

There are four subsections in this section: (1) CBASIC features which
are lacking in QBASIC, or require some extra action on the rart of the
Programmer to get the same effects (2) differences between the wavs in
which the two languages interpret a statement, where neither langsuage
behaves like a subset of the others (3) restrictions in CBASIC which
have been removed in RBAZIC; (4) BASIC features which are extensions.
to CBASIC. The - last two are of no interest to those who merely want
to convert CBASIC progsrams to FBRASIC.

In writine QABASIC and the manual we have attemprted to maximise
comPatibility with CBAS3IC, inzcluding features on which the CBAZIC
manual is silent (the lagaic of writing EOF on fixed seguential files)
or incorrect (continued DATA statements). Marinchip Svstems would
like to hear of any undocumented incompPatibilities which wsers mavy
discover. New incompatibilities may or may not be corrected, but they
will at least be documented in new editions of this manwval.

1Z5.1. Restrictions present in GEASIC

The current release (2.0) does not suprort the following farmat tvees
in PRINT USING: “~~ for .exponential field editing, leadins minus sisn,
and editina a number with a leading % sian i¥ it is too bia for the-
defined field. These will probably be added in a later release.

CHAIN does not preserve the contents of DATA statements.

COMMON variables are pPassed in a file, not in memory. This is
included in this subsection because the pProarammer must take one extra
action to make COMMON work: under the Disc Executive (not NO3) the
file TEMFZ$ must be created befoure the Program is executed.

The SIZE function doesAnot acceprt ambiguous file names. -

The fallowing new kevwaoards represent extensiaons to the langsuage. btut
are restrictions in that thev can’t be used as variable names: AORS,
ASIN, COT, C=C, DISMOUNT, ELSEIF, ENDIF, ENTRY. EXTERNAL. GET,
GETFILE, LOCK, MOD, MOIUNT, CGVERLAY$, PUT, SEC, SUBPROGRAM, LINLOCK.

Real values (containineg decimal pPaints) cannot be read into Integer
variables by READ or INFUT.

LZINCLUDE cannot te nested, but there can be any number of them on the
toer level. -

The directives YUNOLIST and “ZEJECT are ignored.

There are no binary constarts (e.a., 0O1111010R).

S—

]

] REASIC User Guide

"let bv the aopPerating svystem confisuration, not by tables in @BASIC
‘1tself. The 1imit is rnormally ten. Any number of device files mavy hbe
aPen. The range of file numbers is still 1-20.

rihe maximum Tnumber of disc files that can be oren simultanecusly is

L AS. 2. Features treated differently in BBASIC and CBASIC

| [he order "of evaluation of arithmetic expressions in GBASIC differs

| Miahtly froem that in CRASIC: Unary Plus and minus are evaluated
befoure multiplication and division.

{ BASIZ treats a numeric constant as Real if it contains a decimal

roint, including a.leading (illegal in CBASIC) or trailing decimal

=oint. A constant is also Real if it exceeds the allowable ranse for

| Intesers, —32747 to +327467, even if it has no decimal point.

Real arithmetic is performed in bimary (IBM 370 format) in RBASIC and
| In Packed decimal in CBASIC. This can cause rounding eproblems due to
| lhe aPProximate representation of decimal fractions in @BASIC. For
instance, to round to the nearest cent, one shauld use an expPression

1]uch as INT(100.#X+.300001)/100.
L :

The value returned by COMMANDS under NOS includes the whale command
ines under Disc Executive it returns evervthing after the Program
{jame, includina at least one leading blank. llnder either swvstem the
alue returned 1is the 1line which 1invoked the currently executing
pragarams if the current pProsram was invoked by a CHARIN from anocther
lroaram, the value is that which appeared on the CHAIN statement, not

lhe line that invoked the original Proaram.

[EEK, POKE», INP, and OUT are 14-bit opPerations. 2-bit input/cuteput
l levices will ignare the extra bits. . o A
ivthing which is spPecified for PRINTing on console or line printer is
| inted immediatelv, even 1if the 1ist is terminated by a comma ar
semicolon. This means that no pPrinted output is lest uwupon CHAIN or
error termination. It also allows a prosram to print an arbitrary
xPression followed by semicolon as an inPut pPrompt.

When floating $ is used in a PRINT USING format, a nesative number
{Pll be displaved with the $ Preceding the minus sians CRBASIC
| upPresses the $ sian. This may be changsed in a later release.

]L\

| ine Feed. Therefore, a fixed record lenath need be onlvy one byte

;rcords are terminated with a Carriage Return only, not followed by
arger than the longest record which is to be written in it.

‘andecimal numbers are specified with a leading zera, both in Prosram
—unstants and 1in 1inpPut. The trailing H for hexadecimal. is ~ not
recoanised.

e ADEBUS directive is used to enable pPrinting of sourice line number

wn runtime error messages. CBASIC uses the "E" compPiler toggle for
"his.

|

[E=PRCN Restrictions removed in RQBASIC

—

—J

r— ™
| i

—

GORASIC lUser Guide

DIATA. ODIM, LDEF, and END statements need not be the only thine an a
line. ’

The Single—line IF statement need not be the first on a line.
Single-line IF statements «can be nested in a limited wavy. A
THEN—-clause aor an ELSE-clause can consist of a line numbers an’
ELS3E—-clause may be used after THEN <line—number>.

The FOR statement accerts mixed—-mode exPressians.

Stringas may be of any lensth, as lone as there is enoush room in
memary.

Rc—dimensionins a Strina subscripted variable will alwaws recaver all
the spPace occupried by the strinas that it contains. The subiscripted
variahle need not be set to all null strinas beforehand.

A user—defined function need not be defined before it 1is called.
Functions are fully recursive. If execution drars throush to a FEND
statement, the function will returns not give an error messagQe.

The ZCOMMON statement is not required 1in arder to CHAIN Progsrams.
CHAIN 9ives a standard svstem command line which mav call a non—GBASIC
Proarams thaoush COMMON will be lost in that case.

The % sign on a compPiler directive need not be in column 1. -

15.4. Extensions to CRASIC _ a

The Block IF statement has bteen addeds, allowing completelwy seneral
nestineg of IFs spranning as many lines as dcs1rcd. MultirPle cases are
fiandled bw the ELZSEIF statement. =

The EXIT IF statement allows direct exit from any loap, Black IF. or
function.

A functicn araument can be an entire arrav or the name of a simple

variable. The value of such an argument can be changed by the
function.

Arithmetic expPressions may use the MDD orPerataor toa compute remainders.
The followine functiaens have also been added: been added' ATRS, ASIN,
| |3T, l uC, -.'EC-

An inPut/cuteput 1ist in READ, FRINT, or INPUT can include a FOIR — NEXT
construction.

The FPRINT statement recoonises two new constructicons: " <integer
exPression># for hexadecimal output, and <strina expression>! te omit

quate marks.

The GETFILE statement corresponds to the FILE statements but with the
full swntax of the CREATE statement.

It “is pPassible toa READ a stream file, then PRINT in it even 1if an
end—file has not been detected.

':/7

g WBASIC lser Guide

rA file or a record can be locked ta assure that anly ane of a set of
‘fooperatins Programs is accessing i1t at one time. '

l

Non—disc devices, such as console and pPrinter, mavy be assigned with
Trhe OPEN statement and used as files.

L)

Line numbers mavy contain any number of decimal pPoints, Plus signs,
rminus sians, and E’s, provided thevy beoin with a digit or decimal
(Foint.

h?emarks may be embedded in statements using (curly bﬁackets}.

|

1'—*’he CALL statement uses the name of an assemblvy—lansuase Prosram
. rather than an address. The pProgram itself is in relocatable form and

| pi11 load wherever LINK decides to pPut it; SAVEMEM is not needed. The

| bALL mav take arsuments, includine the lacaticen of Prosram variables.

(Tunctions may be compiled in modules serarate from the main pProcaram
;}nd linked to 1t with LINK. Variables mavy ke 'shared hetween

‘serparately compiled madules. Functions can be written 1in assemblwy
{aansuase. ’

L}he ability to read the date and time throush the DATETIME function
has been added.

-

r——
-

'

— ,EJ__:_J —)

J

PDRASIC User Guide

14, Differences from earlier QBASIC releases

The followine sections describe changes made between variocus release
versions of EFEASIC from the most recent to the orisinal release. B+
reading this section, vou will be able ta establish what " has chansed-
between the current version and the last version vou used.

i6.1. Changes in release 2.0

This section lists changses between level 3.0 and level 2.0.

16.1.1. Transparent chanaes

The lareest change in release 3.0 from pPrevicus versions is that the
camPiler was modified to generate threaded code rather than direct
code. This reduces the size of obdect eprograms by from 20 to 40
rpercent. There is usually no measurable increase in execution time as
a result of this chance. A warst case benchmark, unlikely to ever be
encountered in real code, shows that a desradation of 107 is the
abtsolute masximum. In any Progaram containing I/0 or fleatine Point,
the difference is too small to measure.)

Startine with release 3.0, the compPiler consists of two Phases:
@BASIC, which compiles the pProesram to a machine inderPendent
intermediate code; and @P2, which aoptimises this codes assembles it
inte machine instructions, and writes ocut the relocatable outpPut file.
This eliminates the need to call ASM after GOBASIC, and results in the
output code alwavs beinsg opPtimised. Previocuslvy, GBOPT had to be
called to pPerform the optimisation, and this teok a gareat deal of
time. With release 3.0, a compilation. including opPtimisation, often
takes halt+ the time of an unoptimised caompilation in Prior releases.
Since . outPut code is alwawvys orPtimised, it. is more compact and
efficient.

The intermediate code in the temepcrary file will be much shorter than
with pPrevious releases. In release 3.0, this code 1is in a verwy
comPact format wunique to GBRASIC. Previcusly., it had to be in
assembler format and took much more room to store. Thus, the TEMF1S$
file need naot be as largae as with pPrior releases.

16.1.2. Naontransparent chanses

The fallowing reserved words have ‘been added, and hence may not .be
used as variable names: DATETIME, FRE, MFRE.

On a stream or fixed file READ, 'a record with an ASCII SUR character
(hex 01AQ) in column 1 will be treated as an end of file. This is
comrpatible with CP/M, but different from Prior releases of QBASIC.
The standard Marinchip end of file character, EOJT (4) is still written
and recoanised as before by BRASIC. This change allows pProarams which
write their own CP/M end of file marks to work without modification.

GROPT Has been deleted. Dutput cade is ndw autaematically opPtimised

exactlw as GBOPT used to do it.

The comPiler no laongser outpPuts assembly code. The undoacumented

— Y —

DBRASIC User Guide

practice of modifvyins the assembly code ocutput by the compiler is nao
lonaer possible.

3
— '

Serarately comriled QBASIC subprograms linked with a main pProaram
“fomPiled with release 3.0 should be recompPiled with release 3.0. Many

ubrroarams will work without recomepilation, but there have been some
"chanses which could result in undefined svmbols in the LINK unless the
—subpProarams. are recomrPiled. ASSEMBLY LANGUAGE SUBROUTINES AND
EUNCTIDNS DO NOT HAVE TO BE CHANGED. IF THEY WORKED WITH 2.0, THEY

ILL WORK WITH 2.0. It is also Permissible to CHAIN back and forth
rgetween programs comPiled with releases 2.0 and 3.0.

|
{&.1.2. Extensians

?Khe DATETIME function was added to allow retrieval of the time and
' late. :

The FRE and MFRE functions were added to allow a prosram to determine
‘fhe total amount of free space and the largest block of free spPace
“available.

(?he ZDEBUG directive was ‘added to allow compilation of line number
_Jlass into the osutPut code. This allows pPrintins the source line
number in runtime error messagses.

{jhe ZDIAGNOSTIC directive was added to control whether the source
program is corpied into the interpass file for debugging. This was
Mrevicusly alwavs done, but now 1s done only if reguested. This
E educes the size of the interrpass file 30 to S0%.

%F Changaes in release 2.0

\ : o
LJ1s section lists «chanses between release 2.0 and the original
re c¢lease, 1.0, :

L2511, Thinas to watch cut for

[ﬂhe level 2.0 comPiler and library 9o together. Since old
Lk]oratablgs can’t be used with the new library, coqversion, of a
Proaram requires recompilation of all its modules. Likewise, new
?'lucatablgq may not be LINKed with old libraries.

he most important incomepatibility involves the treatment of stream

;i1gs-' arlier levels of RBASIC, unlike CHBASIC,: recognised recard
! lnundaries in stream inPut. Level 2.0 isnores record boundaries in .

J*EADins without the LINE optinn and 1is entirely compatible with
CRASIC. (Earlier RBASIC manuals <cave warnina that this misht be

;ranéed.) .
| Ed

REASIC 2.0 introduces some new reserved words, which will affect anv
~roaram that uses them as variable names. The new wordq are ELSEIF,
- NDIF, EXIT. 3ET. LOCK, QOVERLAY$.» PUT, LINLOCK. i}

L_) .

The “Ta%t source languase incompatibility is fairlwv abscure: the LINE
thion on the disc READ statement farmerlwy caused the entire length of
tJ fixed=lensth record to be read, includine the carriase return and
any earbase after it. Thus it would be Possible te read arbitrarwy

-4100-

L

(-

e s [e R et

O r
— L—/‘

GORASIC Ueser Guide

binmarv data which had been Packed into a pPsewdo—-3tring bv assemblw
language routines and written on disc. As the PUT and GET aperatians
now handle binary data in a simpler wawvw, there is no need for this
teature. The LINE oPtion now reads up to, but not including, the
carriase return, Just as in stream files and as in CBASIC,

Zome of the librarvy routines, especiallw disc input/cutput. are laraer
than before. As a result, an executable program mawv increase in size
enough to averflow the DNisc Executive file in which 1t was formerlwy
stoured. Because of the impraved buffering, however, the total memorwy
sPpace udsed at execution time is likely to decrease, especiallw for
largse Prosarams.

1£.2.2. Extensions

Several abscure restrictions have been removed, includine the lack of
a Real MJD and lenath restrictions in the VAL function and stream
inpPut. :

Here is a shart list of actual extensions to the languasge:
. Block IF

. EXIT IF

« Record loacking and unlackine in NQZ/MT

. MHser contral of disc buffering with the BUFF spec

. VGET and PUT statements

. FOR = NEXT in inpPut/output lists

« Function zall by reference

- CompPilation listings

-101-

