Books by Stephenson, Neal

Stephenson, Neal. Cryptonomicon. New York: Perennial, 1999. ISBN 0-380-78862-4.
I've found that I rarely enjoy, and consequently am disinclined to pick up, these huge, fat, square works of fiction cranked out by contemporary super scribblers such as Tom Clancy, Stephen King, and J.K. Rowling. In each case, the author started out and made their name crafting intricately constructed, tightly plotted page-turners, but later on succumbed to a kind of mid-career spread which yields flabby doorstop novels that give you hand cramps if you read them in bed and contain more filler than thriller. My hypothesis is that when a talented author is getting started, their initial books receive the close attention of a professional editor and benefit from the discipline imposed by an individual whose job is to flense the flab from a manuscript. But when an author becomes highly successful—a “property” who can be relied upon to crank out best-seller after best-seller, it becomes harder for an editor to restrain an author's proclivity to bloat and bloviation. (This is not to say that all authors are so prone, but some certainly are.) I mean, how would you feel giving Tom Clancy advice on the art of crafting thrillers, even though Executive Orders could easily have been cut by a third and would probably have been a better novel at half the size.

This is why, despite my having tremendously enjoyed his earlier Snow Crash and The Diamond Age, Neal Stephenson's Cryptonomicon sat on my shelf for almost four years before I decided to take it with me on a trip and give it a try. Hey, even later Tom Clancy can be enjoyed as “airplane” books as long as they fit in your carry-on bag! While ageing on the shelf, this book was one of the most frequently recommended by visitors to this page, and friends to whom I mentioned my hesitation to dive into the book unanimously said, “You really ought to read it.” Well, I've finished it, so now I'm in a position to tell you, “You really ought to read it.” This is simply one of the best modern novels I have read in years.

The book is thick, but that's because the story is deep and sprawling and requires a large canvas. Stretching over six decades and three generations, and melding genera as disparate as military history, cryptography, mathematics and computing, business and economics, international finance, privacy and individualism versus the snooper state and intrusive taxation, personal eccentricity and humour, telecommunications policy and technology, civil and military engineering, computers and programming, the hacker and cypherpunk culture, and personal empowerment as a way of avoiding repetition of the tragedies of the twentieth century, the story defies classification into any neat category. It is not science fiction, because all of the technologies exist (or plausibly could have existed—well, maybe not the Galvanick Lucipher [p. 234; all page citations are to the trade paperback edition linked above. I'd usually cite by chapter, but they aren't numbered and there is no table of contents]—in the epoch in which they appear). Some call it a “techno thriller”, but it isn't really a compelling page-turner in that sense; this is a book you want to savour over a period of time, watching the story lines evolve and weave together over the decades, and thinking about the ideas which underlie the plot line.

The breadth of the topics which figure in this story requires encyclopedic knowledge. which the author demonstrates while making it look effortless, never like he's showing off. Stephenson writes with the kind of universal expertise for which Isaac Asimov was famed, but he's a better writer than the Good Doctor, and that's saying something. Every few pages you come across a gem such as the following (p. 207), which is the funniest paragraph I've read in many a year.

He was born Graf Heinrich Karl Wilhelm Otto Friedrich von Übersetzenseehafenstadt, but changed his name to Nigel St. John Gloamthorpby, a.k.a. Lord Woadmire, in 1914. In his photograph, he looks every inch a von Übersetzenseehafenstadt, and he is free of the cranial geometry problem so evident in the older portraits. Lord Woadmire is not related to the original ducal line of Qwghlm, the Moore family (Anglicized from the Qwghlmian clan name Mnyhrrgh) which had been terminated in 1888 by a spectacularly improbable combination of schistosomiasis, suicide, long-festering Crimean war wounds, ball lightning, flawed cannon, falls from horses, improperly canned oysters, and rogue waves.
On p. 352 we find one of the most lucid and concise explanations I've ever read of why it far more difficult to escape the grasp of now-obsolete technologies than most technologists may wish.
(This is simply because the old technology is universally understood by those who need to understand it, and it works well, and all kinds of electronic and software technology has been built and tested to work within that framework, and why mess with success, especially when your profit margins are so small that they can only be detected by using techniques from quantum mechanics, and any glitches vis-à-vis compatibility with old stuff will send your company straight into the toilet.)
In two sentences on p. 564, he lays out the essentials of the original concept for Autodesk, which I failed to convey (providentially, in retrospect) to almost every venture capitalist in Silicon Valley in thousands more words and endless, tedious meetings.
“ … But whenever a business plan first makes contact with the actual market—the real world—suddenly all kinds of stuff becomes clear. You may have envisioned half a dozen potential markets for your product, but as soon as you open your doors, one just explodes from the pack and becomes so instantly important that good business sense dictates that you abandon the others and concentrate all your efforts.”
And how many New York Times Best-Sellers contain working source code (p, 480) for a Perl program?

A 1168 page mass market paperback edition is now available, but given the unwieldiness of such an edition, how much you're likely to thumb through it to refresh your memory on little details as you read it, the likelihood you'll end up reading it more than once, and the relatively small difference in price, the trade paperback cited at the top may be the better buy. Readers interested in the cryptographic technology and culture which figure in the book will find additional information in the author's Cryptonomicon cypher-FAQ.

May 2006 Permalink

Stephenson, Neal. Seveneves. New York: William Morrow, 2015. ISBN 978-0-06-219037-6.
Fiction writers are often advised to try to immediately grab the attention of readers and involve them in the story. “If you haven't hooked them by the end of the first chapter, you've probably lost 'em.” Here, the author doesn't dawdle. The first line is “The Moon blew up without warning and for no apparent reason.” All right, now that's an interesting premise!

This massive novel (880 pages in the hardcover print edition) is divided into three parts. In the first, after the explosion of the Moon, scientist and media talking head Dubois Jerome Xavier Harris (“Doob”), a figure much like Neil deGrasse Tyson in real life, calculates that the seven large fragments of the exploded moon will collide with one another, setting off an exponential cascade of fragmentation and further collisions like the Kessler syndrome for objects in low Earth orbit, with enough the scattered debris bombarding the Earth to render its surface uninhabitable for on the order of five thousand years.

The story begins in the near future, when the International Space Station (“Izzy”) has been augmented with some additional facilities and a small nickel-iron asteroid retrieved and docked to it for asteroid mining experiments. Technology is much as at the present, but with space-based robotics having advanced significantly. Faced with what amounts to a death sentence for the Earth (the heat from the impacts was expected to boil off much of the oceans and eject the atmosphere into space), and having only around two years before the catastrophic bombardment begins, spacefaring nations make plans to re-purpose Izzy as a “Cloud Ark” to preserve the genetic heritage of the Earth and the intellectual capital of humanity against the time when the home planet can again be made habitable. Thus begins a furious technological crash project, described in detail, working against an inexorable deadline, to save what can be saved and launch it to the fragile ark in space.

Eventually the catastrophe arrives, and the second part of the novel chronicles the remnant of humanity on the Cloud Ark, with Izzy as its core, and most of the population in co-orbiting rudimentary habitats. From the start there are major technical challenges to overcome, with all involved knowing that high technology products from Earth such as silicon chips and laboratory equipment may not be able to be replaced for centuries, if ever. The habitat ecosystem must be closed, as there will be no resupply. And, people being people, the society of the survivors begins to fragment into factions, each with its own priorities and ideas about how to best proceed. Again, there is much technological derring-do, described in great detail (including one of the best explanations of the fundamentals of orbital mechanics I've encountered in fiction). The heroic exploits of the survivors are the stuff of legend, and become the legends of their descendents.

Part three of the novel picks up the story five thousand years later, when the descendants of the Cloud Ark have constructed a mature spacefaring civilisation, tapping resources of the solar system, and are engaged in restoring the Earth, now that the bombardment has abated, to habitability. The small population of the Cloud Ark has put the human race through a serious genetic bottleneck with the result that the species has differentiated into distinct races, each with its own traits and behavioural characteristics, partly determined by genetics and partly transmitted culturally. These races form alliances and conflict with one another, with humanity having sorted itself into two factions called Red and Blue (gee, how could such a thing happen?) which have largely separated into their own camps. But with possession of the Earth at stake, Red and Blue have much to dispute, especially when enigmatic events on that planet call into the question their shared history.

This is a rather curious book. It is so long and intricate that there's room for a lot in here, and that's what the reader gets. Some of it is the hardest of hard science fiction, with lengthy technical explanations which may make those looking for a fast moving story yawn or doze off. (In fact, there are parts where it seems like the kind of background notes science fiction authors make to flesh out their worlds and then include random portions as the story plays out have, instead, been dumped wholesale into the text. It's as if Obi-Wan shows Luke his father's light sabre, then spends ten minutes explaining the power pack, plasma containment system, field generator, and why it makes that cool sound when you wave it around.) The characters seem to be archetypes of particular personality traits and appear to be largely driven by them rather than developing as they face the extraordinary challenges with which they're presented, and these stereotypes become increasingly important as the story unfolds.

On balance, I'm glad I read this book. It's a solid, well-told yarn which will make you think about just how humans would respond faced with a near-term apocalypse and also whether, given how fractious and self-destructive they often are, whether they are likely to survive or, indeed, deserve to. I believe a good editor could have cut this manuscript in half, sacrificing nothing of importance, and making the story move along more compellingly.

And now there are a number of details about the novel which I cannot discuss without spoiling the plot and/or ending, so I'll take them behind the curtain. Do not read the following unless you've already read the novel or are certain you will never do so.

Spoiler warning: Plot and/or ending details follow.  
At the start of the novel the nickel-iron asteroid “Amalthea” has been docked to Izzy for experiments in asteroid mining. This asteroid is described as if “laid to rest on a soccer field, it would have stretched from one penalty box to the other and completely covered the center circle.” Well, first of all, this is not the asteroid 113 Amalthea of our solar system, which is a much larger rocky main belt asteroid—46 km in size. Why one would name an asteroid brought to the space station the same as a very different asteroid known since 1871 escapes me. Given that the space station does various maneuvers in the course of the story, I was curious about the mass of the asteroid. Assuming it is a prolate ellipsoid of revolution with semi-principal axes of 9.15, 9.15, and 36 metres (taken from the dimensions of a standard soccer field), its volume would be 12625 m³ and, assuming the standard density of 5.32 g/cm³ for metallic asteroids, would have a mass of 67170 tonnes, which is 1.3 times the mass of the Titanic. This is around 150 times the present mass of the International Space Station, so it would make maneuvers, especially those done later in the book, rather challenging. I'm not saying it's impossible, because complete details of the propulsion used aren't given, but it sure looks dodgy, and even more after the “megaton of propellant” mentioned on p. 493 is delivered to the station.

On p. 365 Izzy is said to be in an orbit “angled at about fifty-six degrees to the equator”. Not so; its inclination is 51.6°.

On p. 74 the arklets are said to “draw power from a small, simple nuclear reactor fueled by isotopes so radioactive that they would throw off heat, and thereby generate electricity, for a few decades.” This is describing a radioisotope thermoelectric generator, not a nuclear reactor. Such generators are usually powered by plutonium-238, which has a half-life of 87.7 years. How would such a power source sustain life in the arklets for the five thousand years of exile in space? Note that after the Hard Rain, resources to build new nuclear reactors or solar panels would not be available to residents of the Cloud Ark.

When the Ymir makes its rendezvous with Izzy, it jettisons its nuclear reactor to burn up in the Earth's atmosphere. Why would you discard such an irreplaceable power source? If you're worried about radiation, place it into a high, stable orbit where it can be retrieved for use later if needed. Humans could expect no further source of nuclear fuel for thousands of years.

The differentiation of the races of humanity in the final part of the novel strikes me as odd and, in a way, almost racist. Now, granted, genetic manipulation was involved in the creation of these races, but there seems to be a degree of genetic (with some help from culture) predestination of behavioural traits which, if attributed to present-day human races, would exclude one from polite discourse. I think the story would have been made more interesting if one or more members of these races was forced by circumstances to transcend their racial stereotypes.

The technology, or lack thereof, in the final part of the book is curious. Five thousand years have elapsed, and the Cloud Ark population has recovered to become a multi-racial space-dwelling society of three billion people, capable of mega-engineering projects humans today can only dream of, utilising resources of the solar system out to the Kuiper belt. And yet their technology seems pretty much what we expect to see within this century, and in some ways inferior to our own. Some of this is explained by deliberate relinquishment of technology (“Amistics”, referring to the Amish), but how likely is it that all races and cultures would agree not to develop certain technologies, particularly when in conflict with one another?

I loved the “Srap Tasmaner”. You will too, once you figure it out.

Given that the Moon blew up, why would an advanced spacefaring civilisation with a multitude of habitats be so interested in returning to a planet, deep in a gravity well, which might itself blow up some day?

Spoilers end here.  

August 2015 Permalink