PROGRAMMER'S GUIDE

UP=3670

This manual is published by the UNIVAC®Division in loose leaf format as a
rapid and complete means of keeping recipients apprised of UNIVAC
Systems developments. The UNIVAC Division will issue updating packages,

utilizing primarily a page-for-page or unit replacement technique. Such
issuance will provide notification of hardware and/or software changes
and refinements. The UNIVAC Division reserves the right to make such

additions, corrections, and/or deletions as, in the judgment of the UNIVAC
Division,are required by the development of its respective Systems.

® REGISTERED TRADEMARK OF THE SPERRY RAND CORPORATION © 1962 . SPERRY RAND CORPORATION

PRINTED IN U.S.A.

UNIVAC 1107 steuTH

REVISION:

SECTION:

Contents

MANUAL NUMBER!:

UP-3670 Rev. 1

PAGE:

CONTENTS

I. INTRODUCTION

Il. A BASIC INTRODUCTION TO THE
SLEUTH Il ASSEMBLER LANGUAGE

A. Symbolic Coding Format

1. Mnemonic Instructions
2, Label Field

a. Location Counter Declaration
b. Labels

3. Operation Field
4, Operand Field
9. Line Control and Comments

a. Continuation
b, Termination

6. Data Word Generation
B. Expressions
1. Elementary items

a, Label

b. Location

c, Octal

d., Decimal

e. Alphabetics

- loating Point Numbers
. Line

Parameter

= 00 -—n
2 @

CONTENTS

1 to 4
| -1

lt=1 to 1l-1/

11-1

-1
|~

114
11-4

| REVISION: | SECTION:
Contents
MANIUJAL NUMBER: PAGE;
UP-3670 Rev. 1 | ,

2. Operators 11-11

a. Equal | -13

b. Greater Than ~13

c. Less Than -14

d. Logical Sum ~14

e. Logical Difference ~14

f. Logical Product -15

g, Arithmetic Sum ~15

h. Arithmetic Difference -15

I, Arithmetic Product | | ~-16

J. Arithmetic Quotient ~16

k. Covered Quotient ~16

. Positive Decimal Exponent ~16

m. Negative Decimal Exponent ~17

n. Shift Exponent ~17

11l. SLEUTH Il ASSEMBLER DIRECTIVES Hi-1 to H1-30

A. General Directives -1
1. EQU -1
2. RES ~7
3., FORM -3
4, END ~4
o. LIT -
6. INFO -6
/. DO | .
8. Generative Coding -9
a. PROC -9

b. FUNC -21

c. NAME ~21

d. GO ~2 7

B. Special Directives 1H1-28

1. General | 11128
2. Special 111-28
a. WRD | | 111-28

b. CHAR 1Hi-28

3. Usage 111-29

43

&

£ 24

o

j ; i ik W e W e W L k i) i KA
& # # Ha & A # g # # % % %

.+« UNIVAC 1107 SLEUTH Il - - -
¥ *; i & % s i e S £ & 2 5 i e 523 % & iy i i i £

“ REVISION:

SECTION:

Contents

MANUAL NUMBER:

UP-3670 Rev. 1

PAGE:

iIV. PROGRAMMER'S REFERENCE GUIDE

A. Line Control

b
Zq

Continuation
Termination

B. Label Field

C. Operations Field

D. Operand Field

E. Expressions

F. Mnemonic Instructions
G. Data Words

H. Line ltem

| . Assembler Directives

1

Co 1 O O = Lo ™o

Zs
10s

11,

. EQU
« RES
. FORM
. END
. PROC
. NAME
v B0

. GO

LIT
INFO
FUNC

LW

12. WRD
13. CHAR
14. LIST, UNLIST

. Procedure Reference Line
. Inter-Program Communication

1. Definition
72, References

APPENDIX

. SLEUTH Il Mnemonics

. SLEUTH Il Assembly Error Flags

., SLEUTH Rules For Results of Operations

. SLEUTH Rules for Relocation of Binary Items

. SLEUTH Il under EXEC |

Ik < << < << << <LK
¢

V-1 to IV-13

V-1

V-1
V-1

V-1

i

|

I
e
b 3 D D

¢
Fewmle
[—

V-12
V-12
V-12

IV-13
IV-13

IV-13
IV-13

A-1to A~-6

B-1
C-1
D~1

E-1to E-20

i
REVISION: SECTION:

A& e

MANUAL NUMBER!: PAGE:

Sk B 5 . o s R B = i i E A x
& e A # s i

- - UNIVAC 1107 SLEUTH I - | Contents

4 2 g2 £ i o £ i e % @ £ & 3 | i A i & E B & i s -

i i S % % # 43 #

UP-3670 Rev. 1 4

s S oy o e e o ey o vy i -
g LRt} RN ENEOE ety it it J:I,f. = o toa e ai e A, S alr Bt} LA

1. General
2. Special Peripheral Units

3. General Coding Procedure

a. Symbolic 1/0
b. Word Modification
¢. EXEC | Referencing Procedure

mrlnm
e e T e

i

I

[

|
A g R

-] to F-5
-1 to G-2
-1 to H-5

F. Operating Procedures of SLEUTH |l under EXEC |
G. Error Diagnostics of SLEUTH 1l under EXEC |

H. Service Routines

. CREADS
CPNCH§
PRINTS
PLINES
PMARGS

A
CIN = Cad PO b

Ao L X XX D - o 2 1 m m m

T B L N
Y - B [

SECTIQN:

I

UP-3670 Rev. 1

PAGE: 1

R i

1

INTRODUCTION

L

SLEUTH II (Symbolic LanguagE for the UNIVAC 1107 THin Film Computer)
is an assembler for a symbolic coding language composed of simple, brief
expressions. SLEUTH II assembly provides rapid translation from symbolic
to machine language relocatable object coding for the UNIVAC 1107.

The SLEUTH II language includes a wide and sophisticated variety of operators
which allow the fabrication of desired fields based on information generated

at assembly time. The instruction operation codes are assigned mnemonics
which describe the hardware function of each instruction. Assembler directive
commands provide the programmer with the ability to generate data words

and values based on specific conditions at assembly time. Multiple location
counters provide a means of preparing for program segmentation and con-
trolling address generation during assembly of a source code program.

SLEUTH II produces a relocatable binary output in a form suitable for proces-
sing by the loading mechanism of the system. It supplies a listing of the
original symbolic coding and an edited octal representation of each word
generated. Flags indicate errors in the symbolic coding detected by the

assembler.

The SLEUTH II manual is composed of several sections. Section II describes

the basic components of the language.

Section III describes the directives

and explains their use. Section IV is designed to act as a brief programmers'

guide to the SLEUTH II language.

It is assumed that the reader of this manual has a knowledge of the hardware

characteristics of the UNIVAC 110°7.

& & b

& o & B 9 & e R 1 A e e 5t it 4 e
g - J".I-n I pIE T : fp. ";- ::' 5
® @ & ® 8 & & & & @ o o®m# @

& P K w0

REVISION: SECTION:

II

MANUAL NUMBER: PAGE:

UP-3670 Rev. 1

IL,

A BASIC INTRODUCTION TO THE SLEUTH II ASSEMBLER LANGUAGE

A. SYMBOLIC CODING FORMAT

In writing instructions using the SLEUTH II language, the programmer
is primarily concerned with three fields: a label field, an operation
field, and an operand field. It is possible to relate the symbolic coding
to its associated flowchart, if desired, by appending comments to each
instruction line or program segment.

All of the fields in SLEUTH II are in free form, providing the greatest
convenience possible for the programmer. Consequently, the pro-
grammer is not hampered by the necessity to consider fixed form
boundaries in the design of his symbolic coding. (This will be illus-
trated by various coding examples throughout the manual).*

1. Mnemonic Instructions

- The SLEUTH II assembly program recognizes a set of mnemonic
instructions representing the machine code instructions listed in
the UNIVAC 1107 Hardware Manual.

In some cases, a combination of an octal operation code and bits
in the register designation field form function codes. Since
mnemonics are used in the SLEUTH II language, the programmer
need not concern himself with the construction of a complete
function code.

The format of the machine language word on a field basis is illus-
trated below:

[rloJalxufi[m]

Where F indicates the operation code

J partial word determinant or minor operation code
A the register or I/0 channel designation field

X the index register designation field

H the index register incrementation field

I the indirect address designation field

M the base operand addr=ss field

L. ¢ 2y
Illustrations are provided in this manual utilizing the graphic symbols A and b as well as a
‘““space’’ in coding to mean space. UNIVAC is gradualiy adopting the b symbol where ‘‘space?’®
is meant but both A andB as well as a space in a coding form are valid herein.

£ 8 » 2 ¥ 4 8 € 7 £ B H @B F B 0§ ®w %
2 % s & & i % # s & i i 2 £ 3 G A e

REVISION: SECTION:

I1

MANUAL NUMBER: PAGE:

UP-3670 Rev. 1

The format of a symbolic instruction is altered for convenience of
programming. Commas are used to separate operand sub-fields.
For instructions which involve a control memory location

———

LABEL | OP OPERAND
F | A, M, X, J
F,J | A, M, X |
or
LABEL | OP OPERAND

F M, X

for instructions which do not involve a control memory location
(e:g. a jump instruction).

The entry in the F field is the instruction mnemonic. Unique
mnemonics have been created for each operation code and sub-
function code combination. Therefore, the entry in the J field
will not be used for sub-function codes (see below).

SLEUTH II expects the A field to represent the absolute film

memory address of an arithmetic, index or R register depending upon
the instruction mnemonic. If the instruction mnemonic is such that

the A field designates an arithmetic register (e.g., LA, SA, SNA, AA),
the value of the entry minus 12 is placedin the A field. If the mnemonic
represents an R register (e.g., LR), the value minus 64 is placed in

the A field. A mnemonic designating an index instruction (e.g., LX,
ANX) results in no change of the A field entry.

An additional option is provided in that all instructions which involve

an arithmetic, index or R register may be coded without the appropriate
A, X or R. In this case the A designation is examined as shown below
and the appropriate mnemonic 1s substituted.

Coded Resultant Octal Function]
Mnemonic A <16 16 < A < 27 64 < A < T8
L 27(LX) 10(LA) 23(LR)
S 06(5X) 01(SA) 04(SR)
A 24(AX) 14(AA)

AN 25(ANX) 15(ANA)

REVISITON: | SEQTION:

MANUAL NUMBER: PAGE.:

UP-3670 Rev. 1

Examples:
L 17,M is equivalent to LA 17M
L 2,M 1s equivalent to LX 2,M
L 65,M 1s equivalent to LR 65,M
LA 2,M
LX 16,M » will produce meaningless results which are
LR 13,M) not always flagged.

The entry in the M field represents the base operand address.
Indirect addressing is indicated by preceding the M field with
an asterisk.

The entry in the X field represents the specific index register
to be used. Index register incrementation is indicated by
preceding the X field with an asterisk.

The entry in the J field is used to designate partial word
transfers to and from the arithmetic unit.

In addition to instructions of the type discussed above, there
are several which do not use the A field. The operands of such

instructions comprise the M, X, and J fields. Thus the
assembler, upon inspection of the mnemonic, will determine
which fields are necessary for completion of the instruction.

The basic line of coding is divided into 3 or fewer fields. They are
the LABEL, OPERATION, and OPERAND fields. Each field may be
divided into subfields. A subfield is an expression which is terminated
by a comma (which may be followed by an indeterminate n.imber of
spaces) except if it is the last subfield in the field. In this case a.
space (at least one) terminates not only the subfield but the field as

well.

Label Field

The label field in SLEUTH II may consist of a declaration of a
specific location counter, a label, or the combination of loca-
tion counter declaration and a label. If the latter is desired,
the location counter declaration is the first entry on the
symbolic line, and is followed by a comma if a label is also
present.

A . T T e A REVISION: SECTION:
.- - - UNIVAC 1107 SLEUTH II R }
F R ® R T B R E W E A8 FYE KRR AW MANUAL NUMBER: PAGE:
5 & ® o o@& & B % & % 4
e e e L UP-3670 Rev. 1
In any case a space in the first position implies none of the above
is present. The existence of a label is indicated by the presence of
a valid character (A—Z) in the first position of a symbolic line. A
““$’’ in the first position signifies that a location counter 1s to be
specified.
a. Location Counter Declaration
There are 32 location counters in SLEUTH II, any one of which
may be used orreferenced in any sequence. These counters provide
the programmer with the ability to give the allocator the necessary
information to regroup in any arbitrary manner lines of coding. This
may include the ability to isolate constants or instructions, or
components of each. This gives great flexibility to segmentation
(see INFO directive). The declaration of a specific location counter
15 accomplished by entering $(e) as the first entry in the label field.
““e’’ is defined as any valid entry with a value within the range of
zero through thirty-one. Any change indicated to a location counter
(see Section III, RES Directive, page 2) will affect the counter
currently in control. A specified location counter will remain in use
until a new location counter is made. If no location counter is
explicitly used, the complete program is controlled by location
counter zero. Any time a location counter is specified all subsequent
coding falls under its control. (See LIT Directive.)
Fach new location counter entry begins the coding reslative
to zero, and coding under & previously specified counter
will continue at the last address specified for that counter.
Example:
l LABEL A OPERATION A OPERAND A COMMENTS - 5
prmmrs = =
VRTINS 01 I Y (O oo W 0 W A S AL L W AR T I L L T R R R N RN R N N TS ST AN E
B e B ey s D o e B e L i el ek g P 8 et
C1A1T1|lliilinLfEimlllfl'Jsj'lﬂlAITil.ilI]|'EBicllltI-lllllellllllillljllilllIIlIl}IIIlIIPlllllr.
S 3 MAN AN B O B b llututulll““,_l__i_!i
o &V NE 1"1 1% 6,0 VERED (BY €, 0U NTE R £, E RO I F NONE WAS, $ PIEC | F I ED BEFORE, , THI S |[POI NT Ll)
v (e NE B AND C ARE CONTROLLED |BY COUNTER| 2, EEEE RN TR PN RN AR RN
., L ' WNE D AND THEREAFTER WILL BE CONTROLLED BY 3 cba g i i a il Py
e o e e e et e e e e e ———

Each new location counter entry begins the coding relative to zero, and
coding under a previously specified counter will continue at the
last address specified for that counter.

b. Labels

A label is a means of identification for either a symbolic line of
instruction or a word of data. A label may be written in SLEUTH II
using any combination of one through six alpha-numeric characters,
the first of which must be a pure alphabetic (A through Z). Succeeding
characters may be any combination alphabetics, numerics (0 through
9), or $. A label may be subscripted (e.g. ABLE(1)) where the
subscript does not countas an integral character of the label. The
subscript may be used to define a uniqueness among labels (i.e., CAT

apart from CAT(1)). It may also represent a dummy value within a
procedure or function (see PROC and FUNC). |

*
See footnote page 1 in this section

Feoror REVISIORN: SECTION:
11
MANUAL NUMBER: PAGE: D
2 @9 & % = % B 5 2 %
- o @ o e UP-3670 Rev. 1
An asterisk may be affixed to a label. When this label is defined
outside a procedure, it becomes externally defined. This means the
label is known outside of the program. When an asterisk is affixed to
a subscripted label it appears before the left parenthesis of the
subscript (e.g., CAT*(1)). The asterisk does not counti as a character
of the label.
If a location counter is to precede a labelled line, a comma and the
label must immediately follow the location counter designation. Format
is $(e),LABEL. ..
I - | N U U S T T
L L1 | 13,2

The label GOT is considered externally defined and may be
referenced, outside the program as well ag within it.

When a label is processed by the SLEUTH II Assembler, it is
usually equated to the current value of the controlling
locatlon counter. Labels referred to as date words cannot

exceed 18 bits. Labels referred to in instructions are
limited to 16 bits.

The labels associated with the assembler directives EQU,

FORM, DO, PROC, NAME, FUNC, LIT, and INFO are not equated
to the current location counter. These special cases will
be described in Section III of this manual. |

: ; *
(3, srmAlRT 1 oA e o el A Ll Lt b
PloiSITI | SIR! 1116l | (WIS | | | 181 | L o
()] 1 L] 0oy | TABIL, A 1 e e | SNEEEEN
ST VH LT /PN Y)y L 1 .0 . T O O O
o1 ILIO[CIRITIT|OIN LQG(&NI'HE&]_G LEMEIS| € JANID D |
o1 ARIEI lClOINTRIOMILED] BV 4 glme D] HAIS W0 |
o LIABIEL [FTELID | L1 o b b b

Ly (e ERE

See footnote page ! this section

REVISION: | SECTION:

i) % b 58 i o b & s ot i i ik} ok gl i Rt o G s -
I1
. UNIVAC 1107 SLEUTH II SO
w2 3 i %3 % i s e R B % s 2 i Py i B & 7 s

MANUAL NUMBER! FPAGE:

UP-3670 Rev. 1

3. Operation Field

If the first character position of a coded line is blank, the line is
considered not to possess a label. The first non-blank character
following column one is interpreted to be the start of the
OPERATION field (exception is a period, semi-colon, or an
apostrophe). This field will be categorized in one of the following
areas:

7. An lnstruction mnemonic, with a possible j
designator. The] designator cannot be used

in the operation field of an instruction if
that instruction is contained in a literal.

2. + or —, 1ndicating a data word of octal, decimal or alpha
designation. In this case a space is not necessary to
terminate the OPERATION field. That is, the operand or
the value may follow the + or - immediately (+A2 is
equivalent to +2).

3. An assembler directive.

4. A label previously defined as a legitimate entry point to a
PROC or FUNC.

In all the above cases, except 2 which is optional, a space following
any character except a comma ends the OPERATION field.

1f the operation field contains an assembler directive other
than RES (which changes the location counter) and DO

(which may generate object code), the location counter is
not affected. In all other cases, the controlling location
counter will be incremented by one after the line has been
generated.

Bt 1L Tt e Y s LG A

LABEL A OPERATION A OPERAND A COMMENTS

g e e s e g S e e R

T MA N

VR O B Cot S R N e el 0 W 00T O U U T ST (O S OB . TG G e S S M TR Ty
i e I e a0 91,000
1 Gt I e 0 vy g g RO TN RN TN e
L LAE RES (INCREASES (THE CONTROL COUNTER (BY 512 . | . ., . cno o by v e e w kg gk vl
e ——— — — -

e

i e
o e TP T o i A b 1 v i P) Ll ni i Fm -
=

PCH

| IR L W W 1O T T

l]]i|I_L_Lj_llllLlJllll_LI.“_Itllll._l_LJliill_lll_llljll.,___,L,,_.J._

4, Operand Field

The OPERAND field follows the OPERATION field and is separated
from it by at least one blank not following a comma. (SLEUTH II
permits an unlimited number of blanks following any field.) Elements
of the OPERAND field are called subfields and represent information
necessary to generate the type of line determined by the OPERATION
field. The maximum number of subfields is determined by the content
of the OPERATION field of the line.

REVISIDM: SECTION:

@ & 0 & &% o o 2 % . us 48 = i i : '
- . N | | | MANLIAL NUMBER: PAGE:

JP-3670 Rev., 1

The OPERAND field may contain subfields which are terminated by
commas. Following each comma 1s either the first character of the
next subfield or any number of spaces followed by the first character
of the next subfield. In any case a comma indicates more subfields

are coming and scanning will continue.

Any operand may contain fewer than the maximum number of subtields
indicated by the OPERATION field, or none. If a subfield other than
the normal first or last is to be omitted, two contiguous commas or a
comma zero comma (,0,) is necessary. If the first normal subfield 1s to
be omitted, a ‘‘0,”” must be coded. If the last subfield or subfields are
to be omitted, no comma must appear immediately following the last
coded subfield. A period space (.%) coded just after this element will
cause scanning to cease and will speed up assembly time.

LV ERD 1 Ao | | masll, il 4]
L1 MIOR | w0y] WS L1] :
El MIISHTNG (SWe - FTIELDS TN THE [SieCionN |
Zime Havie A vidvwe bE Hero tro rise |
e ERISLSIEIMIB'MERI Pl Lol I |t I I b vy

5. Line Control and Comments

A line may contain an instruction, data word, or assembler
directive statement; the label field of the line may or may

not be present. Further operand information is not interpreted
when the maximum number of sub-fields required by the opera-
tion have been encountered (or the maximum number of lists in
the case of a PROC reference as described in Section III), or
by the assembler's recognition of eighty characters, whichever
occurs first. |

a. Continuation: If a semicolon (;) is encountered outside of an
alphabetic item (see Alphabetics p. 9), the current line is
continued with the first non-blank on the following line,

Any characters after the ; are not considered pertinent to
the program assembly, and will be transferred to the
output listing as comments on the line. A semicolon

should not be used within a comment unléss it is desired

to continue that comment on the next line. If a line is broken with
a sub-field, the next character should begin in column 1 of the next

line.

REVISION: SECTION:

UNIVAC 1107 SLEUTH 1

MANUAL NUMBER: PAGE:

UP-3670 Rev. 1

b. Termination: If a period (.) followed by a blank is encountered

outside of an alphabetic item, the line is terminated at this point.
If additional sub-fields are required by the operation field entry,
they are assumed by the assembler to be zero. A space is needed
after the period to avoid confusion with floating point designated
numerals.

A continuation or termination mark may occur anywhere on a line
except as noted above. Following the information portion of a
line, any characters may be entered as comments, except
apostrophe (').

L1 || |] L] NN

. || | | ! | [l

N 1 I T T Y O O A
L tloRp: |ARTTamMeTITICL RIEGTISTER M1 |
COMPILEMENTED LEET HALF 1O6F] [_
ESISED &Y THE LABEL TABL 1AS | | 1 ||
BlY| EIMDIEX| 131 | (THXS| \EXIPILIAIMATITION | | |
EAR | AIS A | ClomMETI LixegE | 1 1] g0

e
4

6. Data Word Generation

A + or - in the operation field, followed by one or more sub-fields

separated by commas in the operand field, may be used to generate
a constant word. Optionally, if + or - is encountered in the opera-
tion field, the operand may follow immediately.

If the operand field contains one sub-field, the value of the sub-field
will be right-justified in a signed 36-bit word. If the operand field
contains two sub-fields, a data word containing two 18-bit fields will
be created; and the value of each sub-field right-j ustified in its
respective field. Likewise three sub-fields will cause the creation
of three 12-bit fields; and six will cause the creation of six 6-bit
fields. Each sub-field in the operand field may be signed independ-
ently (i.e. complemented if sub-field is preceded by a -).

~106I384 | 111 1) 11 Jei PRIoDWClES olemal pralzrnTEragly
87, molasz) [111 Ly PRoowclES oleTeLl laocloo7izlzizisaa |
6, 019017y =313 | |, PROIDIUCIES vleTAL| Zrol70407171310(6

_ -mlwmlﬂbhuﬁm SN bl

£ il S 21 5 e |
L S S S REVISIDIN: SECTION:
% % € S B 25 i i B i 2 wE i
« UNIVAC 1107 SLEU .
£ 8 @ H & 9w v S 0§ 9w @w w @ H ¥ MANUAL NUMBER! PAGE:
B 4 % & % & = ? # 3 # q
| UP-3670 Rev. 1
5 8 @ % et i B c:.,& & 2 s

o b x e . . ———

B. EXPRESSIONS

An expression is an elementary item or a series of elementary items
connected by operators (see Operators). It most commonly appears
in the operand field of a symbolic line as an entry in a sub-field,
SLEUTH II permits the utilization of elementary items alone or in
combinations to create an expression. Blanks are not permitted
within an expression.

1. Elementary Items

a. Label: Any label may be used as an elementary item. The

structure of a label corresponds to the description given
‘earlier on p. 3. Whenever a label is encountered within
an expression, the value equated to the label is substituted
for the label within the expression.

m11L111111J1:111:L11E|:L111LL|1111tha1| R O Ve o T (OO (OO » Lol]
Oy h e 1B s L 0199099 e BA v v b v v a b s e e e vy s v Ly di L?
L dMAS e g b S S ONS T8 e b g b v v e b e

i lPLOJ_RlTJl'_LolHJ._ SF e PN TRUCTLON SERERATED N L HWNE B WILL BE 010,000, s

G AR BTHMET ! LRIélﬁiijsiTlElRl 4, v 4rH4LL BE LOADED M, TH THE CONTENTS OF (01,0000

b. Location: Reflexive addressing may be achieved by refer-
encing the current location counter, or a specific location
counter, within a symbolic line. The symbol for a current
location counter reference is "$'"". When the assembler
encounters the "$", the value of the controlling location
counter is substituted. Reference to a specitic location
counter is ""$(e)", where e denotes the specified location
counter. The value of the specified location counter will be

substituted for the symbolic reference. When $+a is coded, care should
be taken so that the source coded interval a does not extend over a

procedure call. This is particularly a problem if the procedure is of
variable length.

6l EMPI 1 il byl
6yl MWSL 1 | 111 1)
TME | wIus TR
LIMe | YERE

REVISION:

SECTION:

I1

MANUAL NUMBER?

UP-3670 Rev. 1

PAGE:

10

di

C.

Octal: Octal digits (0-7) may be represented in an expression

as an elementary item by preceding the desired digits with a

zero. The assembler will create a binary equivalent of the
item's value.
right-justified in a signed field.

C
C

-]

14
[

EISL_1©
ES) 10

¢TI AL
CITIAIL

HOU 7L |
-o|214 |

hio IR D
D

R
R

olDitk

oIu

O

2
7177

(@)

Decimal: Decimal values may appear as an elementary item
within an expression. A decimal value, containing the char-
acters 0~9 will be represented by a right-justified and signed
binary equivalent within the object field. A decimal item is
a group of integers not preceded by a zero (see Octal).

IBIRICIOILICIELS| 1O1C 010]0]0

-

QIQQRIO
1717

The binary representation of the value will be

oo

4| 1 |

7IAILL WiolRIOl 101010

RID| 10101¢

21014181 1e] PIRIOIDIWCIEIS] 10I1C 01010]¢

L M1

Alphabetics: Any number of alphabetic characters may be

represented by 6-bit field data codes in an elementary item,
by enclosing the desired characters with apostrophes., The
apostrophe in this case is a control character, and therefore
is not a permissible character within an alphabetic item. The
value resulting from such an alphabetic item will be left-
justified within its field and followed by field data blanks. If

an alphabetic item is preceded by a plus it may contain a max-

imum of six characters. The value resulting from such an
item will be right-justified within its field and preceded by

binary zeros. An alphabetic item used as a literal is assumed
to have a plus.’

"5
MW

RO
RO

D cE
DUCE

OCT A
0ICT

HERD
HE)

P

Floating Point Numbers: A floating point number may be re-

presented as an elementary item by including a decimal point
within the desired decimal value. The decimal point must be
preceded and followed by at least one digit. The value of the

item will be represented in the UNIVAC 1107 internal floating
point format.

REVISION:

SECTION:

11

MANUAL NUMBER!

UP-3670 Rev. 1

PAGE.:

11

.

- Ll! - ll - ii [O T NN

L 10 AT TIKG !PMIMT | Wol&D 1all [71910

0191014101019

Line: A literal may be represented on an instruction line by en-
closing the constant within parentheses in the normal m portion of
the instruction word. This will cause the assembler to generate a
word containing the constant which will be sent to the end of the
program, and duplicates will be eliminated. When location counters
are employed, these literals will be sent to the end of the coding
assoclated with a particular counter (see LIT). In this case
duplicates are only eliminated for the counter itself.

In addition to a constant data word, the line item may be an in-
struction word. This too will be assembled in the constant area
at the end of the coding. Line items within line items e.g.,
cascaded addresses are permitted up to 8 levels of coding.

In the case of an instruction word line item, a label is not permitted.

The first character following the left parenthesis must be the start
of the OPERATION field.

Storage should not be made into literals. Tampering with these
items can present difficulties since duplicates are condensed.

Examples of line items:

LABEL A

= = - v s

OPERATION A OPERAND A COMMENMTS

o

el
=

LA 16,

| (0 4 0 0)
W R Em e AN N ERER I

| !ALSISIElMBLER LGEHEE_A'_!’ELELL_L COH$ TAHTi 0 F l{f}ClI

TE V7, (

llilllllllll'Llili!!JL

"BRI NG ")

N U S J.__,; (SPEMB L ER JSENERATES 1A ALPHA ‘'BR, NG

TNE i (J
|||

Loobole il ot bk o

AT}l

lililIIIiiLlItlIllill[Lrll

PR (N S I S S

A

) I O) (SO

L A 9 t{(ﬂ??i)) W HEN EIECUTIHG TH S IHSTRUCTIGH Wl L L
I M TS TR S T A N T AN U W VN O I I O e R | °1 »

iIlIlllIiIlll

ottt b e e e by s s (9 CAT

i SN __lL

i P (R ol i e S T T

Alu l | JT!HJEI |

L CA?IUHlDF H E LOCIATEDH OF T/HE ON S

e PR D el | IIJ_llullll

| i | _I_Bl‘?lgl_ L l 1 j

lllltlllllllillllilIJ__

B.E LOADED | NT O A7

A 4

(TE 1.6 (=33 3 TWO LI TERALS WILL BE GENERA TED

Lo #90
N A o b b8 o e e B
SSE MBLE R IGEN EthETlEISL IA I NS T RU C l l_lH W ORD GIFI Eji IHIALTr l

J._!_![lilll_lltlIJ._LlJ].l_J._.IIl_J_J,J__L_L_L__J,__L_,JHILljJ__l!lI!IIIL.J;]__,,JJ,_,__i_!__LJ._Fl

Llll!ll_lillllllltl11LL11I|IL_Jlll1IilliLijiIJ.LELL_Lll._,I.L.L_Jl.lJ._.___[_lI!I[!II_L]..J.._l__Ililitl

£

]

h. Parameter: An elementary item may be a PROC or FUNC

parameter. Parameters will be discussed in detail in
Section III.

Operators

There are 14 operators in SLEUTH II which designate the

method and implicitly the sequence to be employed in

combining elementary items or expressions within a sub-

field. Blanks are not permitted within an expression.
Evaluation of an expression begins with substitution
of values for each element. The operations are then

performed from left to right in order of hierarchy, the

order of which is listed on next page.

o A

2 i 2 L&] B i e et e 3 S i 5 i iy 2o !
o o
o T
".: '-.:A:"" .:}:-"' \.. }:\-\ _:'EI‘Irj f:.:.:: Qr.ﬂ" ;:{IE -:-; Ef::r '\'.”‘:‘1; :‘;—I. 7 I'_' 'I-\-: 2 -\. o _:_ e ._"-'.: i

REVISION: SECTION:

MANUAL NUMBER! PAGE:

UP-3670 Rev. 1

I1

12

O e | R e e VP S e o b M e AP i

The operation with the highest hierarchy number is performed first;
operations with the same hierarchy number are performed from left to
right. To alter this order parentheses may be employed but care should
be taken to avoid redundant parentheses. This may result in the genera-

tion of a literal.

All the following operators are assembly-time operators. Examples which

follow are all evaluated at assembly-time.

If an elementary item or an expression is enclosed in parentheses
and an operator appears adjacent to the parentheses, the function
of the parentheses in this instance is that of algebraic grouping.
The value of this quantity is the algebraic solution of the items

or expression enclosed in parentheses.

This value should not be

confused with the value produced by a literal and therefore is not

an address.

HIERARCHY OPERATOR
§) * 4
* _
*/
5 "
/
4
4 +
3 * %
2 ++
1 =
>
<

For results of operators see Appendix C.

DESCRIPTION

a*+b 1s equivalent to a*10P
a*-b 1s equivalent to a*107P

a*/b is equivalent to a*2D

arithmetic product
arithmetic quotient

covered quotient (a/ /b is equivalent
a+b—1)

b

to

arithmetic sum

arithmetic difference
Logical product (AND)

logical sum (OR)

logical difference
(EXCLUSIVE OR)

a=b has the value 1 if true, O if
otherwise

a>b has the value 1 if true, O if
otherwise

a<b has the value 1 if true, 0 if
otherwise

REVISION.: SECTION:

I
.] MANUAL NUMBER! FAGE:
$ € B & &« » e @ o B K & ¢ v P Wm0 am s O T 1 3
UP-3670 Rev. 1
& & & o & & 8 el & & & e
a. = Equal: The equal operator is used to compare the value

of two items or expressions. If the two values are equal,
the assembler will assign a value of 1 to the expression.
If the values are not equal, the value of the expression is

0.
A=1

If A is equal to 1 the value of the expression is 1
If A is unequal to 1 the value of the expression is 0

1 1ol (Al 1yl RES @Bl L] | ||

| TF| TMuel ComNoLnTToMN DPECTFI L3 MET. [THE
.| ILoNTROLLING LioeaTrioN ClowdTER WLLL BE |
o TWweREMEMTED BLY |3 BT HIEMT S €| LTNE
o WL BE SKTPPED o Lo Lol b

b. >Greater than: The greater than operator makes a compari-
son between two items or expressions. If the value of the
first expression is greater than the value of the second
expression, the assembler gives a value of 1 to the expres-
sion as the result. If the value of the first is equal or less
than the second, a value of 0 is assigned to the expression
as a result.

B> 2

If B is greater than 2 the expression value is 1
If B is not greater than 2 the expression value is 0

CAzadws | | (| L HENEE RN |

s > rHAM @ mlhe vigLwe oF e | | |
EXIPIREISS ToN XS |.51 1017'M§LP~MIISLE THE | 1| |]

_EXPRESISTOM YALWwE s 0 | | Ll e brr i

UNIVAC 1107 SLEUTH il

| REVISION;

SEQCTION:

MANIUJAL NUMBER:

UP-3670 Rev. 1

FALGE:

14

A

C.

< Less than:

between two items or expressions,

The less than operator makes a comparison

ified is met, a value of 1 is the result.
is unsatisfied, a value of zero is assigned to the expression.

C«<l

If the condition spec-

If the condition

If C is less than 1, the expression value is 1
If C is not less than 1, the expression value is 0

B «

AL

% e b

1

|

B

e, F AL

1)

OT

S, € 4 THE EXPRES
ERMLISE THE VALuWE 1.5

2 IO

\"4

AL

We, @

[+, S I l

++ Logical Sum: The logical sum operator (OR) provides

the logical sum of the values of two items or expressions.
The assembler will produce the logical sum and use it as

the value of the expression.

| 1|

1 |

| FOIVE

.1

lill!ll_lll

1|

!

(A} 1=10)
o THE VA

#A+Hl |

| 11

L1

L1]

LUWE OF T

L1

HE EXPRE

||

.IlJ[ll!

[1]

9106

1

]

!

Lt

--Logical Difference:

The logical difference operator

(EXCLUSIVE OR) produces the logical difference hetween
the values of two expressions or items.
ference is the resultant value of the expression.

The logical dif-

IIEQLAIBI\JIIIIIlJIIiIIIII L
CRxw V) A==V | | Ll L1

.| THE VALWE 6F THE Mgssgow ABlovea |
eomst owol b b b b b b

NEVISIOMN: SELCTILIMN:
Il
MAMIIAL NUMBEM: FPAGE:
"‘ | 15
UP“3670 REV:« 1 -
i ® i & £

f. **Logical Product: The logical product operator (AND)
produces the logical product of the values of two expres-

sions or items. The logical product is the resultant value
of the expression.

ol v b b b bbb
CoH NsE b b b b b
) MHE vRALWE l0F TiHE EXPRESSIOMN ABOVE | 11 1
. S IOINEI L1 | RN | (R N A T T T O O

g. + Arithmetic Sum: The arithmetic sum operator produces
the algebraic sum of the values of two items or expressions.
The value of the expression will be the sum of the value of
the items or expressions.

W 8y wsiR b L L b b b by

- INDEY REGISTER 8 wWruL BE LbadED wWrTH |
CoNMTENT S olf THE woelap FoLvioWTms THE | | |
mgﬁ.,ﬂal._,_gmg,__tu& | | HEEEEEEEEE l_l L1 111

h. -Arithmetic Difference: The arithmetic difference operator
produces the algebraic difference between the values of two
items or expressions. The assembler will subtract the
value of the second item from the value of the first, and the
difference is the value of the expression.

BN ll&y_hlﬂ-lﬂluluill|1111111l'| L L |
| A REGTISTEA 4 WL BE strored T Tiwe 1)
| WolrD PRECEDTING TihE WoRID LAREL LED
o) AN | 11| 1:11[11]1“ L] |

~ UNIVAC 1107 SLEUTH I

REVISION:

MANUAL NUMBER!:

SECTION:

II

UP-3670 Rev. 1

PAGE:

B b e el s iy e i i 1 i e

16

*Arithmetic Product: The value of the first item is used as

the multiplicand, the value of the second is used as the multi-
plier; the value of the expression is the product obtained by
the multiplication of the two items or expressions.

bl

- .-.-.—-ﬁ—.l s ! e

T

Lol d

.

L L1

1]

|

|

Ll L

L

HE

PRE

u - l b1

sSToM AB
INEE RN

.

oV

result of the operation is the quotient; the remainder is dis-
carded by the assembler.

EIQW | | (]

6 | |

L1 |

| |1

| 1 |

|1 |

| |

/ Arithmetic Quotient: The value of the first expression is the
dividend, the value of the second expression is the divisor; the

(1B

3=101)

#B/ 4 | | |

11

[1 |

| 1

E VA

LWE,

oF T

RE E

X P

FIOUR| | | | |

|1]

SISTolN 1AB

Ll

OV | £

EENEEREE

| |

|

fashion as the arithmetic quotient with one exception: if a
remainder greater than zero is created during the division, the
quotient is increased by one.

L1 IEGhW

L 13

L1 |

Lokl

BEEEEEEEEEE

|

//Covered Quotient: The covered quotient operates in the same

L1 JCR e

31201

o) THE WA

/Ll | |
LWE, A TWE F

L1]

-

L 1]

11

|

’ | IliJ_lLMO

e

X\ARE

MY e,

M AR

I

L1 1

OV E

]

-

L1 |

L

L

|

1]

in UNIVAC 1107 format.

.

|

L.

*+Positive Decimal Exponent: The positive decimal exponent
i1s a method of symbolically creating a floating point constant
a*+b is equivalent to a *I_Ob.

1||“'101-1343141’fr"16111illii!lll

1]

) (THEE, VA

L WE

O F

n4.E EIXPRE

S0

£ |

||

o XS] 08T

AL

| 1]

N 1R8OV
i

l

ueiad| 7

101172776

| .

]

I

[

A T S S G T T
a

&

|

REVISION: SECTION:

0
MANUAL NUMBER: PAGE:

UP-3670 Rev. 1 17

*-Negative Decimal Exponent: The negative decimal exponent

functions

in the same manner as the positive exponent. It produces

a floating point constant in UNIVAC 1107 format. a*-b is
equivalent to a*107P.

|| l"'IOI-Imla-l*l"lz | 1] 11 | l | 11 | 1] I L] L] l
° | [MHIE) |0<:|'r|f?1L| vIRILIUWE) oFl MHE EXPRESSITIOM
« ABONIEl |18 {1667 86! 71 0k AEEEEEEE

*/Shift Exponent: The shift exponent allows the programmer to

enter a number and specify its binary positioning to the assembler.

The shift

may be left or right according to the sign of the exponent

(-b will produce a right shift). a*/b is equivalent to a*2b

| |
| TINE

1 1%161 1y | 1+104]010 010laoo000/ (1= &) 1 | 11
LZINE AlBOYE MWTLIL GENERATE 136 WolRDS

°| MHIE
e Q\0

o 1RTMAL Werol DS |nz27In271717:7 EEENE NN

_mchnau.n viALulE 10F] TIHE| (FTRIST MQL&BJ__ILSJ___
0]0,0/0|00 00 G NE O ALl VIALWE oA TINE

REVISION: . SECTION:

~ UNIVAC 1107 SLEUTH Il "o

MANUAL NLUMBER: FPAGE:

UP-3670 Rev. 1

11I. SLEUTH II ASSEMBLER DIRECTIVES

A. GENERAL DIRECTIVES

The symbolic assembler directives within SLEUTH II control or direct
the assembly processor just as operation codes control or direct the
central computer processor. These directives are represented by
mnemonics which are written in the operation field of a symbolic line

of code. The flexibility of each of these directives is the key to the
power of the assembler. The directives are used to equate express-
ions, to adjust the location counter value, and to afford the programmer
special controls over the generation of object coding.

There are eleven general directives within SLEUTH II. A detailed discussion of
each directive is contained in this section.

Before the directives are defined, it will be necessary to have a further
discussion of labels and their areas of existence. As explained 1n the
initial section on labels, onedefined in a program proper (outside a
procedure or function) 1s known only within the confines of the program.
If an asterisk is affixed to the label, it becomes known outside the
program (externally defined).

The procedure which will be more clearly defined under PROC
can be thought of as a group of lines of symbolic coding
independent from the program proper. The level of the
procedure 1is considered to be one higher than the program
or one higher than the procedure within which it is nested.
Labels defined within a procedure definition are known only
in the procedure unless an asterisk is affixed. The
asterisk results in the label being "lowered' a level and
is then known to be available or recognizable to the program
or to the next lower procedure within which it is nested.
Labels in the program are always available to a higher
level area. Similarly, labels within a procedure are

available to the procedures which are nested within the
procedure. |

1. EQU

The EQU (EQUal) directive equates a label appearing in the label
field to the value of the expression in the operand field.

Ll LFORMAM | bt b
EILl [EQW | 12,] 1] L i1]|

This value may be referenced in any succeeding line by use of the
label equated to it. If a label is to be assigned a value by the pro-
grammer, it must appear in an EQU line before it is considered
defined. Only then may it be used or referenced in subsequent
lincs of symbolic coding. If it is referenced prior to the EQU line
in which it was equated. the label is considered undefined.

REVISION: SEET{{JN:

~ UNIVAC 1107 SLEUTH I

L1

MANULUAL NUMBER: PAGE:

UP-3670 Rev. 1 | 2

P I . e e ——— e —————

If a particular expression is used throughout a program or procedure, it
1s highly expeditious to use the EQU directive and substitute a simple

label for the entire expression.
Example:

P N .-~

L A 16 2 *A
N S N N U TN N T OO A0 A MO A M O M O B I A A R I O R

L1

7 /2281 6*31,+(5//8B)
AR RS RSB R AT A A b R

IR BN I S A

When procedures are nested (one physically located within another)
labels which are defined in higher levels (more internal) by EQU
directives may be made available in outer procedures. However, such
labels must first be externalized (affix an asterisk) in the innermost
procedure 1n which it is defined.

Labels defined by an EQU directive are never relocatable.

LABEL A OPERATION A OPERAND A

1 EQuU OL1Q00I0 | | |

s

N -
Ll EQua | 1l || | 1] | |t

IS LTS Y T Ll ber e eyt tr by g
°| MHIE [LIOAID] I TINMSITRIMCTTION WILIL PROOWCE | 1 11| 111
o | mul:n:’ﬂ 08I EICIT CODING | || 10 lQ@Lb_ﬁ" 1610l _1Q_10/].6 a_|

2. RES

The RES (REServe) directive allows a change to be made to the
control counter by incrementation or decrementation. The operand
field of the directive contains a value that specifies the desired

increment (or decrement). This value may be represented through
the use of any expression.

The RES directive may be used to create work areas for data or to
specity absolute location counter positioning to the assembler., If
a label is placed on the coding line which contains a RES directive,
the label is equated to the present value of the control counter,
which is in effect the address of the first reserved word.

REVISION! SECTION:

MANUAL NUMBER: PAGE:
3 UP-3670 Rev. 1 3
SETAL | 11 RES | 080G 1 v Ly bbb et b b e bbbl

| Ll | 6, BET M+ 1 111 1) NN EENE NS NN
E Lrive ABOVE WILL STORE ITHE ICONTIENMTS 10F

'&Eﬁzﬂm_&_ﬂmﬂﬂﬁ FIET H MoORD! 0F THE | | 1|
RIRE R e | | _l_LL_l_.L__J_L_L._L_LJ__L-LJ—

The RES directive causes gaps to be left in the object which is
compressed prior to loading into memory. Core is cleared to zeros
before loading of first segment.

WAl

3. FORM

The FORM directive is a means of describing a special word format

designed by the user, This word format may comprise fields of vari-
able length (within the word). The length in bits of each field is de-

fined by the user through expressions in the operand field of a FORM
line. The value of each expression specifies the number of bits de-

sired in its respective field.

111l mormAam | Ll
ABIEIL FOIRM 1y, 1, 1-1-1=1) 18l | |

The number of bits specified by the sum of the values of the operand
expressions cannot exceed thirty-six (the size of a Univac 1107 word).
The assembler uses the values of the operand expressions within the
FORM line to create a control pattern that dictates a word format.

A reference to the word format is accomplished by writing the label

of the FORM directive in the operation field followed by a series of
expressions in the operand field which specify the value to be insert-
ed in each field of a generated word. A reference to a specific FORM
label will always create a word composed of fields in the same format.
Of course, the contents of the fields may vary according to the ex-

pression values in the referencing line. Truncation will occur and an error
flag set if a given value exceeds space permitted for a field as indicated

in the associated FORM directive. If fewer or more than 36 bits are specified,
no error flag will be set.

iy B

e

REVISION: SECTION:

{ MANLIAL NUMBER: PAGE:
UP-3670 Rev. 1 4
TNSTIR | 1 [Fo @, 0060 [gl
L L rR | 054 3 104, lal y 10,101,000 | |)
-1 THE LIlNE ABovel Would iPRoOWCE wlm | 1 |11
e | EBITITED S 1F0LILONASIZ) |] | 1]] ! ||

The processing of an END directive indicates to SLEUTH II that it
has reached the end of a logical sequence of coding. In the case of
an END directive which terminates a program, the operand field
should contain an expression which specifies the starting address
of the program.

The interpretation of a line containing an END directive is deter-

mined by its associate directive. The operand field of an END
directive terminating a PROC is ignored. The operand field expression of
an END directive terminating a FUNC provides the value of the function.
An END line may never have a label associated with it.

LIT

The LIT (LITeral) directive defines a literal table under the control

of the location counter in use when this directive is encountered by
the assembler.

® | L IFIOIRMAT | 4 ||
LABIEIL | o7 | 11

Only one LIT directive is allowed for each location counter. Through the

use of LIT directives, a number of separate literal tables can be created.
Duplicate literals are eliminated within each unique literal table; however,
duplicates may exist in separate literal tables. In the absence of a LIT
directive, all literals will be placed in the literal table under control of
location counter zero. The entries in the label field of a LIT directive comply
with the rules of labeling concerning the location counter declaration and
label construction. The label, however, may not be subscripted, be affixed

by an asterisk or be referenced.

f
REVISION: SECTION:

I1I

MANUAL NUMBER: PAGE:

UP-3670 Rev. 1

LlﬂHHleMﬁI peedy e b fr e bt by
E ocrAl LZTERAL lococooooolooiod maLll
pLAkiEn trw wlwe lrnerA glABLE | ;
anTRolLLED BY lLioealrTioM conmmTER ZER0 |

If a literal table which is not under the control of location counter zero
1s required, a LIT directive is used. If a LIT directive has no label,
all literals which are not preceded by a label will be placed in the
literal table designated by this LIT directive. Any number of unlabeled
LIT directives may appear throughout a program, each having the effect
of causing all subsequent unlabeled literals to be generated under the
location counter related to this latest unlabeled LIT until another such
LIT directive is used. If desired, unlabeled literals could be made to
follow each program segment for which a separate location counter is
used.

gl L EON byt r e b r b b
| LILAL I,QJ[[091 | L Lt by fgy | l l
) THIE ocTAL LWITERAL [00adoaoocaod miitL
 1BE pLAlerD T TiHE LmERAL YABUEL L] 1)
-1 Clo INTIROILILED 1RY [LioiAITITO N _ lolulwu

If a LIT directive has a label all literals to be placed in this literal

table must be preceded by the label associated with this LIT direct-
ive.

ToM LT[| 1 | L1

Lt LIAL | 1114ly1(014) | | |1
iy Lo [Xl 3y mom loinoolen | |11 | RN
- THIE | wWnrerlaL Qooodoqoobod wret! BE | PiLAlCGED
o xml mHE LamleraL] TABILE clomrRloL L ED BY (LodATTIOM |
1 1GolumTER ZERO, | [THE [LITERAL 000000001 10/016] WIL|L |
-1 BIEl PILAED TN THE LxTERAL TagLel eonTRoLED | 1)
o1 18Y| (LoclaTTiolN ClolwmTER Tamle 1 |1l c ol |

S
f S—

o3, B
i 5

.j:L;';s

i s i & & i i bt B Ly Y i i o 3 g g
- - UNIVAC 1107 SLEUTH
o 2 i i B i e £ i i e it gk 5 # i g 2

| REVISION:

SECTION:

I11

MANUAL NUMBER:

UP-3670 Rev. 1

PAGE.:

If all LIT directives in a program have labels, any literal not
preceded by a label will be placed in the literal table under the
control of location counter zero.

| | il.ﬂ:IH&l,u'IJQHL(J:i&ﬂL'_L)I N) R I O A O O
| LX) 1 HygoeConiocoed | Lol b
L] 1|1L&|16{7|,a(|0§4)1s T O O T T O O I O
-1 THE 10dTAL [LTTERAL |00 odoooolocad wILly BE
=l \PLACED 7™M THE TABLE CoNTIRoLILE Y |
* | TioM 1AND! PolB WEIRE [DE:FlIHJElﬂ*u IVITIA JLLIJTISI [1 |

Literals are generated only during pass two of the assembler. Unlabeled
literals will be generated under location counter zero until a LIT

directive with a blank label supercedes this arbitrary selection of

location counters.

INFO

The INFO (INFOrmation) directive is a convenience provided
within SLEUTH 1II to allow efficient transmission of information
from the assembler to the EXEC II monitor system. The INFO
directive can be used to specify the sequence of location count-
ers and their bank placement to the monitor system. The speci-
fications of the directive and utilization of the information are

discussed in detail in the EXEC II manual.

An INFO directive

is not necessary for program assembly. Without an INFO di-
rective, the even-numbered declared location counters will be
assigned sequential addresses in bank two (location counter zero

1s considered even),
follow each other in bank one.

The format of INFO is: LABEL INFO a € 758, e

The odd-numbered location counters will

The label is optional. ‘‘a’’ represents the group number which is a

meaningful number to the allocator in terms of a type of storage that is
to be assigned to the group of location counters specified by the
"“c{,¢g9...c. "’ on the INFO line. Each of the ¢, values will correspond
to the $(c) coded in the program. (0<c,<31)

| REVISION; SECTION:

III

S — .

MANLUAL NUMBER: PAGE:

UP-3670 Rev. 1

The group number has the following meanings:

0 the group will be absolute and no relocation will occur.

1,2 bank one or bank two assignments on a dependent basis. This
pertains to segments which may be overlayed by previous
segments.

9,6 bank one or bank two assignments on an independent basis.

3,7 drum space is made available for the group, dependent and

independent .
4 common blocks (see EXEC II)
33
> 0 Block Data (see EXEC Il and FORTRAN manuals).
38

NFIO| | 11l | 1851 1=1-1=1Q! 1 | Py 1|]| O

INFIQ| | w | | 1hyilloly 5, 8, 13la | | | | I B
NE| ABOWVIEl WTILILI PLACE ITHE ISEGMENTS | | |

0, BY| LocATIOM CowNTERS 1LlyiLio) 15, 8], 1301
Mk Two T TH cle Gurlviesn |BY TlwE |

_EJQIh_lleI‘|II!III1II|:|Il|.|a|||..%|1

The DO directive is used to generate a specified value or line of
coding a defined number of times. Two entries appear in the op-
erand field of this directive. The second operand entry may be any
valid symbolic line with or without a label. The number of times
this line will be produced is determined by the value of the ex-

- pression contained in the first operand entry. The two operand
entries are separated by blank comma (A,). If there are no inter-
vening blanks between the comma and the first character of the
second operand entry,the symbolic lineto be produced is assumed
to have a label.

‘L1111 FORMAT 1 1|1 . L]
JLABEL! 1| DO | ey, 1AL AL TNE 1OF] ICIODIINGL | | 11| |
EiL) 11 D10 MQ&BﬁuAiLHINIEI QlF ICIOIDITINIG! |

A label may be written in the label field of the DO directive. In
this case the label is not equated to the location counter value, but
to a counter whose initial value is always one. Each time the di-
rective is executed this counter is incremented by one until the

required limit, specified by the first operand expression, is reached.

REVISION: SECTION:

1 I N tTlﬂlil!il IEIXIAIMI PILIE' LL1EET1 11115+ 1A|s;_s|U|MlE| lh AE]Di B

.+ -+ UNIVAC 1107 SLEUTH I
& s i 5 " e # v £ = i ,_ 5 2 2 - =, = MANUAL NUMBER: PAGE:
o UP-3670 Rev. 1
Liadpa oyl Lo b b b b Ly
- THIE VAlLwE [T wirlel BlE GENERATED ITEM | 1 1
mzmMES | THE FTRIST viaLwE oF L vl BlE
If the number of times the DO is to be executed is negative, an E flag will
be set and no lines will be generated
The DO statement may be a conditional statement. That is, the number of
times It i1s executed may be dependent on previously assigned values being
altered. An example is:
. LABEL A OII’ER&TIUN A OPERAND A COMMENTS
— = — ———— e S ——"
ID1011A1<IBIJ'11“131I1I_llllJlIJllrl!t'tl#lllillfllllllllIJIII.‘!Illl[tl]llltlililllil

b | S I_LII__JJItIllllliiilllIrIllll_I,___,I_lelJ.ll

- Y ERE GV VIEN CGERTAIN AL YES) RO GH, el e R O ol O T A B t51T¢A|TiE|H1E|N|TI5|_J'1HJS|I:DrEi P

- | lPlRloLciEIDIUIRlEI'IlIFI IA_I ll_ls] IN!DITi ILIE_L_SISI ITiHl*lﬂi IBleTl}!IEl I_EIX‘IFJRLEISISIIJ_OINI Ihtqlal lwlilLlL_L IBJEI,_LFIA]_Lilel I l I S

L AND A<B=10, WL Y BE |PRODUCED RIESYULTING IIN NO Y OROS| BEI NG GENERATED

l__ |

'lL_I.llillI

T U RN PRODUCING ONE LI NE | |

S et PO Mo [y

—
==
—
—

1

o F A8y NS, ITlRtUIEI A< B = 101"_|E1 Jw!IILIL! IB;Er |P1RLGIDI_L_'£_I,E£L (N

-J__lolFiICIOIDIE1~IIIIJIIillIIIiIILlIIlIl,,tlt!ll_L_!llillLlJIII|t|:lll|L,_]lIIlIIlillI‘llIlJ

lILLil!IIlIJI[IilItI!IIJ_LIlIIilI!lIll!IlIlitlll}LIirlllJIIJJlIILliI[lIlLlJ_L

AIIIEIQLUIJGJIIIi!lllllillfll-llllL[ll![lliIlLJlIlllilll|Ll!II_llllIlll!J__L___i_j__IllLIl(

; DO ((A **7) «~6) + 4 , TAG (1) $,F ~ 12
.__L_I_LillllllllllJ_illl'J_J_i_tll__ll||JL[11111![lJill]llll_|ILIlI!LL!IIllIlllIIJ_JJJl
L ILJAI Y- |l|61’J_T1AIGAL(IEJ); il Sl B ol B 4L U T A PO T N 1 - I‘I) O LY O i | PG e RISy, [CUTTH [Ty el ey | i | S I A I - O O I] Y I L (.

LJlLtAlllnLI[?UJTJAHG;tl“J}lLitix11_1111141IiljlillililllllljlltlilllilIIII___Llllll,_L___L__J___l__L__

illllLJtl'llij_li.lllllilI,llll_LL,lJllillll}Itl!lll!llIJllllJLIIIILIJ_,IJ,I-L_.JIIIII

THE DO LilﬂlE W I1LL CIAUSE 4 LI NE S TO BE GENERATED HAVY I N G ASS OCI ATED

| IR N N N W et N RN WL O O R Vi O (S ferety S O [ty sy | i Ll L 1 4 1 1 1 1 | S P (T S T I IS SR SRR (RS LA e KO, Rt |] A o SR) I N L. 1 | Y T . -
- | _{LIAIBIEiLlsl IUIFI lT!AlGl {Ill)l iTID] IT!A]_GI(ld])l IIT{HJEJ 1CJ_0] Hl Tl % ”T| 5! |DLF1 ITI HLEJ 1LLIINIEI|.SI le'lL]Li |BI El [I e . (T O P
v 12 b b AIND By S O I O SO R SO N S B N NS N U B R R R S BN AR A AT AT S S I A A I N A A
— i _— " "\w— - T e — WW

DO statenients may be nested within DO statements up to a level of 8. As
expected, the inner DO statements are executed first.

WJ_JT:T [p— bk £ § | | | N |W
| DO B PO : l
I Y s e e Y (IO O I'ljl L2l] 13! | LA 1*’“:*“‘1 | Y T Y | I Lot b P B l iy A I) (R SO e (O | l A (A W R T - (A] | O OO O [TR LSeRY o Lt 111 1
oS T M I R R R I I L e e g @ o b Lo b8 i 4 ¥ g bt B b e B et e Ge] e e Bl

: THE H
[llet | LEISJT*EIDj 10101 151T[AITIE!H1EINITISI Lw o PlRIUlDIuic

| E A TABLE OF 2 4 ENTRIES , THE CONTENTS
S O | L1l A P

| O T O O e e) e e T R e T
1 1O F WHICH ARE,:, 121-131r|4u;3|f14irr51r141rl51r15:r15 AT LT LT 7., 8.,19,.,8 .9

8 g M M| (D (O ol i) B l'il'll'llllll]llllllLJ_I_Ii_lll<

‘l“ln|l19itlllnlllAJNID!!lll_l',lIllli1Il!_1_Jl]_II!1111i!4I_lIIIIlil!|lililJlilI_ilillllllIllll

|

REVISION: SECTION:

IT1

g # st i B B =) o i ohd S 2 i, 2 £ e o e 3 i 5
i i £ % s 43 G i3 #E i] £ £ & i F b i i g i s e

MANUAL NUMBER: PAGE:

fa i, I% ey i i o froc bt i LI e . e i o e £ i E Ere o a s vy =y e 9
g Redy) g - 4 : 5 i e 2 H] 3 = o

UP-3670 Rev. 1

8. GENERATIVE CODING

Four directives are used to provide the SLEUTH II assembler with
a generative technique which is highly flexible and efficient. These

directives are PROC, NAME, GO, and FUNC. When used, they
place a powerful coding tool at the programmer’s disposal. The re-
sult of the subsequent generation may be values or lines of coding.

a. PROC

Often the programmer will find a recurrence of repetitive sequences
of coding, not necessarily identical but similar enough so that the
coding becomes tedious and the opportunity for errors increases. A
device within the SLEUTH II assembler which permits the programmer
to generate such sequences is called the procedure. When en-
countering a procedure sample in the source coding, the assembler -
will store all the lines of coding within the procedure and will
generate this coding in the source program only when the procedure

1s called upon. By varying the calling sequence the assembler will
modify the lines generated, thus giving great flexibility and generality
to a glven sequence.

Although the following discussion will be limited to procedures within
a given program, the assembler itself (SLEUTH II) contains ‘‘systems
procedures’’ as does the library. Each line of symbolic instruction is
actually a call on a SLEUTH II procedure. The procedure generator
will then substitute the input information given in the operand field
and produce the required object line. This point in the users program
is known as a reference point (a call on a procedure).

It must be understood that the generation of code from a given procedure
1s done only at assembly time at the place of the call to the procedure.
The coding thus generated is an integral part of the object program.

The procedure definition is introduced into the source program by the
PROC directive which must have a label associated with it. This label
may be externally defined (using an *). The PROC line may or may not
have an operand. The procedure itself is terminated by an END directive.
Any operand present on this line is ignored.

OPERATION A OPERAND A COMMENTS " ‘S

T

L1 FORMAIT OF PROCEDURE, L EFIMYVTION 81 T A O I L W I A I T R e R 1?
BILIAIPI*i I [PIRIOICI WEE RE PR Rt IllFI lUIPIElRIAINIDL 1!|Si |P|R|E151E|N!T1 ‘llTi iwillLlLl lﬂlhl\'tEl {A 1F|__DLR[M5A5T1 B
AR B R N A A N O A A I A A I'LIDIFi 1“1'1_51 oS el ol i i 4§ 8 P4 B A b 0 g Beg T g g wgwrwn ga] i
L LA L ARt p g gt et Godell 8 0 2 % 3 F LA o0 o pome g oo JEoa g T N T A Y Y R SN U S T WY W M A W M B O O O O AN O
__j_lllII_L_lllI‘lllllllllllllillki||1|11I_Ijlftltl!tllIllliliiljlli_lllljtlilll\
T W N T O T O O B Lol ool ol Pl & B0 o 0 g pon w9 9 vo el pom gmg sy 5 3 fg o 5 . SN T RN S W S Y S N R A Y T J
La 10 o BN T S N AR S A A SN A AN B A S T A AR N B A | 1(
T — e e e —— — ——— T ——— T —)

¥

L2

2

g

& £ 24 S i i 3 e o7 i g i 3 B i
I T T T T T TR T T R S S S T

& - % P £ & 2

REVISION: SECTION:

III

A S MANUAL NUMBER: PAGE:
3 2 if e s g i Ay g £ e 1 O
UP-3670 Rev. 1

S g

o

!iilIIjJ_Ll!IILIILIllIlII_Lillfll.llllll}klillllllll]ijlllll boolocobdee Lo i ol [

Future calls on this procedure can be made by referencing the procedure
label in the operation field of an instruction. This is called a procedure
reference.

W e e . ———
A“V _\l’

L1y F,ORMAT OF PROCEDURE CALL | A S TN NS W N N (NN DN N Y MO T I A B T A A A B A A I A N ae e e |(
| |- | l 1 1 | . 1BIL1AL | L1 | 1 P 1 l'}_ lTIHlI lsf _twll]LiLI ICIAlUJlei |TLH|EL IA]PIPIRIO PIRII_LAETLEI ICEOIDI I|Nlc’| lﬂlFl lTiHlEi i/
BLAP PROCEDURE B E GENERATED AT THI § POINT 15
S A N O W U OO O VO U S T T S YO SO SO T T T M T T S T Y T O G T T U SO WA Y S A Y U WAt Ty A W MO W S O U Y VO Y NS O Y Y W W B
I N THE C ODI N ‘
| W U N DN N LI] lll IGI O O ! L1 4 1 1+ 1t 11 1 l | D I R S R S I SO T O I I N lLI | I N T T | I I T S O I l_l |

- — ——

— i o

- —-FW i R W i e Rl S N

Calls on procedures must physically follow the definition of the pro-
cedure being called. If not, the reference will be flagged as an illegal
operation and no coding will be generated.

Most PROCs are written in such a way that the PROC label is not
externally defined (does not have an *). In these cases, the PROC is
referenced by other externally defined labels within it.

FIELDS, SUBFIELDS

In order to activate a given procedure, certain information must be given
to the assembler at the time of call. The basic element of information
supplied 1n the call is called a subfield. A string of subfields separated
by commas is called a field. Fields are separated by spaces. Information
given in these fields is transferred to the procedure sample into

parameter reference forms which are subscripted indicators. For brevity,
these parameter reference forms will be called paraforms.

Fields and subfields are merely a prescribed coordinate system to correlate
what input matches what paraforms within the procedure definition. The
expression ADDP (a,b) is an example of a dummy value in the procedure
named ADDP. The assembler will look for the bth subfield of the ath field
in the operand field of the call on the procedure, and substitute this value
when the procedure is being evaluated at assembly time. Thus the operand
expressions on a procedure reference line serve to provide specific values
for a general framework of coding.

- uNIvAC 107 stguTH i

REVIGION:

SECTION:

111

MANUAL NUMBER:

FPAGE:

111iJLJ.lJJJlslAlll]ﬁi'lRithIllllll.Ll

T S R PR W (|

IIlIllli

WA AP R N N

|

Llllillllli

#5. & £ £ 5 i i e
UP-3670 Rev. 1 11
A simple example of a procedure is shown below. A given number is added
] ®
to a given word and the result is stored in a new place.
L] []
With each call the given number varies as does the place of
storage.
This is the source program coding
LABEL A OPERATION A OPERAND A COMMENTS)
1
e e - —— — f
AID_JDLPJ*ILIIilPLRIDLCIILllLIlllIlIIiIILJJlllIiliiliI L1 |L111L1!1L;111|11rlslliiilllY
I R . | L | IL|A1 | |] L1 | | Iilﬂl F i I(_IAL_D_JD!P](P_]J'L11)I}l | L1 | |. | 1 i | L1 L1l l | L [| | L1 l l 1 1 I i 1 l | | | I | § { | | _j,_]}
A A 1 & , CONSTA
N O 0 O SO0 O O O o s T OO O O O S o R T IS A R e RN BEER AEEE AEER IEEN EREE A EEEWEE RN R
T R T Y O T O I A | lslsl [S Y N S i]l6I'I LAIDIDtPt(L1l’121)1 R S T O Y U D MU T T I O I N S A A R T B I A AR Y A T Y I A R N L_J
R TRERENEY TN ol bt oo oooa Ly P EN ENCOUNTERED ,TIHE ASSEMBLIER , | | |
| 1 i] | | i || | [i | | | | .1 l_i | | 1 | | [| 1 | L1 L1 ! [l_._J...:._L,._LwlllLl.Ll |P1U|Ti !AISIlIIﬂLE] iTlHlllsl IClUlDi|IHIGI IAIHIDI d l"L‘"j"""'Li
R S A U SN TN TS UON Y N NON YUY U TN U OO VY (O AN YN MO TN NN T SN WY T W A M S N U O N A O S :R1E1F1E1R| B0yl (1 0 NLY WHEN A CALL OF 1_,1__1_;)
U U | | | | | } L1 1 1.t L 1 | I L1 l | | 1 | Jm..L__L_I | l | [| | |] 1:._1 [AIDID__J_Pi ll_._.l..sh..f__ﬂ__i_MlA}.Dl El l{l' |NJ thHlEl 10!P]E|R]AITII|O[Nl f T | | 1
; FI1ELD 0O F A N I NSTRUCT I ON LI NE,) \
MM ETEEEE NAEENEEEES SRR EEEE REEEIEE NN EEEE N e e o i T e e o ot e T B e e ' T DO O
SN0 NN TV W VOO U N UOU VU TS WA U TONNY VRN UHO G Y OO WS WS N UG VR NN N N AR AN 11!JII11l!IJ_JiIILIlel]IJfIiItIltlJiiltilJl}
MR ENENR N IAEDIDIPI e i 1983 RAM MR REEE RN TR TERE R EEES PR BN RN T EEE Y
3 LI NE S Wil LL B E GENERATED
RS U TN Y AN (NRNY WA S SO L W T S SN U, WY S comtl e B e 0 P B R T O B R R N I I O N R A O R R T O N e o el oG B B o B o Bl L o B IR B T Gl
THEY ARE 1
SR A i T OO Y M T i L,1L|AI L. 161'1(_1016131}1 I N t__I__L § N [N SRS PR PO NN S i I N VI LI T | W 1 U T O B W) N N, | 1 O L WO G L P T S | J . S Y l_L__J
e e b i e g i GO T i i] i EmmmaEETR BN SEDLE SEAENERAN EEEE EEEE SREER EEEINEERE NI

WWW*‘

In the procedure definition the expressions ADDP (1,1) and ADDP (1,2)
appear denoting the expectancy of 2 subfields in 1 field to be the input
at calling time. It is apparent at this point that a programmer who refers
to a procedure must know the format of input that is expected for the
proper generation cf code. This point is made since the use of systems
procedures 18 quite common. It would have been equally correct if the
originator of the ADDP procedure wished to have the input data come
in as 2 fields of 1 subfield each. In this case his notation within the
procedure would have been ADDP (1,1) and ADDP (2,1) and the calling

line would have looked:

bosdonersnpeneleandie b i sy

— e e T e,

L b A i e oy e dd o e a e b e Lo g ot e e G b b 5 b i

_"'--"‘-—.-.H__-—l": e g

—re

]Illilllll".iI

|APOP 119,63 RAM

[A O I I A I T LI T

]

PACE SSERVES TO SEPARATE|l | |, | | | J)

IO (N N N B
THEEFIIELUS
s S S S U NN Ll T S S Y S T Y T N TN T S W LA OO I O O TR B R A O I R I e e N e TR T R T R RN

b
.

f,t P A a>‘:. _':;;g :5-."{'5.: r; e _L ERe e .._?t:: i e 5
e &3 P a5 & sk e & i i £ £ i s 2

&

REVISIOMN!: SECTION:

II1

MANUAL NUMBER: PAGE:

12
UP-3670 Rev. 1

OPERAND FIELD OF PROC LINE

A, the maximum number of fields furnished to the procedure, and B, the
number of lines generated give the assembler enough information to
know when to stop scanning input lines and to avoid double evaluation
of the procedure.

It is essential that the B term be omitted if any of the following
situations occur:

@ Forward references are made in the procedure
m External definitions are made in the procedure (except entry points)

@ The procedure could generate a variable number of lines.

® When a change of location counter control, however transient, occurs
within a procedure.

A blank in the operand field means an indeterminate value. A period (.)
should terminate any information on the PROC line. This will terminate
scanning.

To further understand the power of the procedure it is necessary at this
point to explain 2 more directives.

NAME

The NAME line has 3 functions. It provides a local reverence point within
a given procedure or function. It acts as an alternate entrance (s) into the
procedure or function. In any case it must be located between the PROC or
FUNC line and its respective END line. The third function of the NAME
line is that it may give a value to the procedure. This value is written as
the operand of the NAME line and becomes meaningful as the Oth subfield,
Oth field if and only if the procedure is entered at this name line. If such a
value exists this counts as an additional field to the procedure. Additional
subfields may be added to this Oth field at the time of call as shown below:
The paraform label (a,*b) will produce a 1 if that subfield in the call is

preceded by an *. If not, it will produce a 0. Paraform labels may be used as

operands on NAME lines only if the NAME line is contained in a nested
procedure.

REVISION: SECTIQON:
fod Lo -7 i i A g pb A BE w i i i i £ o : o ;
. UNIVAC 1107 SLEUTH Il I
& Ho&¢ w0 o & o@®m 8 $ © @ % % Wm0 B wm Bom g A& : e MANUAL NUMBER: PAGE:
%5 & i & £ S 5 R e 20 2 i 4 3 7 i i S 3 i 1 3
? UP-3670 Rev. 1
L 75 & &

lilllllllillllillt111_1tllllilJII!L_:lJ_iJllll!LlJii - S - S R R N - W T 0) R

B IPROC A b e e e MAX [NUMBER OF (FLELDS, 1|151 S T N N N I (

; AW *
Ils_lllllil'HtAlMlEllllil]liilltll%l!IIttllLlUI ON NAHEI"'IlﬂE U NTS, AS A FILEL

SEEI(]'])) SEL!IOIiI)

llllLlL(J_lIII'II

J Illl

E.L. 0

lIlliJ.LIIIil]__lii l'ltliil{]J)IJIII!IIllIiillLI!EIl

TLE 1
||1|11|111_1l1111151E1EL(12|‘1I}lrlletEi{ai'llljnjltlI!tJ_flilllJllltiJIiilflllllilllllj

___LLJIIL'IIIIGlllIiIIlE]lIIJllliiiiiLlj_lLlllLlLlilJlJ[Illl!-l(l‘{*lJJLIJ_lIIllLlIII(

*
EAR* | |, (INAME 4 oo b s s e b vy e by v ey b e |J

O S (TR) Lo TR RO Lo l IAI [lleIEI(I‘ Ill)l ISIEIE!(lﬂi }ZI}I’JSIEIEitlﬁl'IG], 'lsiEiEl{lnl'lIJ)I | S N T | U A Y Y N S M I&
llelEl(l:}l'I Ill)l |::1+13||I!EIlilJllilI]_IIII_ILLJ_I‘J(FSI)l F 1 1T 3 Bl salbed-uik |

!-.Ill_illlll_!}

—

D _
:1111:111J|0111t1

E1Y151 N N B S |NAME

IllLt’IIllEIIIJ‘. IIIIl]J_iL]_JJ_!Ellllliltllllil__i

END
WO R L U O o i s I O (O O O I O

IllIlILIlIllltJ_JIliJIII!III|JLE11IIJ!

T (R R N R S W, (W

ll_tilllll%

|
|
llllllllll
[

TN O O U O Y T T U N W 0 W0 O I
l
I

I
|
I_Lllll_L.Llil'IIlllll_lllllilIIIII111IJ1iIlIlItlllllLJ_

RN SR TN S S N NS WON TS A YU WU TN N NN A TN NN U N Y SN SO SO SN O O

TN RN TN N U TN TN U 0 N Y VNN TN Y VRN TN NN N NN VNN N TN T VAN TN W O S T U N U T N U A T N O O R R
S EE 1 6 CAT 17 DO G * 4 3

T T O O N T O T T T T O T T I T T o T T T U T T Yt Y T N U U VN TN N (U TN OO SN MY W NN MO

151*1w|11111|6t|1A1T1 l]L?l n RS g A v g o] IlJIIlclr}L)l T O T 8 DS O (O

lElAlRi'lﬁl'lLLlLfL]_l!lllIIIIillilll_llllilllljIllillli(l:}) 1||411115|

' i A U U SO U A S T U T N0 VOO TN U A N G WY T AU GO U W U S

(1)

[U T O B lLlitllIEll

I
AENEREREE AL EEMERE RSN NN NN WSS

|

|

|

| R T T R R R WO |

Corot L L et b e e s e e e e e e

—
—
b

Line 1 represents a call into the procedure via the PROC
line. The subfields represented in the operand field are
SEE (1,1), SEE (1,2), SEE (2,1), SEE (3,1), and SEE (4,1)
which will be substituted in corrGSponding places in the
procedure. At this time SEE (0,0) and SEE (0,1) will have
values of O gsince the entrance was not made at a NAME line.
The DO statement will generate a +3 data word.

The Line (2) entrance will provide values for SEE (0,0), SEE (0,1),

SEE (1,1), SEE (1,2), SEE (2,1), SEE (2,2) and SEE (3,1). In addition

the paraform SEE (0,1)is considered 5, the second subfield of the zeroth
field. SEE (0,0) is 2. The DO statement will generate no lines of coding.

Line (3)

This line causes entrance at the NAME line labeled EAR. SEE(0,0)
1s 4. SEE(0,1) 1s 6 and SEE(0,2) is 7. SEE(3,*1) is 0.

GO

This directive transfers control of the assembler to the
label in the operand field. This label must be a bonafide
NAME line label or PROC 1label. GO is used within a
procedure or function and may be a legitimate directive
instruction used in conjunction with a DO statement.

(See below.) Line(4) above is effectual only if entrance is
made at SEE or SAW lines. In this case, the procedure is
terminated after the TLE is generated.

S

REVISION: SECTION:

i

MANUAL NUMBER: PAGE:

UP-3670 Rev. 1 14

R e

WW—_ m_ ey .-—-—"‘--._.___‘__—_—____ — —

ililllilllljll_illlliI]!!lillI!llflltiI[llllll!J_LlilltIllllEl

Dl‘:}JNICI | L S e e IPIRlﬂICE I

1llfilliilLIJJll1i_l}lllgll!IJ_I1LllI!~l_.LiIIIl[llll_L__JllIL___!lll

L
l
O e NAME e n 1% pon el fodteded 0 v 4 & F 3 F 3 § 3 9 A oeaa ol pa gy gopigor bt g fadd Loibeof G §
Di;'}i *| | T S S e |HIAIM|EE | I T l ITJ H e | | SR L [P | | ‘_L‘_ 1 | R e Pt | L1 1 | l__1 | I O N | | L l | S I N I | | | I L1 Jo i i e i] | S l.___.L_,l i | |
Coe v vy 0 429y gy oy P9 NCC0,,0,),-90, ,,, 6,0 ,OUT| , , | N T N T Y Y A OO M N TR 1O W N N F O T A B R R O DR O A)
Ti!lllIIlllslzIIlLIIIIJCJAITiIJiIlIIlJllI_LJIJ!IJJtl_lLlJEJ_IJlII_lILI’IIlIilllJJLIIJS\
05w o INAME oy o v L pien i g g g B a i b idsl b g vaa pa el st e valos i vii i) £ 2% 1
ARENER ARRL L L AR ENEE R YR TN T T U T N O T S A B O R A B A B O A A I B O A I I N I I I A

If the user enters the procedure via the D1 NAME line the condition
in the DO determirant will be true and control will be transferred to
OUT resulting in no code being generated. If entry is made via the

D2 NAME line, the DO line will not be executed and a SZ CAT
instruction word will be generated.

An example of how a normal instruction word may be generated
via a systems procedure is shown here for the LA instruction.

T 0 TS N OO TN OO O OO O P O

|

1] T T A A R G S I A A A I I I T A T I I I T I A I T A e

LOAD

 Epiec ik, Bty EG) (B P s e |

IPROC

IIIIIIIjllllitl__J_llllI,iillil!llI___llllllli[l_l_,lllLilllllilllllllIll___L___

| R I |

LA Ll b TR M E

]U]U | |
Iillilll!IIJLLlEiIljlil.llllllt]li]LI!Jlllll]l!lllllI!_l.__l....,_.m_J.__L_.‘l...._,l._ﬂ.

FllllllllllFl

OR M

5 . A . & . & -2 11 &
illll_JlIILJ_IIIli}l'ili__illlllllllllllll_l_lllllIILlliltIlllll! R e oy [

F
fofiodhodfodede £ 8 4 B 4 4 T 0 % & L 4 i

I.LlOIAIDI(lUI'lOl }ir! LIO_LA_LDL{IIDI'l‘J_)i+ILJDiAtDI(l]l'ldl)_l'lLi DJALDI(I]I 'l]L)J_l]lzi 'ILIDIAID!{l] 1'13I}I'1_;l I

2 *LOAD (1

A P W el N O

*3)+LOAD(] 1
lIllllll‘ll'illl'illllli'JliIlllllIIllLLllllllIIIllllll

2) , LOAD(2) | L g

b

.‘_-._...-—--..__,.r-"""-——_.._

|
W ——— e T s

Wlliill]llIlllllI.l]l1J_J.tlj_lJilLllllLJllllllllLlll

lL(JJHI'J{ 0

N S T S T

\

UL} I $

Lot 4t 1 1

T HE 1‘{]_AILIU E QN 14 ':'.J..EL, NAME L l.J_.ElEJ_ leﬂlI ICI Hl _‘_L_I_J.E! lTl Hl_Ei IFIUINLE,:I Ti IIOINl ICIOLD]EJ i0|F1 J_LﬂlE_,_L_,l__L___L_,L

ey i o] P e

 AERERY et Wiy oPede DD s

I l'lNISLTlRIUICIT“lntNI ILIhl'i'i lLlolhl.Dl(lﬁi'lli}l |

AjND; L 04D (1 a4, ARE (T ME T WEe ARG L TRARY (PO TIVANS, F i i

OF THE

| N I N O T |

EXPECTED A
JI 1DiEisjilGIHIAJT10[RL‘I ILlnthlnl__(tiil_L'__J_}J _j_llsl _JLHLEI l pooape ool g et Bl B l_|

IR G T)
JﬂlEl5 tl IﬁiNLALtiliolNl'l ILIOlAIDJ(lll'ial}l__,,l,l | S

ll o THLEL Ii|N1D1Elx| intEJ_stIIG|A|T1'161H1_'_1 1L101A101{111'1 13111 twtllLlLl |S|E1Ti 1&].__1‘05 IDiRl i) (0

¥

! BIIJ._ILlIlN!lTlHIEIlli{llllj_JIl

I A S

I NCREME

|

NTATI O
I

Y T I L I N |

N

illllllllllllll]!tllllill!lil].lljll_ilIillIIllLlIIL'LllJlJll_l

T S I R

| lDlElslIiGiNt_AlTloiRl IFIII TS L R

ELD

(S N Y

1llLLlIIlll_l_l_llLlliJ_lllfI!ll[lL,_lI£1Jiljlillillllll_L,I‘llJ

ILIDLAtDI (I}I 't*lzl)l lwl'l

L, L SE|T (A D LulRl 1, (B, T ,I,N I NDIRECT ADDRESS NG FIELD. LOADI(|T,,;2,)) 4 | 1

| A) S

13 THE

M 1P101R T1,0N 101F1

TIHlEli|hNIs!TlRIUthTION' ill1]111111lLlIljiltlll!illi_]_llllillilﬂi._

| AT R ST T

N N A N P O T e Y |

l

| S O L |

PARAMETER REFERENCE FORMS OR PARAFORMS

L is the label on PROC or NAME line.

~The number of fields submitted on call. If entry was made via
a. NAME line, this figure is greater by 1.

~the number of subfields in the ath field (in the case of the
FUNC it always refers to the number of subfields in the
1st and only list).

REVISION: SECTION:

S % ik o ; s 3 L G 4 : c i 2 . i i & s :
.. UNIVAC 1107 SLEUTH Il -
2 - 2 4 i 4 ?_,_?.; " i iy e 2 . i g & i i o £ 2 s s MANUAL NUMBER: PAGE:

& e 5 w - i i 5 o4 £ 7 i £ ik g s e = i % (i 1 5
U P -3 6 } 0 R ev 1
)
e i A o e w3 e T W = G S i 4 e o et E e

L (0,0) — cperand on NAME line (meaningless if entry was not made
via NAME).

L (0,1) — second subfield of operation field submitted with a NAME
directive, given at time of call (see example).

(Meaningless if not given via NAME.)

L (0,a) — (a+’1)th subfield of operation field submitted with a NAME
directive (see above).

L (n,m)— mth subfield, nth field of input information of call operand.

L (n,*m)- Equal to 1 if mth subfield of nth field is preceﬂed by asterisk;
equal to 0 if not.

EXAMPLE:
d--......-‘--- - s me R e wtil] B |] *] TS et
LIA[B|EILI]L*I |.| IPIRIOICI | | | l | I S B P | | | I | - | | | L | L1 1 l]
LABEL2* | INAME W L i L |
I N Lol L Lt 1
E ND K
I AR A AN B A N I I I T T e I |

L lLlAlBlElLl]l A8 & P B v
I T U W WO Y Y I |L1AIBLELL121' P Gl lNl’lot 'LP1 L1 | N TR N U O SO T A |
NN U S T SO TN SN NN T NN TN NS N A% NN NN N O N N T N WO T W I N T T S T N O |
——_ L —
1) Entry Via Labell 2) Entry Via Label2
LABEL1 = 4 (number of fields) LABEL1 = (number of fields

including NAME field.)=2
LABEL1 (1) = 2(number of subfields in 1st field) |
LABEL1(1,1) = A LABEL1 (0,0) = W
LABEL1(2,1) = C LABEL1 (0,1) = F

LABEL1 (3,1) = @ (meaningless)

REVISION: SECTION:

I11

UNIVAC 1107 SLEUTH I

MANUAL NUMBER: PAGE:

UP-3670 Rev. 1

LABELS ON A REFERENCE LINE

A label may be affixed to the line of reference to a procedure. Under
normal conditions this label will become associated with the first line

of coding generated.

Example:
L1 1.1 1| | I 1 | | [T D I I | | | | | g |] ety hebtiesd | | I l | s | | G | i A | | | i IS (RN | | RO) B | | |] MO e | | | 1 1 |Il‘-| | | | J' i I.] i | L 1 1
x]_*i | | -E b1 1 | 1R It)lcl | I N | L I S 121.._..l I A | i I [RS I N _10. N El |LII IS!TJ il,_I_s]_ | J._JPIEICETiEID_i i B J_J_ lN | lﬂ Fl lclnlnl_l N G] lw * ILILI e G
L (BB (GENERIAVTED, ' 1 i1 1l v v oot v e b v v e v b e e o o et v b e e b a1
TLEM X (Vv , 1), 4, .11 [
T RNEEERER e wE P RR R M L WIS TN EEEE EEREN N NN NN N I (T 500 010 0. 05 00 N 00 oo N0 RO (O O TN
3
Y IR Gy ot NS, S e s | lJI ERE GEEN Pm P SR T o |$|+| foodimdce b A ol 1 L. r__1___1,_1_h1__j___¢__! R S| (OO | N MU (IO R JO. l [[(R (O N NN N G l_l [W O 1___|__1__I_|._L__1..__.1_,I [N DU T |
END
L EEEERS L BRI RN ER NN LD T 0 NI T I 0 (N 100 W00 (00 0 0 O 0 (N0 O S O OO (O O S0 O (0 (A0 OO OO0 N RO (O O O O O O N O O O S
RAM | N B LN ER AN EER LY. FERU R S TR S (O O PR O 1 1'1._LL£L9|__..LLH[NLEISI vty BE GENERAMTED vl
L A 1 7 R A
RENAREER: «- SRR TR REEL VL ol J._.L _L,_L_.L_J_J_JRLAiML 113 ITIHIEJ_lil_DID[RlELS!SE_L(_JLFI I HE FI RS T OF THE T WO
oy IGENMERAMTEID (LIENES b i i v g taaad g o s g g e ad oy v w g g g by v vy v g b e e by v
W‘_ s ‘MW L

It is possible to alter the positioning of line association of this label
within the procedure. That is, it is possible to associate this label
with a line within the procedure other than the first one. This 1s done
by coding an asterisk (*) alone in the label field of that particular
line in the procedure definition area.

Eixample:

[- LABEL A OPERATION A OPERAND A COMMENTS ;
:

X * PR O C 1, 2
liilll_lelllllllixlllljlilillllllt!!lilllllllltill._*J__!J._JLllllljliillllll
T T R O T, (W |T1L1_J R N i | 11I tli)l J4L,_l.__llj1 U U U N DO S T N U U NN U TS N VA Y G U (NN YO YRS TN U WY NN S SO TN U WY YOO M S WY N S A O LL%
*

1[11L|1_f1||l111114f|$+3|1111111|111:1L11[11111111L11||11111|l1LL|111 Ll
lEilllllilElNID!IlIlIlllllllJ___L_L_.Liilll,__J__lll [T U WO N NN YOS U TR U N O U TS U VO UG U MY U O VO TN Y O Y A BN N N A
RAM 1 4
rlltlil!jllli[lllll! U U T VA VN AU SN T (N TN U U U TN VY S T NN T S A VA S U N Y O G U U U Y O S Y S A RO
Cor Lt dsA 7 RAM L RAM TS, (A DD, R,ESS| ,0,F ,THE ,SEIC,OND ,0F ,TWO |
v G ENERATEID LENES 3 vy v v v by e e b a1 ol | Lol L1 T IO O (O (B 1/
MW

NESTED PROCEDURES

The nesting of procedures can take two forms:

1. If a procedure definition is wholly (physically) contained
within another procedure definition, it is explicitly
nested in the larger and the internal procedure is
considered to be one level higher than the immediate
external procedure which contains it. If no other
procedure bounds it, this procedure is considered to be
one level higher than the externally bound procedure.

This type of procedure may contain other procedures. A
level of 63 is maximum. Entrances to internal procedures
can be made only through its family of procedures, and
never outside the external procedure unless extra
asterisks are added to the internal-procedure entry points
to raise their level. An internal procedure may only

be referenced after a call has been made on the external
procedure.

SECTION:

A OPERATION

A OPERAND A COMMENTS

80

‘1 LABEL

il

*
Y]':lltl

|

prprirrry

L1 tPiRlolct

k=

om0

L b et b b e g gt el S U N T T O .i.mL._.l.___L"_l AR U A UORN0 U SO U NN W OO O SN OO L_-__.L..,J,.._n[.*..!.._Lh.L-..l......i.....l.-!......LL-.l

L]

NN S S | LﬁiPIRlolcl e b vopt dowop e b g g p by g oo pow g b oa b opoe i i i8] Ged i fetede 8 b S B e B B oo B o B Ao B
N R P L. N Y N R R N T O ALY SR TR ST NN TN TN U R R (0 YOO AN OO VO O A W OO 1
LA L (ALt ik [A AZ 1S DEFINED I N OQQUTERMOST PROCEDURE AND 15 KNOWN N ALL,,
¥
Il RS (I NS (N (VR TR lELQiul 131 | I T | l'l LILNLTIEiﬂlALLL lpiRLﬂJc¢ELD[U|R1Elsl [N DU S S S N | 1 | U T T B S R | l 1L 1 [_1 O . | j | TR G kT Lopt TR (et et B
Cl C' 1 1 L1 | | | | I E IQJ u]. _13 | 1 i 1 1 l | IA]v I.A [I I.L I.AIB lLI El i.ul_NlL J.YJL lT i Ol I c | | PJ.R io 1 ci Elt.,_j.ul.Rl El o i | Lot P oo] _.-L.__..L._..L._...L...._.L__j._..l._._j“.,_.L..-L......i. Li_L_J_--L’.-J. .
w *
G L]Elulul TN ENRE MNVANL ABLE, Jlol .- B 'ﬁLlet s [Plngl_c..lELE.l.!.L.EJEI BN ERERETEARAES EEEREEN DTSR ™
IO O D R W B N iELHLDI | BB 15 ITIELRIMII 1HJAITIEISI lcl IELRIDICIEJDIU!RIEL | (e e | l N I T T L_.L.L_JL. I PO L (9O _I._._L_J__L_J_,L_._L__:.A_-LHL.-L..Ju.-..
BB EQU] " AYAILABLE | N C AND B PROCEDURE
I I N o e T IR TR I TR TN N0 i 0 s 0 e iy it T e T T i O, Do T e i O S U i e o T o o e i il ST O WAL TR P A0 TR VOO OO O GO O RO A RO O
*
i < o (8 P O T O EIQIUI 121 Lo Lo IAllellLLLAIBILlEl Bl G LBJ'lA!NlDl . PROCED URE . o oo ol o e g g g g o o fy g g a
" EQ U p
T ERERL TR el IS R TR T A E TN A AR IR Y AN NN T W NN I R O O
Lttty g JEND Ly 1T|EtR|MLI MNATIES, B PROCEIDURE .\ v | v v v v b e b
Clcl_ll BRE TN e w B R R L JAlvlhlliLLALBILE ‘N C. 8 AND ¥ PROCEDURE vt v a1
&
Clcl‘l Fooldodlat | isluLui 121 Loaao oy]AJvJAIItLIAiBlL!EI I'INL Icl’lBi'lthlDI 1YL_1PLR101CL fAJ_NJDt 1P1RI01{;IR1A}ML SN U N WO SO T 1 [N WO N N U WO W
A A EQU 1 2
lll_iilILLllLlllJ_LLlll_iill]ii1|Iillililllllli{llilllilllllll[lLllllili]ll_[llll
NN B I A A b a gt o o F e ey g g e g oo I I A R SR I A A T DR U U A A I BN S B U N O NS N O SN INU S N Y S A A N S S A
Lt g a0 a JENDy oy Ly W VERMIENATIES, A L, THE OUTERMOST PROCEDURE | | 4 v 3 v v b e

WWMMMW

The label Z is brought from the innermost to the outermost by a series
of EQU directives. Nesting is time consuming and should be avoided
when possible.

REVISION:
. UNIVAC 1107 SLEUT | m
. che i i £ S 3 24 4 # s & 3 o el S B e — 1?
UP-3670 Rev. 1
9. A procedure which is called upon by another is said to b'e nested
within the calling procedure at the time of reference. This type of
referencing is limited to 63 levels.
If 2 GO statement is used in a procedure with an entrance label to
another procedure, this is not considered nesting but is a lateral
transfer and does not change levels.
The externalized labels of the innermost procedure may be
referenced outside the procedure sample, i.e., in the
program proper. Any other labels are unknown outside this
area of definition. Any of the labels (both unstarred and
starred) may be referenced by a nested procedure. 1f,
however, a reference is desired by the outer procedure to
a label in the next immediately contained procedures, that
label must be suffixed by an asterisk so as to reduce it to
the level of the enclosing procedure.
Labels may be redefined on different levels. If more than two levels
of nesting takes place and a label defined in the innermost level is
to be referenced in the outermost level, the label should be exter-
nalized on the lowest level, and then redefined successively upwards.
Redefinition on higher levels of a nested procedure entry point 1s
secured by adding as many asterisks to the entry as the number of
procedure levels through which the label definition is to be carried.
Example of Nested Procedures:

5%

A

= & ¥ i o £ & Ehe) Fr s e 4 i 2 i g &
& 7 #® & & £ 0 8 # 2 i i # R s S g2 3

REVISION:

SECTION:

III

£ S e MANUAL NUMBER:

B & B s om @ N - - O . .
UP-3670 Rev. 1
E 3 RES 53 B i i i o % e i i g2

RPAGE:

18

On the following page the actual listing from a SLEUTH II
assembly on the UNIVAC 1107 is reproduced. It includes
examples of procedure structure, nested procedures, and
procedure references. The coding produced by reference
to M PROC will determine the largest or smallest value
in a series of values. Each value is assumed to be repre-
sented in a 36-bit signed word. Opposite the listing is an
explanation of the action taken by the assembler while pro-

cessing this coding.

REVISION: SECTION:
i % B 0% H & 0w & B F s d s W s III
>+« +« UNIVAC 1107 SLEUTH I
» @ o RETRETE @ B O\ ¥R G O B R MANUAL NUMBER: PAGE:
L B O % :;iz;% # 19
Ly e s ., o g UP-3670 Rev. 1
00000} 000000 RES 01000=s
000002 0 PROC
000003 MAX® NAME O
000004 MIN® NAME |
000005 Mis PROC O
000006 DO M{I0e0)=0 o+ TLE M(Led)oM(J¢20l)ym(14242)
000007 0o M{0v0)m) ¢ TG Migoel)oM(L®20L0) oM (]*2,2)
000008 LA MULol)oM(1%200) oM(142¢2)
000009 END
0000410 LA MURod)oM(20))eM(2¢2)
000041 | 0o M=3 o M}
000042 END
000013 000000010000 L EWu 010000
00004 4 004000 10 00 04 01 O 010000 MAX 16 Lol L*2¢1 (12)
001001 5S4 00 O4 0§ O 010002
001002 10 Q0 04 04 0 0310002
003003 Su 00 04 00 O 003012
001004 10 00 04 00 O 003012
000015 00100% 10 00 04 0f O 010000 MIN 16 Lol L*2¢4 (132)
001006 55 00 04 0§ O 010002
001007 10 00 04 0} 0O 010002
001010 55 00 04 00 O 003012
0010ll 10 Q0 04 00 O 003012
000016 000000000000 END
001012

000000000C 14

REVISION: SECTION:

MANUAL NUMBER: PAGE:

UP-3670 Rev. 1 -

Line 1 sets the controlling location counter to octal 1000.

Lines 2 through 12, the body of the procedures, are temporarily stored by the assem-
bler for later reference. |

Line 13 equates L to an octal value of 10, 000,

Line 14 is a reference line to PROC M, introduced above. It contains four lists,
List 1 has one parameter; lists 2 and 3 each have two parameters; list 4
has one parameter, the literal 12. Coding produced by the reference to
the procedure is shown to the left of the reference (addresses 001000-001004).

i

Line 2, the first line of M PROC, is referred to through MAX NAME 0, line 3.

Line 10, the first line of M PROC to produce coding, causes the creation of the first
instruction, at address 001000. The operand entries of this instruction are
determined by parameters supplied by the reference on line 14.

Line 11 references the nested procedure M1; the number of references to M1 PROC
is determined by the expression M-3.

Line 5, the first line of M1 PROC, has a zero in the operand field indicating that no
list is to be submitted to M1 when it is referenced.

Line 6 produces a TLE instruction (54) at address 001001, since MAX was the entry
~ to PROC M. The counter I of the DO line (Line 11) within M PROC is used
to advance the list number and thus access the appropriate parameter for
use in the compare instructions.

Line 7 is skipped on this iteration, since the condition M(0,0) =1 was not met.
Line 8 produces a LA (10) instruction at address 001002, in the same manner as line 10.
Line 9 terminates this iteration of M1 PROC.

Line 11 now references M1 PROC for the second iteration. Lines 5 through 9 will
be executed as above.

Line 15 is another reference to M PROC. The execution is identical except that
line 6 is skipped and line 7 is executed.

Line 16 terminates the assembly, or program.

REVISION: SECTION:

i

MANUAL NUMBER!: PAGE:

UP-3670 Rev. 1 1

b. FUNC

SLEUTH II enables the user to obtain a value at assembly time
contingent upon a set of parameters. The function is a device
within SLEUTH II which will cause certain predetermined lines
of coding to be saved when encountered during assembly, and
when referenced subsequently during the assembly a computation
will be made according to this coding. The evaluated quantity is
then substituted for the reference call within the program.

The function is similar to the procedure in that the lines of coding
representing the deflinition must precede any call (reference point)
and this delineation of code is saved when encountered. The
function is different from the procedure in that a value is calculated
when a function is referenced and unlike the procedure, no object
lines of coding are ever generated. The procedure usually generates
lines of object code at assembly time at its point of reference to be
executed at object time. The function executes entirely at assembly
time and stores its results into the program at this time.

The general rules of definition are similar to the PROC. A FUNC
directive must start the definition area. This line must have a label
which may be starred, If this line is an entry point into the function,
1t must be starred. The delineation of code is terminated with an
END directive which must have an OPERAND. This OPERAND field
will be an expression whose evaluation will result in the proper
quantity being substituted into the reference point in the program.

NAME lines may be alternate entry points into the FUNC. The labels
assoclated with these NAME lines must be starred in this event.
NAME lines may also be used as local reference points within the
FUNC. Forward references should be avoided. |

The coordinate system of input is singularly designated. A single list
of n subfields is used. The reference point is of the form LABEL
(a,b,..n) where LABEL is the FUNC line label and a,b,..n are input
values. This reference point can be found imbedded within an
expression or can be the entire expression itself.

LABEL(O) is meaningful as a paraform if entry to the function is made
through a NAME line. This input value is the operand of the NAME
line. If no values are given and the label alone is coded as a paraform,

1t represents the total number of subfields submitted to the FUNC.

REVIGION: SECTIOMN:

s o e .

UNIVAC 1107 SLEUTH I m

UP-3670 Rev. 1 22

A particular subfield within the FUNC list is referenced within a
FUNC by writing the FUNC label followed by one expression enclosed

in parentheses. This expression specifies the ordinal number of the
subfield within the list.

PROCS or FUNCs may be nested within a FUNC provided the procedure
1S not a line generating one. It is usually nested so that the ability to

redefine labels at different levels is available. All the rules of nesting
as specified in NESTED PROCS apply to FUNC.

An example of the function is the case where a certain average calculation
1s made throughout the coding. The programmer should keep in mind this
calculation could have been made by hand and is not dependent upon the
execution of the object code. If “‘a’’ is the number of first type objects
and “‘b’’ 1s its unit price and ‘‘c’’ is the number of second type objects
and ‘‘d’’ is its unit price and it is necessary to calculate the average
price of the combined number of objects, a mathematical expression which
would calculate this value would be

Average cost = ab + cd

a + C

Providing a, b, c, and d are known at assembly time and have the value
1, 2, 3, and 4 respectively, the calculation may be as follows:

com

L LABEL A OPERATION A OPERAND A COMMENTS .
e = e ———— — =
Jk11".'1{';1‘:1{:“51*1 L L tFlulﬂjci R T U e SO O YL N OO0 YUY UOUY N S RO WL U Y0 AP0t NV N U S MU O OO SO N COUD A NN S VA WSO WS WY O U OO U W TN O IO GO (N N T SO V0 O 1 s
L NEEEEE L AN EREE s T L L L R Y N SR S O U O W N NN O TR T Y TRE SR N NN U 0 AN [O 0 IO S IO 00 0
B.l{ltl}! | . N S | jE_lQIU] W I T A [{Alvl El.El.?JSI{Egzjltlhlvigi_ctojsn{i41 }1 Loooft o el G il gl B TR S VR WY W W WY SO U Y (O T S S Y B | & OO N [, SO e | L__LS
ci(l1lji S R R O]E_lnluj_ b b docale o b d lhl{i‘n_,l +IEJ FL,I_L.},,L_L__L_L_J___L__L_L_J__L__I__L.I_L_L-.i_L_.L...L,._.L_.J_ ENEREEE NEENE I TS N S 5 0 O
(V) o (BN, AVGEOS VY HAVGEOS C3)) s s S e e s e e b o e L\
TR WO W N S T B ENe e 1S 810, 49 (Y Y T TN TN U U U U NN U O W T VNN (SN U TN I MU YO VOO S W M T M S O O O W D WU O A0 i._l.l_-J._-L_._J._L_.J_.J.As
L i TJHIDIUJ GLHi tTlHtEL 1.E_¢m_LRiE1 1EIXIP1RIEISISLI10_IN_[}_E!OIU_LLJDI SiE Sk el a0 ED LR ONE, |5, TP VT VS F ASTERL
‘. IA:Ntnl IMIBIR1E1 1Eixhl"'lElI}il]Ell"ll'rl JLTl!'.'ll IBJ._RI EAK UP THE EXPRESSION | \TO §$UB-EXPRESS I,0NS, lAlHiDl (T, H,EIHL,iiii
L e il W EEE RN R W IS TN N SR (0 T R S U N R W R O (O 00 N IR TR (AN U T TN (0 e ni
T TN VAN U TR0 WU YOO N0 Y U T T T VAR OO TN Y (YOO U U O Y O Y YO U (N WO U U MY T U YO O U GO S U N Y Y N VY W TN N N N G GO U S WY NN U A Y YO G RN G N SO0 O VOO
I i Y [e e lLIAI R R IO N B 1112t (AYGCOS (1V,,,2,3,,,4) 4.0 08 b e e g ag by ey e b v L\
111115111111_1_1tlllllllt:ll:lil111111111!ltLililellJuL_laliilill1l|1111ij|11111_1_u4_;
. ITIHiI_ls[,'L1|1NIE1 1C101N1T1A:I;N15 j_TJHjEl__IR{EIF]E[RLE[N]CI E WHI CH WwWI LL CAUSE GENERATI|ON OF VALUE AT ; | |
i lhl_sleELHlBJLJ-YI lTlltMlEl Ci i it ad i i s il ad e s i i diggteaaw i il e taopa o pob bl bopdod b bt Lol d Lo Bl 1
MWW

A generalization may be made of the above problem. If the number of
pairs are indeterminate, the following function can handle this situation:

UNIVAC 1107 SLEUTH II

REVISION: SELTION:

———a

MANUAL NUMBER: PAGE:
UP-3670 Rev. 1
r
LABEL A OPERATION A OPERAND A COMMENTS ”

- -
A 'V GC t‘Jt5|ﬂr| i LFleELCl IE W O O (R, e WO R 10O (OO O, OO T O (8 L [TS T OO T U O O O .LH_J__.HL_.L,_LJ Joorle s Bl dondes il b b | I T ot e | 1_L_-J_ 1 e Pt St et YA L SR W
ALY i B o s s I b i ad b i g TR OO0 YO A U OUOY SO T ST YOORY WU OO Y W SO WY CHNT NN NN NN WO S T WA TN SN SO SN WY WO WNC WA SN U N W WY O O M O
B O) e 1EY o S e e b i 0N Y S OO WO U0 VR OOV NN U W VU NN VO M T OO N U O U IO Y S N A O O S O O N A A R RO
NG o 15 Y v e A% g e b i g gl N S WY Y TN AU U U M T W S W WY U O U OO MO S S O U T (O OO M T Y A T MUY

. I
PllillIL_lepiﬂlolcllilllolLlllJlltlt111lla|1LLIIijlll1[111111|111I|t11L41||1|1|1|i|1
LOO%R iy INAME NN VO W U TN WO O N WY SO Y YT U TN WU W Y S N Y O Y O OO U O T W MO VA OO O YOO WA NN (N S N WA S W T OO MY W 00 O O VOO MUY T WO J,I
NL"EHH; e 1BQY e NG e Yy e et b 1 1€ 0 UINT, ER, | IR O A BB A AR AN A A I BN A A A
DIItlll}l i | jELoJ_u_i 1 O (. MO lA]vlclclgsi{lzl lN|{ |‘I_L}l—1}] | o l L1 | l'___]_, GE HIERII&J_}:]IiIIED OiD|b| T EE H Hl]!:.',LhAI '_I_F_l I S .

" "

Altl'lll LT ORI |E|qlul) I T | lDlt I1£}J IAIVJGICIOTSF{lZI | }LAL_J.J_IJLL_L,_L_J. I._L_JCL_JILlhsrlEI 0 ?[31."-I_XLL_LF_JEJ.EL_,IA.H1E}. S UJHL_.L § O AP o
B1(111)1 O IE]QIUI Lt |DILJ'1) i+IBI(11_l)1 AN T U N SN WO U U W Y MO SO A O O Lsiulw 9,00 T.ERMS i b b g b sl e i g o
TP ERENEE. . LW ErY AR AE AEnen s aeases BERELNEEEAE S EEEE S ERETEE A NEEN AT EEL IR ENT
ClLRELE* N AME .

I i I O i) B S Y U SO Y U T T T U YN Y U WO VOO W IO T U O OO SN Y T O T W (OO O T MY O U OO SO Y O WO O G M A T W W O WO TN SO YOO W0 M O A

LOOP 3 5 .

O I (0, WO T O DO 9 e W W i TN VN WO T S VOO R QTN YOO U A TN W Y S VOO WY TR WO AN NN ST VRN S T SN VY (N N AN S W (0 A AR B A AN G R T N R

LT SN Lo PR [T MR GO nate - IDIOJ S (A)) SO D |A:v|GJ cl 0!5 I'*le 1'r|N|‘:1'|1)L VEA GJ.EJLH“FIIIRJEL_ng R [(R! O 14,,.1 | I | .L._-L_J,._l Voodo b4 .. | I._.J..__l,_l-...l.. fovobie alestbonilie e Jonpoo il

IJIItIIIllLEIHlDllllilIIAI{JlIIIle]{lIl}IIJllJJlIiIIllliIltIlJIIL'Liilll*il!JIIL_Llllil.'J[l!l

T A T Y

sl | LRLJ L1 IL"t N I B l]tﬁl'L‘l‘LJ_GlclﬂlsI{JILJLJEL Jf.L_J__I_ B0, I |"'L Ll' TERA L 913 wl!,,}]_l:_wlae |G ENE, RATED,
lElHITIRI " ' 91 h ' S FIUIHICI JS, MADE LA ?JEJ. T HE |_Flu|H1c|. LINE O E LR Ly MEEELBERERENNNEN
WHERE A, ANU N A RE INITIALIZED TO IERO CONT RUL THEN,,
T Wy e I R e Yook OO o (O, 0 P Mo IO Al i vl v,] (T Lol TRT TR T i i 0 Wi ot st B T AN EREERE N RN N e
IJ_{UI H] Plsl lTlol' lclllRl cl LJ.EL__.L_EJ.HE__IFlEiREEINlcls PID_]_'IN]T| A N D.l_.._ 1._..1...,-] ME et “,Lt)J_Ol_PL.. o Ry _.IOJ. _L,___l_‘lsl' Ll | :_l 1 'L..._.L__I L1 1 | | J B " AN N NS NN N S

- EFFECTED| (MW ERE (N= 1 D=4 A=02,:8)=1,., THE DOl 1,8 EXECUTED, JAND, i o | v it oo g o by 114y
T HE IElxlFlRIElsls_llllol N ON THE LEFT S/0E OF CO MMA, /5, T RUE]|, B wbinin o v e

; I 8§ G REATER THAN 2 THEREFURE THE | TERATI O N CUNTlNUES.:

N TS N T T SO Y Y TR A A O AT B N O I B T O T s Tl T e e | (R R TS TR S N TN WY O WY N VOO O I W A O O O O A O
s ulol P 1'151 |ExECuU T.ED JoR; (T HE l5 IElclolenz P ME G N= 2 B=3 g Az 18, 5B 38 g g o bopo gt bt e b e B
o M S s ST GREATER (THAN 4, LOOPR (1S EXECUTED & THWIRD ot i 00w v iga e g

; TIME N=3 D 5 A=229 . =9 , THIS TI M E D O T ES T FAI LS AND THE , ;

L llilJllliilllllIJ_IJillllllllllllliliilil1III_IilIllilliIlllllllllllililljjlll

) FIHAL CALCULATI ON 1 S MADE . A /B =13

L1 1 b ool ot e p o b i aecere e bty v s g e ber gy pdov o r by g g g i g g it i g g s a s i il s i iy

ﬁ,:;-.

i

s

2] i . e = i it #4 g G ok ’ kS ; £ ol i, 2

SR S UN' UAC 110; SLEU'H II

o = i3 2 % # E& i &% < 2 A it % o e
]

Ry i

REVISION:

SELTION:

I1I

MANUAL NLIMBER:

UP-3670 Rev. 1

PAGE:

24

On the following page an example of a FUNC source code
statement is reproduced. It includes examples of FUNC
structure, a nested procedure, and function references.
The value produced by reference to SQRT FUNC will be
the square root of the largest square which is less than
or equal to the parameter provided in the reference. Op-
posite the example is an explanation of the action taken
by the assembler while processing this coding.

REVISION!: SECTION:

MANUAL NUMBER: PAGE:

| UP-3670 Rev. 1 %5
000001 SORT* FUNC
000002 | A(l) EQU OI
000003 B(i) EQU Q
Q00004 Cw FPROC 0
000005 Ak (1) EQU All)+2%B(1)¢]
0o0006 Bw(l) EQU Bli)+}
00C007 | END
000008 O | NAME
000009 | C
000010 PO SURT(1)>»A(L) » GO D
000011 | END Bl1)=(SQRT(L)<cA (L))
000012 00 000000 000000000010 ¢+ SQRTI(64)
000013 000001 ©O00000000006 + 2¥SQRT (13)

Q00014 0000000L0L000 END

. REVISION: SECTION:

~ UNIVAC 1107 SLEUTH Il 1 =

MANLUAL NUMBER: PAGE.

UP-3670 Rev. 1 26

Lines 1 through 11, the function with a nested procedure, are temporarily
stored by the assembler for later reference.

Line 12 is a reference to SQRT FUNC, introduced above. The reference pro-
vides one parameter (64). The object line produced by the reference
would contain an octal value 000 000 000 010,

Line 1 is thé entrance to the FUNC,

Line 2 equates a value of zero (0) to the subscripted label A(i).
- Line 3 equates a value of zero (0) to the subscripted label B(1).

Line 9 is a reference to C PROC.

Line 4 is the entrance of C PROC. The first zero (0) operand expression in-
dicates that no list is to be submitted to C PROC when referenced.
The second zero (0) operand expression indicates that no object coding

will be produced by C PROC.

Line 5 equates a value to the label A(n). The value produced is a result of the
operand expression, and will be an ascending sequence of squares.
(1,4,9,...... .e).

Line 6 equates a value to the label B(n). The value produced is a result of the

operand expression, and will be an ascending sequence of square roots
(1,2,3,..... ;o),

Line 7 terminates this iteration of C PROC,
Line 10 compares the value of the SQRT parameter (64)to the nth value of A. If it is

greater, the GO line will be executed once. Assembly continues at line 8.

Line 8 is a NAME entry point.
Line 9 references C PROC for the second iteration.

If the SQRT parameter value is not greater than the value of A, assem-
bly continues at line 11.

Line 11 terminates SQRT FUNC. The operand expression provides the value of
SQRT FUNC for this reference.

Line 13 is another reference to SQRT FUNC. The execution is identical. The ob-
ject line produced by this reference would contain an octal value

000 000 000 006.

Line 14 terminates the assembly or program.

REVISION: iiss:[::ﬂmm: |
~~ ~ UNIVAC 1107 SLEUTH Il o m
4 : ' MANUAL NUMBER: PAGE:
UP-3670 Rev. 1 | 27
C. NAME

A NAME directive must be placed after PROC or FUNC lines
but before their respective END lines to indicate alternate en-
trances to these segments of coding. A reference to the label
of the NAME directive line provides this entrance. The label
of a NAME line must be made external (LABEL*) if it is to be

used as an entrance point, or if it is referenced prior to the
NAME line in which it was defined.

it wmeRMAT i
ElLL | WAME 1 NN NEEE

Any valid expression may be placed in the operand field of a
NAME directive by the programmer. This expression may
be examined within the PROC or FUNC by reference to PROC
or FUNC LABEL (0,0) to determine where entrance was made.

ﬂ'!llrﬂﬂiﬂlleljl L L b v et bbbt bbb I_II_lJ__LJ_
1] 0i01_MiC10}y lot) 1=i0] 1yt miG MICe1y) [MCGEedy)y Ml ey, @)1)
‘L THE 0P ERANG ExpRESSTON 0F rue amel Lzme wslen |
‘1 TN IEwTIRY) TSI TESTED! BY THE EX |P|&EiL\SLI_QiM_Mﬁhol)lob =10

| —

. MIIN AL HE! [ENTR A F MIEL Al A e
.| PRIGIOWEED, | loTHERYTSE MWLy BE SIKIPPED],
d GO

The GO directive provides the means of transterring control
within a PROC or FUNC to a specific NAME directive within
that PROC or FUNC. Therefore, the operand field of a GO
can only be the label of a NAME.

'111_] 1F|0RH19|T|11| lll_lllJlil,f;LllllJ, Ll b
LABEIL | Glo | LABEL|(oF | WAME R ECTIVED, | (|1,
Lt i@e o b o v b L
~| THIE| LEINE ABoVE MTLL TRAMSFER Tlol EMTRY | || |

REVISION: SECTELM;

MANUAL NUMBER:!: PAGE:

:iﬁ‘ =0 A ?‘

UP-3670 Rev. 1 28

B. Special Directives

1. General

Iwo special SLEUTH II directives are available. They assist the programmer
in defining an object computer to the assembler. Use of them will override
certaln SLEUTH II built=in definitions for the 1107. The directives are:

WRD -- Redefines the word length (in bits) for the object machine.

CHAR -- Redefines the character set for the object machine.

2. Special

a. The WRD directive is used to indicate the object computer word size in
bits. When an output word is generated, it must not exceed the stated
output word size, or a truncation error will be noted. This limitation
does not have effect during the evaluation of expressions, since values
are limited only to the 1107 word size, 36 bits. Only when a 'line
item' is generated will the defined output word size be considered.

The format of the WRD directive is:

WRD e

where e is any expression with a value equal to or less than 36. For
example, if

WRD 18

were used, it would indicate an 18-bit word size for this assembly. To
illustrate the effect of the directive, symbolic lines are shown side-

by-side with the octal code which would be produced by the assembler.
Ihe 1107 character set is assumed:

LINE QUTPUT
' ABCDEFG" 060710
111213
140505
+ 0 000000
+64 000100

b. The CHAR directive is used to alter translation of the 1107 character
set to an alternate set of 6-bit equivalents. The translation takes
place any time the assembler encounters one or more characters
enclosed by apostrophes. The format is:

CHAR C ,e ,C ,e ,il-"lc ’e
5" B8 H

17 1 N

where, for each pair of expressions, ¢ is the value of the 1107 char-
acter to be replaced by e. The value of both the ¢ and e expressions

must be: 0L value <077. If greater than 077, a T-flag will mark the
line. For example, if

REVISION: SECTION:

MANUAL NUMBER: PAGE:

-~ UNIVAC 1107 SLEUTH Il - - A

UP-3670 Rev. 1 29

¥ i 4

CHAR 6,024,7,025,010.026

where used, the characters 'A', 'B',and 'C' would be given the values
024,025, and 026 respectively. Alternately, if

I DO 3, CHAR I+5, I+023

were used, it would have the same effect. Here are output examples,
assuming a 36-bit word length:

LINE QUTPUT

' AABBCC' 242425252626
+1A" 000000000024
+'A', 'B' 000024 000025

3. Usage

These directives must precede lines of symbolic code which are to be

affected by them. If they are coded within a procedure, the procedure
must be explicitly referenced by name to get the effect of the special
directive(s). Furthermore, such a procedure must be sub-assembled in

assembly pass 1¢ do not code the second PROC directive operand. The

first example following is correct; the second is not:

a. DEFS* PROC .

WRD 30
END

b. DEFS* PROC 0,0
WRD 30
END

After a special directive is encountered by the assembler, its effect
continues until another is encountered. Also, the effect is available at
all levels of processing, whether or not in a procedure. For instance,

WRD 30
8 e etc
pP* PROC .
WRD 24
5.4 etc
END
(o etc
- p
de. | etc
e, WRD 30

s etc

)

#

#

o

I - - O A A D R
- UNIVAC 1107 SLEUTH I
2 0/ & o o® & & & £ &5 B, oa B & % & @& %
» e 2 i & # e & & i G o P £ 9 o g

£ i 2 B o e 2 45 & i # 48 i 3 2

&

B

R

2

=P

5

.

5

i

REVISBION:

SECTION:

1

MANUAL NUMBER!:

UP-3670 Rev. 1

PALGE:

30

For code at line

a. 30

b. 24
C | 30

d. 24
€. 30

Word length, in bits, is

The WRD directive in P procedure has no effect until P is referenced.

coding in P and coding following the reference to P will produce 24+bit

All

words. All coding following the WRD redefinition at line 5 will produce
30-bit words, until another reference to P, or another redefinition.

. SECTION:

gz 2 £ & 8 e 4 i3 i 5 i % 13 iy
£ % & 28 5% 2 i ar S & ¥ e g = i 22 B

FPAGE:
" - SR & 8 . B i %% % i f 4 e =
UP-3670 Rev. 1
45 & & e i 5 % & P # P

IV. PROGRAMMERS' REFERENCE GUIDE

A. LINE CONTROL

The information content of a line to the assembler consists of the label,
operation and operand fields which, except for the beginning of the label
field, are written in free form. The information content is normally
terminated when the maximum number of expressions required by the
operation have been encountered (or maximum number of lists in the
case of a procedure reference).

There are two special marks which override the normal rule.

1. Cont inuation

If a ;" is encountered (outside of an alphabetic item) the current
line is continued with the first non-blank character on the follow -

- ing line, and there is no more information to the assembler on
this line.

2. Termination

If a'." followed by a blank is encountered (outside of an alphabetic
item) the line is terminated at this point. If any more expressions |
are required, they are considered to be zero by the assembler.

A continuation or termination mark may occur anywhere on the line. Any
characters may be entered following the information content of a line.

B. LABEL FIELD

If a line is to have a label, it is written in the label field. A label is
composed of one to six alphanumeric characters, the first of which is
an alphabetic character. The label field must start in column one and
is terminated by a blank. Except for the EQU, FORM, PROC, NAME,
FUNC, LIT, and INFO directives, the label is equated to the current
value of the location counter. There are thirty-two location counters
which are numbered from zero to thirty-one. These counters are
referenced by $(e), where the value of the expression e is less than

& ” @ ¥ # # # e # i & e i £ ok i H i e i
leNI"vuﬂ\‘: II“D'J !;I_[Elj.rl4l ll % B B
s ¥ ® ¥ » # i & £ % @ i 5 2 i e % £ 5 o

ﬁ ﬂ _& i:?.‘ % ﬁ .3,:_"‘-: Fr :‘3;:‘“.5 “-‘E‘" “5 {::. e 'f rl"-p "w = 1 bt} g ". ”
UP-3670 Rev. 1
: & £ i 4 B & e & £ g s & & = i

SECTION:

PAGE:

thirty-two. The counters do not have to be used or referenced in sequence.
The location counter is initially set to zero in $(0). Any line which affects
the location counter will affect the current location counter. To cause a
particular location counter to be used, the location counter $(e) is written
in the label field. If the same line is also to have a label, the location
counter is immediately followed by a comma and the label. This location
counter will be used until a new line specifying a location counter is
encountered. Labels may be subscripted by following the label with a

list of expressions enclosed in parentheses.

C. OPERATION FIELD

The operation field is up to six characters in length, and may contain
an assembler directive, a mnemonic machine operation code, a label
associated with the FORM, PROC or NAME directive, or a data gener-
ating code. The operation field starts in the first non-blank following
the label field and is terminated by a blank unless it consists of a +
(plus) or - (minus) sign, in which case the + or - sign is the operation
field and the next column need not be blank. If the operation field con-
tains an assembler directive other than a RES (Reserve) directive (which
increments the location counter), the location counter will not be
affected. In all other cases, the location counter is incremented by
one after the line is generated.

D. OPERAND FIELD

The operand field starts in the first column following the operation field
and is composed of lists of expressions. Lists are separated by

blanks. The number of lists is one except in the case of a procedure
reference line. Each expression in a list, except the last, is terminated
by a comma.

E. EXPRESSIONS

An expression is an elementary item or a series of elementary items
connected by the operators shown in the table below. The hierarchy of
these operators is also shown in the table. Within an expression, opera-
tions are performed in order of their hierarchy numbers, with the

higher numbered operations being done first; operations with the same
hierarchy number will be performed from left to right.

; %3'}-’- @ k5 # i & & g g £ = g g 4 % - e e &
% % & @ 0 I g % @ # S & £i g i

REVISION: SECTION:

An item may have preceding blanks.

true, 0 otherwise

An expression may also have a leading + or - sign.

. IV
¢ ¢ MANUAL NUMBER: PAGE:
H & 2 & % & o # & £ o & #E
i & & # B A & % @ W & % @ UP-3670 Rev, 1 3
Hierarchy Operator Description
6 * 4 a*+b = a*lOb
* - a*-b = a*107P
/ a/b = a shifted b places (left if
b>0, right if b<0)
b ' Arithmetic Product
/ Arithmetic Quotient
// Covered Quotient (a/ /b = a+b--1)
b
4 + Arithmetic Sum
- Arithmetic Difference
3 e Logical Product (AND)
2 ++ Logical Sum (OR)
- Logical Difference (Exclusive OR)
1 = ‘Equal “a=b has the value 1 if
true, 0 otherwise
> Greater a>b has the value 1 if
true, 0 otherwise
< Less than a<b has the value 1 if

REVISION: . SECTION:

IV

MANUAL NLIMBER: PAGE:

UP-3670 Rev. 1

The various types of items and their values are given below.

TYPE FORM VALUE EXAMPLE
Label any label value assigned to label L
Location $(e) current value of loca- $(5)
tion counter e
Octal the digit 0 followed by value interpreted as base 017
decimal (0-7) digits 8 (binary representation)
Decimal non-zero digit followed value interpreted as base 14
by decimal (0-9) digits 10 (binary representation)
Alphabetic '(apostrophe) followed value of each character 'BOB'
by any characters except in corresponding position
'followed by’
Floating decimal digits followed values represented in 3.14
by . followed by decimal internal floating point
digits format
Parameter procedure or function value of corresponding MAX(2,1)
label followed by 0,1 or parameter as defined by
2 expressions enclosed in the current reference
parentheses or LIT label (See Procedure Reference)
followed by a line item in or location of line item
_ parentheses
Subscripteld Any label followed by a value assigned to sub- L(2)
Label list of expressions enclosed scripted label
by parentheses
Line* (followed by line followed value of the word the line (J $+2)

by) would generate

All items in the above table will be right justified in their generated resultant
field, and leading bit positions will be binary zeros.

*See description of line item.

s @ ® ¢+ & ¢ & e

* ® 3 & & © & =

< € % & » =8 » =

@ & I ® £ = g

> & » £ % 8 7

€« & £ ® ¢ ¢ | -

] i B & -7 2 i & & M *r ¥

B = & B B N B wW B 4 @AH &

UNIVAC 1107 SLEUTH I

I‘li'

|
» 2 %

I % 8 &
4

B # @

& $ @

REVISION!: SECTION:

- T T T T

. k. 2 s & 4§

PAGE:

2 & % a

E 3 2 -
* B &

& & @ B . i b
o k'] -3 & & 5 i
s = F, & i i

E % s s L &

& ¥
. | £ i @ o B %
L

» & @
& * 8

L
2
4

@ H ¢
g ® £
¥ 2 @

b & #] B

3@ -] & ® 13 = g -

¥ & =

UP-3670 Rev. 1

M
Xt

MNEMONIC INSTRUCTIONS

The operation field may contain any of the mnemonic instruction names
listed in the Appendix. The instruction ars two types. Type O in=-
structions have four expressions representing A, M, X, and J fields in
the instructions. Type 1 instructions have three expressions repre-
senting M, X, and J fields in the instructions. The absolute operation
code listed is placed in the F field. The J field may be supplied by

immediately following the mnemonic in the operation field by a comma
and following the comma with an expression whose value is to be

placed in the J field. (The expression may have preceding blanks.)
This alternative method of supplying J is not permitted where the
mnemonic instruction is used as a literal. In this case only the formats

shown below are permitted.

FORMAT: TypeO F A, M, X, J
J

Typel F M, X,

The expression representing the M field (if present) may have a pre-
ceding * to indicate indirect addressing and the expression represent-
ing the X field (if present) may have a preceding * to indicate index
incrementation. |

If the A field represents an index register, the value of the A expression
is placed in the A field. If the A field represents an A register, the
value of the' A expression minus 12 is placed in the A field and if the

A field represents an R register, the value of the expression minus 64

is placed in the A field.

There are four special mnemonics interpreted as below where a = the
value of the expression found in the A field:

E & | REVISION: BEETIRN:

¥ ~ _ i g i e % : - ¥ i ¥ 74 “'5' e ® £ & * ¥

FAGE.

¥ = : :

1 " b » N . , E o F . &8 & id . & < * * ¥ #
. UNIVAC 1107 SLEUTH I8 .
3 ~ ; w W : o B
i o 5 & # £ E P : ‘. # 4 & 3] . e e ; * » I & A 2 #

: v W : . 4 ; - 2 + & w s 2 A % ¢ S T @
o

UP-3670 Rev. 1

AT ¥ i g S

€
% & 2 # % o
o & 2 * ® #
L & 4 4 & 4
2 s o » o a

v_. + 3 : P £ N i % * * i # z ¥ 4 . > k

Condition
Mnemonic a < 16 16 < a < 64 64 < a
L LX LA LR
S SX SA SR
A AX AA
AN ANX ANA

The line is interpreted as if the mnemonic in the table appeared in
the operation field.

G, DATA WORDS

There are two data word types (a+ in the operation field or a- in the
operation field). The - data word will generate the negative of what
the + data word would generate, so only the + data word will be
described. If the operand field contains one expression, the + data
word generates one (36 bit) word whose value is the value of the ex-
pression in the operand field.

If the operand field contains two expressions, the + data word generates

two (18 bit) fields whose values are the values of the expressions in the
operand field.

H. LINE ITEM

A valid line item is an instruction or data word line without label field -
and without leading or trailing blanks enclosed in parentheses, and has
the value the word generated by the line would have. If the line is a

data word line, the leading + or - may be omitted. If an entire expres-
sion (except for possible leading *) consists of such an item, the value
of the expression is the address of the cell containing the word generated

by the line. The word generated is called a literal, and literal words
under the same location counter are not duplicated.

An item within such an item can be of this type up to a level of 8
parentheses,

o
il

B

£ 5 o g i . s #

| RN,
1

IV

PAGE.:

UP-3670 Rev. 1

If the address of an instruction is a literal with value '"v'", and neither
the M-field nor the X-field contains a leading '"*", immediate addres-
sing may be generated depending on the following condition:

1. XZOIandOiv<218,J=016

2. X=Oand-—217<v<0,J=017

3. X #0and 0 < v < 2°°, J = 017

ASSEMBLER DIRECTIVES

Assembler directives supply special types of information to the SLEUTH II
assembler. An assembler directive falls into one of two categories; the
first will not cause a corresponding line of object code to be generated by
the assembler; the second may generate one or more lines of object code.

The several assembler directives are listed below and described on
succeeding pages. Any labels referred to in an expression on a directive
line must have been previously defined (i.e., they must have previously
appeared in the label field).

Assembler Directives

a. EQU g. DO
b. RES h. GO
c. FORM i. LIT
d. END j. INFO
e. PROC k. FUNC
f. NAME '

1. EQU

The EQU assembler directive causes the label in the label field
of its symbolic line to be equated to the value of the expression
in the operand field of the symbolic line.

FORMAT: label EQU el

, ;
A nk #

e Bk

- UNIVAC 1107 SLEUTH 11

SO S T S B R

SECTION:

UP-3670 Rev. 1

RES

The RES assembler directive causes the value of the expression
in the operand field to be added to the value of the current loca-

tion counter.

FORMAT: RES el

FORM

The FORM assembler directive is used to define arbitrary data
formats. This directive must have a label in the label field,
and the sum of the values of the expressions in the operand field
must equal 36.

The FORM directive permits the programmer to define arbitrary
word formats by calling upon the pattern specified with a line of
coding having the associated label in the operation field and the
appropriate number of expressions in the operand field.

FORMAT: label FORM el, ey en

REFERENCE: label e ., e ...
1 2 n

END

The END assembler directive indicates to the assembler that the
last line of symbolic coding for the procedure, function, or pro-
gram has been read by the assembler. In the case of a procedure
the operation field is ignored. In the case of an entire prograim,
the expression in the operand field represents the starting address
for the program. In the case of a function, the expression in the
operand field represents the value of the function.

FORMAT: END el.

"PROC

A PROC directive line must have a label, and the expression in
the operand field indicates the maximum number of lists of

Wi

SECTION:

b e s i o

PAGE:

UP-3670 Rev. 1

expressions associated with the procedure (if any). If the list
on a PROC line contains 2 expressions, the 2nd expression
represents the number of words that will be generated by a
reference to the procedure. The 2nd expression can only be
supplied if the number of words generated is always the same,
and only if the procedure makes no forward references (i.e.,
reference to a label before it is defined).

A procedure must be defined previous to any references to the
procedure.,

o

The PROC line may (optionally) include NAME lines (see NAM.
directive) and any valid symbolic lines up to and including an
END line. If there are n intervening PROC lines, the n + first
END line will terminate the procedure.

Any labels defined within the procedure are considered not
defined outside the procedure unless the label is followed by
an "*'"' in which case the label is treated as if it appeared
outside of this procedure. If a label is referred to within the
procedure, the definition of the label outside of the procedure

- (if any) is taken.

The label on a procedure reference line is defined as if it
appeared on the !st line within the procedure which contains
an '*' in the label field. In the absence of such a line, it is
defined equal to the value of the current location counter when
the procedure was entered.

NAME

A NAME directive appears within a procedure or function at the
desired point of entry in that procedure. Anything previous to
this point is considered undefined by the entry. A NAME line
must be given a label. Its operand field may contain an expres-
sion. The value of this expression may be utilized when refer-
encing the governing procedure by means of the NAME label as

£

SECTION:

a8 e o oo £ i 5 Bt ke & £ ER% i =) e i Y e v o y S
A% ‘ﬁ & g -E; -.¢'=' Ak) _.’ ‘f."‘k' .-"1{ g«,\ B il i -: i e i S o £

| UP-3670 Rev. 1 10

explained in Paragraph X (Procedure Reference Line).

L*J
@

FORMAT: label NAM]

A procedure may be referenced by placing any of the procedure
names (including the name on the procedure line) in the operation
field of a line.

DO

The DO directive is used to generate a line a given number of
times. If a label is present, the value of the label will be n the
n'th time the line is done. The expression in the operand field
indicates the number of times the line is to be done. The line
may be any line of symbolic coding. The expression defining
the number of times a line is to be done is followed by a blank-
comma. The line of coding to be done starts with the first
character following the comma as though this were the first
column of a separately written line.

FORMAT: label DO e A, A line of coding

label DOfs:1 A, label A line of coding

GO

The GO directive is used within a procedure or function to permit
transfer to specially defined points within the same procedure.
The operand portion of the directive can only be the label of NAME
directive within the procedure.

FORMAT: label GO label of NAME directive

LIT

The LIT directive defines a class of literals which are placed under
the control of a specific location counter. Only one LIT directive

is allowed under each location counter. The directive may have a
label.

SECTION:

UP-3670 Rev. 1

el

Use of the label with a literal will place the literal generated in
the table of literals associated with the control counter current
at the time the related LIT directive was encountered. The
origin of the literal table follows the last coding line of the
specified location counter. Duplicate literals are discarded in
each table, but may exist in separate literal tables.

FORMAT: Label LIT

REFERENCE: Label (literal)

10. INFO

The INFO directive is used to specify information to be interpreted
by the monitor, loading or other external programs which process
assembly output.

FORMAT: INFO ell 621’ 622" ;s

I

The 1107 monitor program will interpret €11 1 and e g ® 2
as references to bank 1 and bank 2 respectively, and wil[1 cause
loading of information assembled under location counters
ezl, 922, ... 1In successive areas of the designated bank.

In the absence of INFO directives the even location counters will
follow each other in bank 2 and the odd location counters will
follow each other in bank 1.

11. FUNC

The FUNC directive is used to determine the value of a quantity
which is dependent on the value of another quantity or quantities.
A reference to FUNC is a request to a computational procedure

for the production of a single value, identified by and associated

with the function name. FUNC follows the same rules as a pro-
cedure.

The end of FUNC is specified by encountering an END directive.
The only valid reference to FUNC is made within an expression,

SECTION:

IV

PAGE:

12

IRIVAC 1107 BLEUTH i -5 | A

UP-3670 Rev. 1

il ik okl i - i s o i o i s i il it —

FORMAT: Label FUNC
REFERENCE: Label (list)

FUNC is referenced by the label of the function or by the label of a
NAME line appearing in the function definition with a list composed
of parameters enclosed in parentheses.

The resultant value of a function is the value of the expression on the
END line.

12. WRD
The WRD directive is used to indicate the object
computer word size in bits. When an output word is
generated, it must not exceed the stated output word
size, or a truncation error will be noted.

13. CHAR

The CHAR directive is used to alter translation of the
1107 character set to an alternate set of 6-bit
equivalents. The translation takes place any time the
assembler encounters one or more characters enclosed by
apostrophes. The format is:

CHAR cl,el,cl,el,¢ee.eeCh,en

where, for each pair of expressions, c is the value of the
1107 character to be replaced by e.

14. LIST, UNLIST

These two directives enable the programmer to control

the listing of the assembler. The LIST directive negetes
the effect of an 'N' option or a previously used UNLIST
directive which suppressed the listing.

#

o

>

b=y

s

REVISION: SECTION:

IV

MANUAL NUMBER: FPAGE:

13

UP-3670 Rev. 1

dJ.

PROCEDURE REFERENCE LINE

o
0

Lists of variables may be submitted when referencing a procedure.
pressions within a list are separated by commas, lists are separated
by blank columns. |

If the name of the procedure is P, within procedure coding P refers to
the number of lists supplied by the current reference, P(e) refers to the
number of expressions in the e'th list and P(e,f) refers to the value of
the f'th expression of the e'th list (e and f are expressions). The list
containing the procedure name (operation field) is considered list 0 and
is always present. P(0,0) refers to the value of the expression on the
NAME line by which the procedure was referenced.

INTER-PROGRAM COMMUNICATION

l. Definition

If a label in the label field is immediately followed by an '"*'" and the
line is not within a procedure, it is an external label which can be
referenced by other programs, assembled separately, when the set
of programs is loaded. References to an external label in the pro-
gram which defines it are the same as for any other label.

2. References

If an address expression consists of a label plus or minus a constant,
and the label is not defined within the program, a reference to an
external label will be generated.

N : ;<; it s £ Fo & Ay i i bt g E = it i &
i oY e £ £ 4 o & % s G g e S i e £ 5 # e #

REVISION:

SECTION:

Appendix A

: MANUAL NUMBER: PAGE:
o UP-3670 Rev.1 1
APPENDIX A. SLEUTH II MNEMONICS

E Mnemonic Description Timing**

01 SA Store A 4

02 SNA Store Negative A 4

02 SN Store Negative A 4

03 SMA Store Magnitude A 4

03 SM Store Magnitude A 4

04 SR Store R 4

05 SZ *Store Zero 4

06 SX Store X 4

07 SC STORKE &

10 LA Load A 4

11 LNA Load Negative A 4

11 LN Load Negative A 4

12 LMA Load Magnitude A 4

12 LM Load Magnitude A 4

13 LNMA Load Negative Magnitude A 4

14 AA Add to A 4

15 ANA Add Negative A 4

16 AMA Add Magnitude to A 4

16 AM Add Magnitude to A 4

17 ANMA Add Negative Magnitude to A 4

T ANM Add Negative Magnitude to A 4

20 AU Add Upper 4

21 ANU Add Negafive Upper 4

22 BT Block Transfer 8

23 LR Load R 4

5P B B it B, bl D . . - L e ey SECTION:
UN| VA c l] 07 SLEUTH ” inptinile X
PR RERSEE Y R % F E P & W oW Em B o8 B MANUAL NUMBER: | PAGE:
g Dl il T o $ UP-3670 Rev. 1 .
F Mnemonic Description JLiming¥*
24 AX Add to X 4
25 ANX Add Negative to X 4
26 LXM Load X Modifier 4
27 LX Load X 4
30 MI Multiply Integer 12
31 MSI Multiply Single Integer 12
32 MF Multiply Fractional 12
34 DI Divide Integer 313
35 DSF Divide Single Fractional 31.3
36 DF Divide Fractional 31.3
40 OR Logical OR 4
41 XOR Logical Exclusive OR 4
42 AND Logical AND 4
43 MLU Masked Load Upper 4.7
44 TEP Test Even Parity 6
45 TOP Test Odd Parity 6
47 TLEM Test Less or Equal to Modifier 4.7
47 TNGM Tesf Not Greater than Modifier 4.7
50 TZ *Test for Zero 4
51 NZ *Test for Non Zero 4
52 1E Test for Equal 4
53 TNE Test for Not Equal 4
54 TLE Test for Less or Equal 4
o4 - ING Test for Not Greater. 4
415! TC Test for Greater 4
56 TW Test for Within Range 4.7
57 TNW Test for Not within Range 4,7

R Bk A B F o2 AR orwcheow W o8 W RW e SECTION.
i N Rl i 7 S l. E U TH ” Appendix A
e e DR AR e

E J Mnemonic Description Timing**

60 TP *Test for Positive 4

61 TN B *Test for Negative 4

62 . SE Search for Equal 4

.63 SNE Search for Not Equal 4

64 SLE Searéh for Less or Equal 4

64 SNG Search for Not Greater . 4

65 SG Searchlfor Greater 4

66 SW Seafch for Within Range 4.7

67 SNW Search for Not Within Range 447

70 | JGD Jump on Greater and Decrément 4***

71 00 MSE ‘Masked Search for Equal 4

71 01 MSNE Masked Search for Not Equal 4

71 02 MSLE Masked Search for Less or Equal 4

71 02 MSNG Masked Search for Not Greater 4

71 03 MSG Masked Search for Greater 4

71 04 MSW Masked Search for Within Range 4.7

71 05 MSNW Masked Search for Not Within

Range 4.7

12 .OO W Wait

72 01 SLJ *Store Location and Jump | 8

72 02 _JPS - Jump on Positive and Shift 4

72 03 JNS . Jump on Negative and Shift 4

72 04 AH Add Halves 4

72. 05 ANH Add'Negative Halves ' 4

72 06 AT Add Thirds - 4

72 07 ANT Add Negative Thirds 4

72 10 EX ¥Execute 4

o | _ . REVISION: SECTION:
.. UNIVAC 1107 SLEUTH I
2 & & H @ ® & B & R 0 F A& & v m B om a a » R R WO AT
iﬂﬁﬁﬁﬁﬁ UP-3670 Rev. 1 4
E J Mnemonic Description 1iming¥**
72 11 LL,E R *Load Lockout Register-<«c~.y e 4
72 12 ETMJ ¥Enter Trace Mode and Jump
72 13 PAIJ ¥Prevent all Interrupts and
Jump
73 00 SSC Single Shift Circular 4
3 U DSC Double Shift Circular 4
73 02 SSL Single Shift Logical 4
< 03 DSL Double Shift Logical 4
74 04 SSA Single Shift Algebraic 4
a3 OB DSA Double Shift Algebraic 4
73 06 LSC Load Shift and Count 6
74 00 S Jump on Zero 4
74 01 INZ Jump on Non Zero 4
4 02 JP Jump on Positive 4
74 03 JN Jump on Negative 4
74 04 JK Jump on Keys 4
74 04 J *Jump 4
74 05 HKJ Halt on Keys and Jump 4
174 05 HJ *#Halt and Jump 4
74 06 NOP No Operation 4
74 07 AALJ *Allow all Interrupts and Jump 4
74 10 JNB Jump on No Low Bit 4
74 11 JB Jump on Low Bit 4
74 12 JMGI Jump Modifier Greater and
Increment 4
74 13 LMJ Load Modifier and Jump 4
74 14 JO *Jump on Overflow 4

P . : | evisION: | secmion:
. UNIVAC 1107 SLEUTH Il o Appendix A
T Y AL N SN -

) - L e UP.3670 Rev. 1 .
" F i) Mnemonic Degcrigtion
Timing**
74 15 JNO *Jump on No Overflow 4
74 16 JG *Jump on Carry 4
74 17 JNC *¥Jump on No Carry 4
75 Q0 LIC Load Input Channel 4
75 01 LICM Load Input Channel and Monitor 4
75 02 JIC Jump on Input Channel Busy 4
75 03 DIC Disconnect Input Channel 4
75 04 LOC Load Output Channel 4
75 05 LOCM Load Output Channel and Monitor 4
75 06 JOC Jump on Output Channel Busy 4
5 07 DOC Disconnect Output Channel 4
75 10 LEFC Load Function in Channel 4
75 11 LFCM Load Function in Channel and
Monitor 4
75 12 JEC Jump on Function in Channel 4
75 13 AFC Allow Function in Channel 4
75 14 AACI *¥Allow All Channel Interrupts 4
75 15 PACI *Prevent All Channel Interrupts 4
75 16 ACI Allow Channel Iﬁterrupts 4
5 17 PCI Prevent Channel Interrupt 4
76 00 FA Floating Add 4
76 01 F AN Floating Add Negative 4
76 02 FM Floating Multiply 4
76 03 FD Floating Divide 4
76 04 LUF Load and Unpack Floating 4
76 05 LCF Load and Convert to Floating 4
76 06 MCDU Magnitude of Charactéristic

Difference to Upper | 4

REVISION: SECTIAON:

A;ﬁpendix A

© uNIAC 1107 steuTH 1

MAMUAL NLUMBER: PAGE:

UP-3670 Rev. i 6

o pyead
e - pea
" i ; e T —
o
—

E J Mnemonic Description Timing*¥*

76 07 CDU Characteristic Difference
to Upper 4

*No A Designator

¥¥Add 4 microseconds to any nonrepeated instruction which
uses a datum from the same bank, or for a nonrepeated
conditional skip or jump instruction if the skip or Jump
takes place except for the JGD,

¥¥¥Add 4 microseconds if the jump does not take place.

P o e A P ek § SPSTY e it n m pp—— T e de

G
k &5

il it # £ & % g e ¢ s w ik =2 s i B
% & % Gs H & 3 5 %% ¥ 4 G % -2 £ i

Lol e E s . i 0y 5% P 3 L e &

REVISION:

SECTION:
APPENDIX B

MANUAL NUMBER!:

UP-3670 Rev. 1

PAGE:

S

APPENDIX B.

SLEUTH II Assembly Error Flags

D. Duplicate label
E. Bad expression
I. Instruction error
L. Too many levels
R. Relocation

T. Truncation

U. Undefined label

A=

. o - II = : . . .F . 4 . ‘:f 4 £) r}l i3k -al: IJ-| ' -:-:I_ FY o
x | é' \'{ ; ":' :’:”_" ;’ ‘r j; ; - I‘I L +l . ’ ¥ A f . +y f

= a5 5 g 5 e 2 = i 2 o Tk S i 5 et 2 i #
-+« UNIVAC 1107 SLEUTH Il
i o i# s 47 i & s i e i i o % e =k o

REVISION: SECTION:
Appendix C
MANUAL NUMBER: PAISE:
UP-3670 Rev. 1 1

1st ITEM

Any
Any
Any
Any
Any
Any
Aﬂy |

Any
Any

Any

Any

Any

Any

Any
Binary
Floating

Binary

‘Floating

2
1

Binary
Floating
Binary
Floating
Any

Any

Any

APPENDIX C. SLEUTH RULES FOR RESULTS OF OPERATIONS

oP

b

<y=,

ond ITEM

Binary*

Binary*

RESULT

Positive Decimal Exponentia-
tion

Negative Decimal Exponentia-
TL0N

Positive Binary¥* Positive Binary Exponentia-

tion

Negative Binary* Negative Binary Exponentia-

Any
Any
Any
Any
Any
Any
Any
Any
Any

tion Sign filled

Arithmetic product
Arithmetic quotient
Arithmetic covered quotient
Arithmetic sum

Arithmetic difference
logical product

logical sum

logical difference

1 if true

0 1f false

SLEUTH RULES FOR MODES OF RESULTS

Yo, K
*/

*s/s//
*y/s//
*./\//
*y/s//

S
=

Binary*
Binary*
Binary
Binary
Floating
Floating
Binary

Binary

Floating

Floating
Any

Any

Any

Floating
Binary
Binary
Floating
Floating
Floating
Binary
Floating
Floating
Floating
Binary
Binary

Binary

*A non-binary, that is, floating point value will result in an expression error

flag (E).

REVISION: SECTION:
®O® ® B ¥ BB F B B ® % % & # @ g w APPENDIX D
+« UNIVAC 1107 SLEUTH I _
g & o e P g e Riad i % # B e £ e g 2 A MANUAL NUMBER: PAGE:
g 08 & @& @ B & # & @ 1
. e » e e o . UP-3670 Rev. 1
APPENDIX D. SLEUTH RULES FOR RELOCATION OF BINARY ITEMS
LEVEL 1st ITEM OoP 2nd ITEM RESULT NOTE
1 Any o Any Not relocatable
2 Any +4,-- Any Not relocatable 3
3 Any *x Any Not relocatable 3
4 Not relocatable + - Not relocatable Not relocatable
Relocatable +,- Not relocatable Relocatable
Not relocatable +, - Relocatable Relocatable
Relocatable +,~- Relocatable Relocatable 2
5 Any Rl oS Any Not relocatable 3,4
Any ¥, ¥ X Binary* Not relocatable 35
1. Floating point items are never relocatable.
2. The difference of two relocatable quantities under the same location counter is not
relocatable,
3. Except as noted in 4, the relocation error flag (R) will be set for these operations.
4. Multiplication of a relocatable quantity by an absolute 1, or absolute 1 by a relocatable
quantity is relocatable. Multiplication by absolute 0 is absolute 0. In either case no
error flag is set.
*5.

A non-binary, that is, floating point value will result in an expression error flag (E).

REVISION: SECTION:

VI A T - T T TS T S S R - T S S
' Appendix E
UNIVAC 1107 SLEUTH I - - . | _ ppendix

MANUAL NUMBER!: FABGE:

UP-3670 Rev. 1 1

1.

3.

APPENDIX E. SLEUTH II UNDER EXEC 1

GENERAL.

Programs written in SLEUTH II to run under EXEC I should conform to certain
coding conventions given in this chapter. When these programs are assembled by
means of the latest version of SLEUTH II, the resulting RB (Relocatable Binary)
is translated to ROC (Relocatable Object Code) by ELF (Element Filing Routine).
This ROC will be operable under EXEC I.

SPECIAL PERIPHERAL UNITS

No direct reference may be made to any Input/Output units in SLEUTH II in pPro-—
grams to operate under EXEC I. This is not a new restriction. It likewise
applied to SLEUTH II programs operating under the Monitor.

When the Card Reader, Card Punch, or High-Speed Printer are used in SLEUTH II
programs, they should be referred to by the calling sequences described in
Appendix H. The subroutines referred to by these calling sequences are CREAD$,
CPNCH$, PRINT$, and PLINES$, and PMARG$. The SLEUTH II programmer should never
attempt to refer to these special peripheral units by EXEC I procedure.

GENERAL CODING PROCEDURE

All other Input/butput units should be referred to by referencing EXEC I and
using the special mnemonics developed in that system for this purpose. With
the exception of the special peripheral units mentioned above, the I/O sub-
routines and I/0 System tags described in the UNIVAC 1107 EXEC II, U-3671,
manual are not to be used and are considered illegal. Use of an 1llegal system
tag causes an error print-out.

Thus, Input/Output references to magnetic tape, paper tape, drum, console
printer, and keyboard are to be coded using EXEC I calling sequences and packet
formats.

a. Symbolic Input/Output

Symbolic Input/butput, essentlal to EXEC I operation, is not directly found
in SLEUTH II. Procedures have been added to the SLEUTH II general procedure
deck to implement symbolic I/O with specific group numbers defining each

- equipment type via INFO statements.

(1) Jump Switch Definition

Due to a procedure written defining any jump switch via the call JSW,
the following format may be used to define a symbolic jump switch.

t JSW el

where t is the symbolic tag associated with the switch defined and JSW
is the function code.

REVISION: SECTION:

TR A @ B O® ® & % 0w o F oW & & # £ & 8 w8 &
L |
Appendix E
& % . i o £ ¥
P & % & B @& & £ 0B & B oW F @ A& om w2 ®m s @ & i

MANUAL NUMBER: FPAGE:
& % & 2 s] G b i 5 fix 2 42 5 =) e i o Fe &% i # 2
& & #H B & e # £ 7 & b s B & 75 55 5 U P = 3 6 7 0 R ev. 1

el is coded E if this switch is to be equated to the immediately '
preceding one. When the field is left blank, no equating is given.

Examples follow:

BYPASS JSW
SklpP JSW E
RUN -~ JSW

(2) Input/Output Unit Definition

Because of procedures added to the SLEUTH II general procedure deck, the
following format is available to define a symbolic input/output unit.

t f el,e2,e3

where t 1s the symbolic tag of the unit defined and f is the function
code which defines the type of unit. One of the following is inserted
for f whenever this call is used:

MA IIA Magnetic Tape Unit
MI IIIA Magnetic Tape Unit
MC 1IIIC (IBM Compatible) Tape Unit
PR Paper Tape Reader
PP Paper Tape Punch
INMA Input IIA Tape Unit
INMT Input IIIA Tape Unit
INMC Input IIIC Tape Unit

el is the logical channel number (0-15).
Logical zero means any channel number may be selected by EXEC I.
Thus, units associated with logical channel zero are not necessarily
assigned to the same physical channel. Units assigned to the same

logical channel, other than zero, will be assigned to the same phys-
ical channel. |

e2 1s coded OP when the unit is to be optional. The absence of OP or

presence of space or zero in this field defines the unit as non-
optional.

e3d is coded E if this unit is to be equated to the immediately preceding

one. This can only work if the channel numbers of the units are
equal i '

S T T T TR T S S SR T R S T S S T | :
U | Appendix E
-+ - UNIVAC 1107 SLEUTH II .-
BooOoR 0% 2 & & & o4 % & 8 @ & B % B #H & & o8 & @ MANUAL NUMBER: PAGE:
& % 9 & B» &£ # &# & & % & B & ' '
B & GO ¥ ®

Examples follows:
OUTPUT MA 1

INPUT INMA 2

EXTRA MT 1,0P
EXTRA2 MT 1,0P,E
PAPER PP 1
PAPER? PP 1,4,E

(3) Core and Drum Area Assignment

'A'limited version of the EXEC II 3ystem of handling core and drum
assignment has been adopted for using SLEUTH Il under EXEC I.

INFO group numbers from 1 through 7 are used. Use of group number O
is disallowed and will cause an error diagnostic during the Element
Filing (ELF) run of the Integrated Package.

For Phase I of ELF, when no provision is made for segmentation, there
is no distinction between dependent and independent core areas. Hence,
group 1 and 5 are treated identically and group 2 1s the same as group
6. Group numbers 33, 34, 37 and 38 are not used in this version.

If location counters are not defined by INFO statements, even numbered
counters (including zero) are assigned to DBANK and odd 'numbered
counters are assigned to IBANK.

When Group 2 or 6 core area; are defined by INFO statements without
labels, they are interpreted as DBANK areas. If the defining INFO
statements have labels, the areas defined are treated as DTABLE
areas.

Assembly and preloading into core areas are not restricted in any
manner. | |

All Group 4 defined areas in a program are assigned the same starting
address.

Group 7 indicates an independent drum area., Group 3 indicates a
dependent drum area. The starting address of a specific Group 3
area 1s the same as that of the Group 3 or Group 7 area immediately
preceding it. Labels should be used with each Group 3 or Group 7
definition. Drum tables are indicated by INFO statements defining
Group 3 or Group 7 areas. |

REVISION: SECTION:

MANUAL NUMBER! PAGE:

5 - A i FaxA i A it et e Rl = S paas oy
" [e , , ' afiigle 'y Nl e) L Ot T e b Nt e ! colh . e '
‘:::- A R iR ki K o hots (i i e a; d =t

- I UP-3670 Rev. 1 4

b. Word Modification
(1) Permissible Modifiable Fields

Word modification is restricted in SLEUTH II programs written for opera-
tion under EXEC I.

The permissible modifiable fields are shown below:

Address

Selective Jump Switch

1/0 and Drum DTAG

Drum LTAGs

(2) Automatic Table Length Tag

To provide a means of incrementing core and drum table lengths at load time

for SLEUTH II, a form of table length tag (LTAG) has been developed in the
Integrated Package.

During ELF processing of a Relocatable Binary element, any INFO statement
that defines a core DTABLE or magnetic drum table is assigned an LTAG. This
LTAG consists of the first five characters of the label on the INFO state-

ment with an L (fieldata code 21) prefixed to it. If the label contalns six
characters, the rightmost character is lost.

The programmer can thus assume the LTAG exists and make reference to it in
his coding. This reference will be carried as an undefined tag in the
Relocatable Binary and given LTAG significance at load time by the ELF run.

REVISION: | secTION:
A T o n W B @ Appendix E
-+ < UNIVAC 1107 SLEUT
- T - A O T R T MANUAL NUMBER: PAGE:
UP-3670 Rev. 1 S5

Coe

Example:
DATA INFO 0 A3

$(3),DAT1 RES 1000

The reference
+ LDATA

at load time will produce a word containing the numerical length 1000,
right justified, zero filled, if no TAL card change is made. If a TAL
change is made, the word will contain the sum of the original length
plus the TAL card increment. | |

EXEC I Referencing Procedure

(1) General

The subroutines used to reference EXEC I assume that registers AO and
B1 are always available. Likewise, since some EXEC II System subroutines
have been retained, registers B11, AO through A5 and R1 through R3 are
assumed to be available and are not restored after System use.

Subroutine tags used in EXEC I calling sequénces have been renamed so
that $ is the last character of each tag rather than the first as
normally used in EXEC I.

The System tags that may be used are PARAM$, ERROR$, COM$, XIO$, WAITS,
WAIT1%, REL$, END$, ERR$, TRN$, RRU$, DATE$, FDATS FDAT2%, and TIME$.
For the detailed theory behind the use of these tags, see the latest
version of the EXEC I manual. |

The manner in which each is to be used in SLEUTH II language is detailed
below.

PARAM$ Table

The coding to establish the EXEC I PARAM$ table follows:

PARAM$ INFO 6 r
$(r),t RES e

where "r" is any control counter, "t" is any unique tag, and e =
(N+1)11 where N is the highest-ordered number n from O +o 9 which is

- to be used in the form PMn as a parameter card input to EXEC I. This

INFO line must be the first one given in the pProgram.

ERROR$ Table

The ERROR$ table is a fixed-length table éf”97 locations for'whiCH space
is always reserved. Each program operating under EXEC I has its sep-
arate ERROR$ table. The error procedure described in Section 3.4.1

REVISION: SECTION:

UNAC O steuT T e

MANUAL NUMBER: PAGE:

UP-3670 Rev. 1 6

of the EXEC Il Manual has been adopted as standard. If any changes are
desired by the programmer, they should be made in accordance with the
procedure detailed in Section 3.4.2 of the EXEC II Manual.

Communication Referencing

To generate the Communication subroutine linkage to EXEC I via COM$,
the following procedure is used:

CHOM a
where a 1s the tag address of the request parameter.
The procedure

C$OMR Zq€

is used to generate the request parameter at address a. It is the pro-
grammer's responsibility to locate it there.

Z 1s the number of additional packets in a chain of packets, and
e 1s the tag address of the first word of an execution packet.
Separate procedure lines are used to generate the coding of the execu-
tion packets to make it possible for them to be generated in a separate
location counter in a DBANK area. It is the programmer's responsibility
to see that the first execution packet in a chain is located at the tag
address e given in the request parameter.
The procedure

T$YPE r,n,d

sets up the 3-word execution packet for the Type function.

where, r is the tag address of the word containing the first character
of the output in its most significant sixth;

n is the number of characters to be transferred as output; and

d 1s the tag address of the next packet in a chain of communica-
tion packets. It is the programmer's responsibility to see

that the next execution packet in a chaln is, in fact, located
at this address.

The procedure

R$EAD i,t,d

sets up the 3-word Read Execution packét.

REVISION: SECTION:

5 < i e A & i “ &5 (8 i = 22 (e % o L ; i 22 g
P Appendix E
UNIVAC 1107 SLEUTH I - - - - |
i % | P # & & =¥ o5 o E e (2 s i s et g & %

MANUAL NUMBER!: PAGE:

UP-3670 Rev. 1 ‘i

where, 1 is the tag address of the word into which the first input
character is to be stored,

t 1s the number of characters to be accepted as input, and
d 1s the next-packet address.
The procedure
IBYRE r,n,d,i,t

sets up the 4-word Type and Read Execution packet. Letters have the
same definition as in the other Communication packets.

The procedure
L$UNCH f,u,r,n,d
sets up the 3-word Load, Unload, or Chanqe
Execution Packet
f = 010 means Load, f = 04 means

Unload, and f = 02 means Changej;

u is an Input/Output unit tag; and other letters denote the same tags
or number as described in other Communication packets.

General I/0 Referencing

Details on the make-up of Execution Packets for Input/Output referencing

are to be found in Chapter VII of the EXEC I manual. Tables 1 and 2 of
this appendix summarize the detailed information needed for making up
these packets.

Input/butput subroutine linkage with EXEC I via XIO0$ is obtained through
the procedure. X$ 10 . |

where a is the tag address of the request parameter.

where p is the request list priority éssignment (0,1,2, or 3 as explained
in EXEC I manual); and

e 1s the'tag address of the first word of the execution packet. It is

the programmer's responsibility to see that the request parameter is,
in fact, located at 3.

A separate procedure line is used to generate the Execution Packet since
this makes it possible to put these parameter words in a different

4 e i . i ' Ery g i .; ' e ; bdt
o 2 25 iy ;:;ri-. .,5;-'_: \.L " E:E’ .-: ;- f:{-c" ._-;;:-_. f .E:E:-' .,a ﬁ:., Gﬁ £ g ;?fi: w 5_,3
S e ; ' 1- A dix E
i . ; o P i e
o oEw U N I VA c] I 0; s L E U H E I A
I - . £ g & % & % o8 & S e

¥

b

&

.::ﬁ%

REVISION: SECTION:

MANUAL NUMBER: PAGE:

UP-3670 Rev. 1 8

il

location counter in a DBANK area. It is the programmer's responsibility
to see that the Packet is placed at the right address indicated by tag
e in the request parameter.

Packets are made up by the generalized procedure line
£ gsWyn,u,L,1,s

where f is one of thehmnemonic codes denoting an EXEC I I/0 function
code (see Table 2 of this appendix)

W stands for r,i, or hj and

L stands for r or i, depending on the function code. When MTF and MTRB
functions are used, W stands for r. When SD and BSD functions are
used, W stands for i. 1In all other cases, when used, W stands for h.
When SRD and BSRD functions are used, L stands for i. 1In all other
cases, when used, L stands for r.

g is an I/b unit tag, a drum table tag, a drum table tag + constant, or

a drum table tag + drum table length tag;

h is replaced by 0, 1, 2, or 3, denoting, respectively, increment, no

increment, decrement, or no decrement;

n is a constant, a data table length tag, or a data table length tag +

constant;

u 1s a label, a label + constant, a data table tag, a data table tag +

constant, or a data table tag + data table length tag;

r 1s a constant, a tag, or a tag + constantj and

1 and s are any representations, each of which will produce the desired

36~bit identifier or mask.

AL SR R REVISION: SECTION:
% & % & w8 & & m T wm & % & & 4 & & B & @+ & ' App en dix E
UNIVAC 1107 SLEUTH I - - - - d e B i
B 4 B & B & B H & & oW B a8 4 % & B & » % & MANUAL NUMBER: PAGE:
® & & :ﬁ # & %0® & % 9§ % © 0 % & @ ¥ % S UP-3670 RQV. 1 9
@ & 2 % & 85 4 8w 4w A O & G @ ® & o & & 5 o | R -
Word
35 30 29 O
35 33 18 17 ' 0

17
£15 0
3
7 Mask Word
Table 1!

Execution Packet Set-Up

The seven packet words are shown above with the nomenclature described
so that they can be compared with the description of the words
explained in Chapter VII of the EXEC I manual.* Letters have been
changed from the EXEC manual because of some duplication there and
because of the desirability of handling the whole packet with a single

procedure line. Note that words 1 and 4 are shown only in their initial
state. |

*UP 2577 Rev.1.

& B8 % % 0% 0# #% % % & % 4 i 0 s & .
' REVISION: SECTION:

& B & @ & H €& & & 9w & ® 4H & #/ K ’ |
UNIVAC 1107 SLEUTH Il - - - » _ Appendix E
& 4 & &2 4 2 £ o 2 S 2 - & % s B G i W : |

MANUAL NUMBER: PAGE:
& % £ & & »H B #O8& # € % % ' 002 & # 4 B &€& & @
UP-3670 Rev. 1
& @& ® & # & 5 & % & B 4 & & & & ® L B € # 10
T i R i o £ L E

None of the EXEC I mnemonic codes relating to the card reader, card
punch, or High-Speed Printer are to be used by the SLEUTH II programmer
since these peripheral units can only be referenced by a special group
of routines previously enumerated. |

{ 2 H

_
(2]
4
s oed
£ g
. G o R—
| = W
0 o 0
ta 4
)] (18
—
i 3
L)
m
zZ O
-4 D~
LB] 6
& = o
o 4 8
n < n
th = =
3 Z
o <
14 2
B E s
L
& 0 5
g -
]
e & 3
V e e b
EEER
o & N & @ %
= %3 R & s
£ i U 5 %
a ® & B 9w &
% & & & e i
a0 W % & 8

ﬂnhwswchﬁnm
ahaﬂnanﬂnm
T6x¢nucych

Tt utyeh

I*n*ucycb

neufuth

nsasy* b
b
b

_Hnm

.n“m

ikt il g a8 QR WL &

Mththhghm

.ﬂmHnghChgho

ﬂn.Hh j.n.—.Hﬁgnm
Tfafutgtb

Hnﬁncnﬂnm

pepeeN
SIolouR IR
puexadp

J09U) TOUT}USS UITM PIeMIo] esy
pIemyoeg ade] YoIeos

_ ofgépéctztl _

gtgtEetetl
gévégcel
>t il ot Al

piemioerg ade] pesay

. Al !

pIemIioJ ade] pesy

(Spol 3oo1d PeXTd) S,VII OAHISINN

0¥ GZ 1B adel 93TJIM

! 00TI2IUT Y3TM ode] puTmoy
L B __ade putmey
_ EFZEL pIemyoeq QOH m>oE
GG L _ | | ﬁnmznom sde] eAOW
9¢Gerieetl q0o9Y) TAUTIUSS suﬂg wumaxomm ode] peay
@hmnwnmhmnﬁ No9YD TOUTIUSS spﬂg premioj ade]l pesy
9¢Géyeezel premyoeg ade] YoIeas

@nmnthhNnP
cépéecectl
cgépeetctl

pIremIog adel yoiesaS

premioeg ade] peay

pIemIo. ade] peay

(epoW o01g @TqetIep) S,¥II OAHISINN

pasn
SPIOM
19308

UOT}eWIOFUT TeuoTduni O/I I DIXT °T 9Tqel

sweN UuoT3oundg

pIemIo] ade] yosIesas

03G°¢l 38 ade]l 83TJIM

Sd44
a153
_disa
g1y
EARLE

uoT3ouUNng

O TUQWBUN

SECTION:

Appendix E

PAGE:

12

REVISION:

MANUAL NUMBER!:

UP-3670 Rev. 1

.- UNIVAC 1107 SLEUTH Il

%
&

=&

E {

%

i

..-ﬁnan.D.hGnLnO

.ﬂh.HnSnGncnm

TCIT*ReaYg*h

L 9°G' V'€

b
né¢u‘yéb

néeusycn

vnmﬁmﬁﬁup

I‘D
1¢0

Mh“hthhga@

PSpPaaN
sIsjaueled
pueIadp

véicectl
el |

S|

@ﬁmhvhmﬂmhm

Pos(]
SPIOM
13308

S,

ade] puIMay

A

9TTJ-J0-pud S3TIM
93TIM Adousbutiuon

pIemdoeg UoIeaS poySew
pIemMIod UoIesS poySep

ade] mpwhg

OOTI8UT YJTM PuUTMIY

putmsy

vaBMumm SAON

PIEMIO] SAOW

308Y) TOUTIUSS YITIM pIemyoeg pedy

}08YD TOUTFUSS UITM pIemIo] pesy
pIemyoeqg nohmmm

PIBMIO.] yoIeag

pIemiyoeqg peay

DIEMIO.] vmmm

VIII OAY4SINN

}20TI8UT UITM ade]l puimey

AyTsusq YbTH 3e adel 83TaM
Al1suag Mo 3e ade] 93TaIM

pIemyoeg ade] 9AOWN

PIBMIO] mamH SAON

09U TOUTIUSS YIIM pIemyoeg pedy

SWeN UOTDum.]

HA3M
MO

~ gSK
ES
_HIM
MY
MTY
qInN
1IN
Sg1Y
S 14
GIHS
IIHS
qI14
A1y

IM3Y
M3y
HIMA

TIMA
d1Nd

JdINd
Sddd

DT UOWS U
uoT3oUNng

SECTION:

Appendix E

PAGE:

13

REVISION:

MANUAL NUMBER!:

UP-3670 Rev. 1

g

4

5%

ik

B & - S

&

.+ UNIVAC 1107 SLEUTH Il

Lo
E

&

&

n¢u‘y¢b
ntu‘ycb
SnCnﬂnm

neucyuto

SEIFEEIN
SsI9j}oweIed
puexadQ

AN | KN
.t B o

¢l
cl

bursexg sTtTuMm d13S

}OOTIOIUT YJTM PUTMOY

¢l

91T @oedsoeyg

4

N
T"‘"

Mo0oTg 9oedsyoeyg

9°Gvect| A31Tsusq moT 3e (qO0d YdoIess

9‘Gépigel Ayrtsusg YbBTH 2B QOg UdIedS
o‘Gepicectl AlTsusg Mo e AIeutrg Yoaess
9‘gvegcel >pﬂmcma U6TIH 3® >Hmcﬁm yoIeasg
9fcivietetl 98YD TAUTIUSS YITIM MOT (O
9‘Gevieieel 3}09y) TOUTIUSS YITM YBTH @od
gctpietecl ¥ooy) TOUuTIUSS YJITIM MOT

jo9yDy ToUTIUSS U3ITM YBTH ATeurg peay
A3tsusg moT 3B (0d pesy

cévéeectl Aa1susg ybtH
cevéegcel A1Tsusg moT je
C*E*E* et] Aqtsuag UbBTH 1e

Ajtsueg moT 3e 9TTJ-Jo-puj
Ajtsusg YBTH 3e 81Ti-Jo-puj

"™

péefzél Alstusg moT 3e (Ood

Cné—>6

Ajtsusg YDBTH 3B QOd

A3TSus(g Mo 3e AJeutrg 93TJIM

<
N
iy

™

réccel
péotz sl

11Susg YBTH 3e AJeurq
$,0ITT OANISINN

pas(
SpIOoM
19308

SWeN uoTjoundg

- pumey |

dIS
TMIY
M
354
dasd
1d4S
HQYS
TEYS
HEYS
STIdY
SHQY.
ST1aY
SHYY
1d4

HQY
it
HeY

T33M

HIM
TaM

HaM
TEM
HaM

O TUOWSUN
uoT3ouUNng

SECTION:

Appendix E

PAGE:

14

REVISION:
MANUAL NUMBER:
UP-3670 Rev. 1

JOOTISQUT TeoThboT sAowaY 174

@)
N
e

TOHINOD

nfucy*b s St ol | ode] JIaded Yyound ldd

nCu‘ych Al pIemyoeg ode] Jaded pesy dd4d
nNSusyshH | AR AR pIemIo. sde] Iaded pesay 1dd
ddV1 4dd4dVYd

cnbaflitninds unJgg pesy {00Td UTEYD dddo

wNI(pesy YoaesS 3N007TH dys4g

UNIVAC 1107 SLEUTH

TenfutycB 9fpeeize| WNIQ pesy UoIess qys
Ttb 9¢C*‘1 unag Yyodess HO00Td asd
16| oey | o uniguoress as

znfu*ygchb Gt et L | | ungd pesy Jo0Td dydd

néufy o péeztl unIg pesy dyd
WNdd OILANOYIN
Umvmmz pas(
SIslouweIed - SpJIOM SweN uoTjoung OTUOWS UNY
puexsadQ 198232064 uoT3oung

i

£

REVISION: SECTION:

® ® ® & & & % £ % e [e % # % & 5 £ 53
L.
Appendix E
U N I VA E i 5 .
w4 % 4 22 2 & % &% £ > 5 # 5 & 3 »

% & =

MANLAL NUMBER: PAGE:

. i i 2 &
* e 2 & o £ s ik i £ £ e

UP-3670 Rev. 1 15

With the aid of Tables 1 and 2 of this appendix the general procedure
line can be quickly made up. It should be remembered that the needed
operand parameters for any function should occur in the order shown in
the fourth column of Table 2. No space is left for missing packet
words. Thus a packet using words 1, 2, 5 is only a 3-word packet.

Releasing Control to Executive

The EXEC I conventions for releasing control from a’ program via WAIT$
and WAIT1$ concepts are to be followed in SLEUTH II programs. In this
connection, it should be noted that the instructions, Test Positive and
Test Negative, are used in such a way in the communications with the
Executive that a meaningful value is required in that portion of the
instructions denoting the A-register. In the general procedure deck,

TP and TN are so written that M, X, and J are considered the first three
elements of the list given with the instructions. These procedures have
been altered for use under EXEC I so that a fourth element, A, is added
to the list in that order. Thus, in using TP and TN in connection with
WAIT$ and WAIT1$ functions of EXEC I, the parameters are given in the
order M, X, J, A. Note that this does not effect the normal use of TP
and TN in which only the 3 operand subfields M, X, and J are used.

The coding sequence to release control to EXEC I is:
TP dey O, 54 €
IMJ 1, WAIT1$

where ¢ = 0 means that film memory locations 01-34 101 =117 and
1308-—1778 are saved, 3 S .

¢ = 1 means that film memory locations 01*34£3and 1018-1778 are saved,
and

¢c = 2 means that no film memory is saved;
d 1s the address of the first word of the execution packetj and
s = 7 means I/0 packet status testing and
s = 6 means communication packet status testing
Alternatively, the procedure reference
WSAITY d, 7y ©
will give the same effect as the above two coding lines.

If a program can operate after the completion of any one of a number of
1/0 requests, the coding sequence is: |

IN dy ° O S

J RESUME

REVISION!: SECTION:

. T e wie 5o « . 5 oswm e ® o ; i @ - : R d |
UNIVAC 1107 SLEUTH I - - - - Appendix E
L I - G TR E - S S S S S S R MANUAL NUMBER: ' PAGE:

UP-3670 Rev. 1 16

N Oy Oy 89 ©

J RESUME

IMJ 1, WAITS
RESUME

where the letters are given the same meanings as described above. RESUME
1s the address to which control is to be returned and WAIT$ is the
entrance to the Executive for waiting on any of a number of requests.
Other theoretical operational details are to be found in the EXEC I
manual. |

The first two lines of the above coding can be reduced to the procedure
reference

T$NTES d, s, RESUME
The next three lines may be replaced by the procedure reference
WSAIT d, s, c, RESUME
(7) Facility Transfers
(a) Release to Executive or Program

An equipment facility is released to EXEC I or another program via
REL$ by the linkage from the procedure reference

R$EL tr, G

where tr is the tag address of a 4-word transfer packet defining
the facility to be released and

¢ 1s the tag address of a programmer-devised routine to which control
is sent if the transfer table is full and the packet can not be

accepted. If the release is completed, control returns to the next
line of coding. |

The 4-word transfer packet is generated by the procedure reference
R$ELP m, io, tc, dtl, pr

where m is O if the release is to the Executive or 1s the name of
any program to which it is to be released;

io is an I/0 unit tag which, on loading by the Executive, is replaced

by a word having the proper channel and unit designation of the
facilitys

tc is a 2-digit octal number supplied by the programmer in accordance

with the transfer-code table described in Chapter XIII of the EXEC
I manualj

- - | | REVISION: SECTION:
UNIVAC 1107 SLEUTH I

€& 4 B 8 B O N i MANUAL NUMBER: PAGE:

e e n a w I | |

. UP-3670 Rev. 1 17

(b)

dtl 1s either zero or the applicable drum table length tag if the
facility is a drum table; and

pr 1s either zero or an inter-program communication parameter to
identify the facility when release is being given to a program.

It 1s the programmer's responsibility to position the transfer
packet at tag address tr.

Acceptance of Facility by Program

The program's ERROR$ table which has been mentioned in Paragraph C3
of this Appendix is used in the preliminary coding within a program
which is getting ready to accept a facility transfer from another
program under EXEC I operation. Two indicators are stored in the
second and third sixths (bits 29-24 and 23-18, respectively) of the
word located at ERROR$+7.

The indicator at bits 29-24 is obtained by using the j-designator
14. It is set each time EXEC I receives a facility transfer
directed to the job program. It is cleared when the job program
makes a TRN$ reference to search for or obtain a transfer facility.

The indicator at bits 23-18 is obtained by using the j designator
13. It remains set as long as EXEC I is maintaining at least one
facility transfer for the program.

Once it is determined within a program by examination of these
indicators that a new search for any or a specific facility
transfer might be desirable, the following procedure reference is
used to provide the linkage to EXEC I via TRNS.

T$RN Py B
where r is the address of the request parameter and

C 1s a programmer-devised contingency routine to which control is
sent following failure of a completed transfer. Completion of a
transfer sends control to the next line of coding.

The procedure to generate the request parameter to be positioned by
the programmer at tag address r follows:

IT$RNR n, p
where n has the values 0-3 explained below, and

p is the address of the buffer in the Job program which is to receive
the facility transfer if there is a find.

When n = 0, if no tfacility is found, control is returned to c. If

a facility is found, a program buffer receives the facility transfer
packet and control is returned to the next instruction.

REVISION: | SECTION:
.« UNIVAC 1107 SLEUTH Il
MANUAL NUMBER: PAGE:
- UP-3670 Rev. 1 18

When n = 1, if a facility is found, the facility packet is stored in
the program buffer and control is returned to the next line. If a
facility is not found, the program 1is placed in a WAIT$ condition

and remains there in one case until any one outstanding communication
or I/O packet request of that program is completed. In this case,
control returns to ¢ when the outstanding request is completed. If
during a nonterminated WAIT$ condition, a facility transfer directed
to the program is received by EXEC, the facility transfer packet is
put in the program buffer and control is returned to the next line-

When n = 2, all facility transfers directed to the program are
examined until a match is found between the fourth word of the
transfer packet and a parameter at p+2. If a match is made, the
corresponding facility packet is transferred to the program buffer,
and control 1s returned to the next line. If no match is made,
control 1s returned to c.

If n = 3 and a match is made between the fourth word of the transfer
packet and a parameter at p+2, the transfer packet is moved to the
program buffer and control is returned to the next line. If no
match 1s made, control is returned to c.

If n = 3 and a match is made between the fourth word of the transfer
packet and a parameter at pt+2, the transfer packet is moved to the
program buffer and control is returned to the next line. If no
match 1s made, the program is placed in a WAIT$ condition until one
outstanding Communication or I/0 request packet is completed, whence
control returns to c. If there are no outstanding Communication or
1/0 requests for the program, the WAIT$ condition may be terminated
by receipt, by EXEC of a facility transfer directed to the program.
If a parameter match can not be made with this facility transfer,
control is returned to c. If a parameter match is made with this
facility transfer, the transfer packet is moved to the program
buffer and control returns to the next line.

(8) Termination Coding

- The three system return points described in Section 3.3.2 of the EXEC II

Manual have been adopted during operation of SLEUTH II under EXEC I.
Ihese subroutines will be modified to include as their last element the
proper normal or error termination under EXEC I. However, these mod-
ifications should not concern the SLEUTH II programmer. He has only to

use the return points MEXIT$, MERR$, and MXXX$ as indicated in the
EXEC II Manual.

Rerun Procedure

Section XIII, G, of the EXEC I Manual gives the details on how the
responsibility of a rerun i1s primarily that of the operating program.

REVISION: SECTIDN:

2 % 20 & i ; e £ # e i3 .
UNIVAC 1107 SLEUTH || " il
w4 % & o® & % o & % owm #F B % om0 & % @ & g ¥ MANUAL NUMBER: | PAGE:

UP-3670 Rev. 1 19

i

] 8 & % 42 fii e e #: 2 2

The Executive 1s notified of the program's intention to establish a
rerun by the coding:

LA 12,1,0,016
LMJ 1,RRU$

where r is the address in the program's assigned core area at which EXEC
I will store a rerun table containing information necessary to
reset the Executive tables at the time of a scheduled rerun.

Alternatively, the above coding may be written by the procedure reference:
R$RU r

if there are any outstanding I/b or Type Communication requests for the
program at the time the rerun request is submitted to EXEC I, the pro-
gram 1s put into a Wait condition until these requests are satisfied.
When they are satisfied, the rerun table needed by the Executive is
generated and control is returned to the program.

The program can then add to the Executive rerun-table portion as needed
to fill out the Identification block and then supply and dump the
remaining blocks needed for a scheduled rerun. |

The regular operation of the program under EXEC I can then be resumed
if desired, at the option of the program. What EXEC I has prepared for
is some possible future execution of the program initiated by a sched-
uled card and starting at the rerun point.

- The programmer can rely on the fact that the size of the EXEC I rerun
table will not exceed 110 words. Thus, the size of the identification
block can be determined in advance if this maximum is assigned for the
rerun table. Sée the format of the Rerun ID Block in Section XIII, G,
of the EXEC I manual. -

The starting address of the rerun should be in the first block following
the Rerun Identification block since initiation of a rerun via an EXEC

I schedule card will cause the loading of this first block and a jump

to an address in it after the Executive has made the necessary changes
for program resumption. The addresses in the fifth and sixth words of
the identification block must be properly filled in by the operating
program. |

(10, Date and Time Availability

The current data is available to worker programs under EXEC I in two
‘different formats in Fieldata code. The one-word form has the system
tag DATE} and gives the month, day, and year, each in two decimal digits.
The two-word form has the two system tags FDAT$ and FDAT2$, both of
which may be accessed by their tag. The two-word form gives the month

in an abbreviated form followed by the day and vyear.

REVISION: SECTION:

MANUAL NUMBER! PAGE:

e A s s Bors S o bt A i g Ean e .;'Ii'é 4t o s Y ., 45 e ot
U N I VA c]] 0 7 s L E U I H l E omown s
& i < 3 e i &3 51 5 w2 B e s g 5 #

UP-3670 Rev. 1 20

The coding line

LMJ 1, TIME$
will put the time in milliseconds from midnight in AO.

The time and date procedures and subroutines described in Section Fadie]
of the EXEC II Manual will also be available to SLEUTH II programs
operating under EXEC I. They will be modified to take their information

from EXEC I sources, but there will be no outward change from the stand-
point of the SLEUTH II referencing procedure.

REVIBITON: SECTION:

~ UNIVAC 1107 SLEUTH I Appendix

UP-3670 Rev. 1 1

APPENDIX F. OPERATING PROCEDURES OF SLEUTH II UNDER EXEC I

SLEUTH II programs may be stacked on a tape and their assembly initiated with one
set of EXEC I schedule cards. A complete correction facility, described later in
this section, is available with SLEUTH II operating under EXEC I. Correctlons may
be made to n number of programs on m number of tapes without reloading the assembler.

The SLEUTH IT ROC program tape should be entered by the operator as a program
library tape prior to reading in the schedule cards. Should he fail to do so, the

EXEC will type out the message
LOAD C/U WITH (program library name specified on the PTY card).

This necessitates mounting the SLEUTH II library tape on that unit or entering it
as a program library on another unit and answering with a Y.

Two types of control cards may precede the ASM control card of a source program.
These are the MAP and DEL cards. A MAP card is required for a file of programs if
they are to be allocated by ELF. A DEL card is used to inform ELF which elements
are to be deleted during a library or an allocation run. The ASM card 1s always

required before the source program.

The programs which are stacked on a tape have to be preceded by a start card and

followed by a stop card in regular SERVRO format. There may be more than one file
of programs on a tape and each file may contain more than one program. Each new

file is identified by a start card and followed by a stop card and 3 blank cards.
The last file should have either REWIND or REWINT punched in the card starting at

column 73.

READx contains the source programs and/or correction decks of a SLEUTH II Assembly.
If there are correction decks on READx, there should be corresponding source
programs stacked on another tape unit called TREADx. If the TREADx tape unit has
been deleted on the FAC card and a correction assembly is called for, the message

INPUT SOURCE LANGUAGE ELEMENT NOT AVAILABLE

is printed on the listing following the ASM card. If a correction assembly is
indicated, but the program to be corrected is not found on the TREADx tape, the
message

CH C/U NO (nameq1 on ASM control card)
is printed on the operator's console. The operator may mount a different tape on

TREADx and answer Y which will instigate another search on that tape. If the
operator answers N the SLEUTH II Assembler goes on to the next assembly.

REVISION: SECTION:

UP-3670 Rev. 1 2

When assembling a program with corrections, the user may specify whether or not an
updated source tape is to be written. This is accomplished by the name configura-
tion of the ASM control card explained later in this section. The user also has
the option of having the updated source combined with the assembler output on the
PNCHx tape or having the updated source written on a separate tape called WRIX.

In order to have a combined output on the PNCHx tape, WRTx must be deleted on the
FAC card. The PNCHx tape in either case is acceptable to ELF as an input tape.

In all references above to x, it is understood that x changes to A, T, or G,
depending, respectively, on whether the assembly is using IIA, IIIA, or IIIC
UNISERVOs. Programs may be assembled using any combination of IIA, IIIA, or IIIC
tapes provided EXEC I schedule cards are properly prepared to show the combination.
All tape units should be assigned to-logical channel zero on the schedule cards,
Following the assembly of a stack of programs and/or corrections to programs, a
CHANGE TAPE message for the READx tape unit will occur on the operator's console.,
Additional tapes of stacked programs may be assembled by putting them on this unit
and answering with a Y. Assembly terminates when the answer given is N,

The general form of the ASM control card is:
Voptions - ASM n1/v1,n2/v2,n3/v3
in whichs

"options" is a string of alphabetic characters, representing options
to be taken for this particular assemblys:

"ASM" indicates that the following cards are SLEUTH II source code
to be assembled or are corrections to a SLEUTH II assemblys

"n1/v1" is the name or name/version of the source language element to
be assembled:s

"n2/v2" is the name or name/version of the updated source language
element, if one exists. (If this field is omitted, no updated source
language is written on the PNCHx or WRTx tape.):

"!n3/v3" is the name to be applied to the relocatable element written
on the PNCHx tape. (If this field is omitted, the relocatable element
will have the same name as that of the updated source language, that
is, n1 or n2.) |

The "options" field may contain the following letters (in any order) with the
indicated results:

P Signifies to the assembler that a relocatable pUnched output is
desired on the PNCHx tape.

Q Modifies the meaning of the P option to require that the
assembler output be in absolute format.

L Causes information regarding subitems for relocatable and
external references to be printed.

REVISION: SECTION:

e

MANUAL NUMBER: PAGE:
UP-3670 Rev. 1 3
N The presence of this option letter suppresses the assembler
output listing.
I This option letter causes single spaced listing.
C Causes the assembler to note on the listing, during a correction

assembly, how many and where cards have been deleted and where
new cards have been inserted.

W Causes the assembler to list the correction deck prior to the
listing of the completed assembly.

4| Allows the user to assemble one or more programs with corrections
from the TREADx tape and the output source tape will contain the
updated source programs (if desired) plus the remainder of un-
assembled source programs contained on the TREADx tape.

A sample of a stacked program deck containing correction assemblies and initial
assemblies is given below: Note that a correction deck may not have an END card
unless assembly termination is desired at the point of its insertion. It is
required that the control character (the 7-8 punch) and one space precede MAP or
DEL and only one space follow it. ¥ denotes the 7-8 punch.

13 3
/./;/.* name’ of
VAMAPAname10,namell,
VPL ASM namel ,name?2, name3
(Original source program coding followed by END card)
VPL ASM name4,name5 ,name6
— 213 (causes following card(s) to be inserted after item no. 213)
RES 600
- 220,230 (causes items 220 through 230 to be deleted)
- 250,261 (items 250 through 261 are replaced oy cards following the
deletion instruction)
LA . . .
SA . . .
T o« oo 2n
DI +++++++++4++++ + NN
(3 blank cards are inserted here)
J/t/h/.*' | names of. ;gWIND

VAMAP name9,namei?2.
VPL ASM namel3,namel14,namel5

REVISION: I SECTIDN:

UNIVAC 1107 SLEUTH Il | i

MANUAL NUMBER! PAGE:

UP-3670 Rev. 1 4

(Original source program coding followed by END card)
VPI ASM namel16,namel17,namel8

(Original source program coding followed by END card)

VPL ASM - name19,name?20,name?21
- 452

LA . ‘
- 098,752

8 & ;

L., .

Jd a
IP ASM name?22,name?23,name?24

(No ¢ rrections are to be made to program name?? with the exception of the source
name b-ing changed from name22 to name23)

NN ++++ 4+ ++ + 4+ ++ + +))))))))
(3 blank cards)

With the above example of a stacked program deck of 2 files on the READx tape, it
should be kept in mind that a stacked program containing the original source
program coding of name4, namel9, and name22 should be on a separate tape called
TREADx. The updated program source tape WRTx (or PNCHx if WRTx has been deleted)
will contain programs name2, name5, namei4, name17, name?0, and name?23.

A sample set of EXEC I schedule cards using ITA tape units is shown belows

JRID,PTY,2,SLEUII,,A,*SLULIB,P,1A1,P,60,Z.
JRID,FAC,IB/6,DB/6,MDO/200000,MAO/5.

A sample set of EXEC I schedule cards for ELFing the output of an Assembly, using
IIIA's, 1s given below. The INT tape unit, denoted by the typeout when the ELF
routine is loaded, must be mounted with the ROC library input tape needed to supply
the subroutines referenced in the program. This input may be either a COBOL or a
FORTRAN llbrary tape. This input tape could also be a ROC library tape prepared

by the user. The PNCHx output tape of the Assembler must be mounted on the READx
tape of the ELF routine,

ELF,PTY,2,,ELF,,T,*ELF,P,2A1,P, 3.
ELF,FAC,DB/4,1B/3,MD0O/390000,MT2/4: ALTT .

Ry gk # "".?'." g ; =4 o bty L B = B T - e ey i ot ' -
REVISIDN: SECTION:
g i 1% p b 4% = e i A i i 4 i £ Ak % 2 & & o3 2 e S 2
UNIVAC 1107 SLEUTH I Appendix F
- I . S S .
& # G i A o ki &< e 2 2 &5 i & & & % R i & & i & # &
"’“ MANUAL NUMBER: PAGE:
& # 4 % £ & o g % w0 % Y & £3 i & % i % & & i P
UP-3670 Rev. 1 5
2t b % e % b o e i e % & & 2 i i i i 4 % 5 o £23 i %

A knowledge of EXEC I can add considerably to the speed of the operation. Note
in the following example of schedule cards how the PNCHT output and the PRNTT
listing of the Assembler are transferred to the ELF run as an internal transfer.

Also upon completion of the ELF run the PRNTT tape is transferred to SERVRO for
immediate printing. In this example the SLEUTH II ROC is loaded from a IIA tape

unit and the Assembly and ELFing is done on IIIA's.

ASM,PTY,3,,SLEUIT, ,A,*SLULIB,P,1L12,P,60,Z.
ASM,FAC,1B/6 ,DB/6/MD0/200000,MT0/5.

ASM,TRN, ,PNCHT/T/ELF /READT ,PRNTT/N/ELF/PRNTT.
ELF,PTY,4,,ELF,,T,*ELF,P,2L12,P,2.

ELF ,FAC,DB/4,1B/3,MD0/390000,MT2/4:ALTT.
'ELF,TRN, 2.

ELF ,PMO, , SERVRO.

REVISION: SECTIQON:

22 % i i R i & 2 i #h i B 5% & i # e 2@ 4 B #

UNIVAC 1107 SLEUTH Il - - - - hapemtie 4
#0@& ®& 0® & £ & # @ @ @ & # % &H 0w & B 0 # £ 3
MANUAL NUMBER: PAGE:

UP-3670 Rev. 1

% & & @ B & & & B @ ow & #% & % oF & f % o4 & 8 % 1

APPENDIX G: ERROR DIAGNOSTICS OF SLEUTH II UNDER EXEC I

Error conditions of the SLEUTH II Assembler operating under EXEC I fall into
three categories. They ares

1. Normal Termination (NT) with diagnostic message,
2. Error Termination (ET) with diagnostic message,

3. Exec Termination (XT).

The diagnostic messages appearing in the first two categories may appear either
on the operator's console or on the listing generated on the PRNTx output tape.

When the SLEUTH II Assembler terminates normally with a diagnostic message, this
indicates that the assembly was performed; however, a portion of the output may not
be as desired. The following is a list and explanation of the messages appearlng
on the operator's console.

NO UNIT ASSIGNED, PRINT$ or (CPNCH$) - - -

This message indicates that the PRNTx or the PNCHx tape may have been
inadvertently deleted on the FAC card.

WRITE ERR, PRINT$ or (CPNCH$) ---

This message indicates that the assembler had difficulty when writing the
PRNTx or the PNCHx tape. The listing or output will be incomplete.

NO EOF SENT, CREAD$ or (TREAD$) - - -

Indicates that the READx or the TREADx tape did not have an End-Of-File
sentinel. This does not cause an erroneous assembly.

ERRORS TN ASSEMBLY -~ ~ -

Indicates that the program just assembled has errors that may cause it to
be inoperable,

ASSEMBLER ABORT - = -

Indicates that the source input caused the assembler to reach an un-
recoverable position. This may be caused by an incorrectly written
procedure or by more source code than the limits of the assembler.

CONTROL CARD ERROR - - -

Indicates that a control card (ASM, MAP, or DEL) may have been punched
improperly. The assembler continues on to the next control card.

The next list and explanations are for messages that appear on the listing

during the assembly. These messages are concerned directly with the events
that happen durlng the processing of the source code.

| | ' - | REVISION: L BT oM
. . UNIVAC 1107 SLEUTH Il fepent 9
e i w5 EE 0 af 7 4 i L3 i A "-" < e i ‘-5_:55- - i o £ o M A N u A L N u M E E R 5 | PA G E .
UP-3670 Rev. 1 2

“n,m (CARD OUT OF SEQUENCE, CORRECTION IGNORED) - - -

Indicates that the correction card “n,m was not placed in proper numerical
sequence with other correction cards. The correction is not performed.

ITEM TABLE OVERFLOW - - -

The capacity of the Assembler has been exceeded. More space is needed for
item entries than is available.

PROCEDURE SAMPLE STORAGE OVERFLOW - - -

Similar to the previous message. Either situation can be remedied by
checking for improperly written procedures, decreasing the number of
procedures, or decreasing the amount of source code to bhe assembled.

INPUT SOURCE LANGUAGE ELEMENT NOT AVAILABLE - ~ -

Indicates that the program to be corrected does not exist on the TREADx tape
or that the correction is being attempted with the TREADx tape deleted on
the FAC card.

Diagnostic messages which may accompany error termination of the SLEUTH II
Assembler are given below:

READ ERR, CREAD3 or (TREADS$)

Indicates that the routine reading source code from the READx or the TREADx
tapes has encountered an unrecoverable error. This tape should be remade
and the assembly rescheduled.

INPUT FORMAT ERR, CREAD$ or (TREAD$) - - -

Indicates that the tape has been improperly written or an error has occurred
during reading. This message requires a Y or N answer from the console.
A Y answer will instruct the routine to attempt reading the tape again and an

N'will terminate the assembly. The tape should be remade and the assembly
rescheduled. |

DRUM ERR - - -

Indicates that an error has occurred during the second pass of the assembly,

The assembly should be rescheduled and, if the problem reoccurs, maintenance
should »e consulted.

When the SLEUTH II Assembler is terminated by the Executive Routine, a hardware

or source code error is indicated. As an example, if the Assembler is instructed

via an expression evaluation to divide some constant by zero, the divide overflow
error will cause the Executive to terminate the run.

& % &

%
2 % 2 & =

* 5 3 2 o

Y #y

REVISION!: SECTION:

i £ &k b & &% . & 5 g A% = &
UNIVAC 1107 SLEUTH Il - - - . Appendix &
$k f# i L2d £ L i e s ; :
® W R E B F = OROF R MANUAL NUMBER: PAGE:
P & & £ £ @& £ % & & ¢ © @2 # % 2 & - B #

UP-3670 Rev. 1 1

#® B
® & € & B & £ # € & £ & B 2 B2 H ® H B B &

it

APPENDIX H. SERVICE ROUTINES

The following routines are contained on the ELF library to provide the SLEUTH II
programmer with a method of referencing the special peripheral units mentioned

briefly in Section <.
1. CREAD$

The CREAD$ routine is capable of reading card images from a tape prepared in
External LION format or a tape written by the CPNCH$ routine. The linkage
used to obtain a card image is as follows: |

LMJT ' 11,CREADS+n

o+ address
(abnormal return)
(normal return)

- where n is equal to O or 1. A control routine will normally use n=1 and a data
processing routine will use n=0O. The card image of the ''next card' is
transmitted to the area beginning at the location specified in the 'address"
field of the calling sequence.

If "address' specifies any of the index registers 1-10, the register designated
1s loaded with the location of the image as it resides in a core buffer, and
the image itself is not transmitted.

This routine 1s capable of reading stacked files from a single tape or from
several tapes by using the proper references.

When n=1, all cards are readable and s 'mormal return' is made after each
request except in the case where there are no more cards to read or a start
card of a succeeding file is encountered. In either of these cases, an
'abnormal return' is made with register 12 (AO) either positive or negative to
indicate the case. If A0 is negative, there are no more cards to be read; and

if AQ 1s positive, a start card is in the location specified by "address" in
the calling sequence.

When n=0, control cards are not readable (except for EOF cards). A control
card is identified by a master space (7-8 punch) in column 1. Any control card
encountered will result in the "abnormal return' from the routine. No image

1s transmitted when n=0 and a control card is encountered. An EOF control
card is punched'with |

VAEOFA

in the first six columns of the card. Column 7 may contain any character, and
columns & through 80 are ignored. On encountering an EOF card, CREAD} exists
by .the abnormal return with the character of column 7 in AO. Thus AC>O0. A
subsequent request to CREAD$ causes the next card to be transmitted. Control
cards (other than EOF cards) are not readable when n=0. When & control card
is found, the abnormal return is made with AC negative and subsequent calls to
CREADH (n:O)*will result in the same abnormal exit. This also applies when

there are no more cards to be read. On the first reference to C
with n=0, the start card is bypassed.

i ek

¥ @ e

T

o i ot w g o 4 G W 24 e 2 E: 3 2 2 i : 4

e o
£ woo% % ¢ # o® % 4 9 & & £ € » 9 #£ B & H o€ P
”} (A Fis LN St Bt miE b . dh v 3

: 0B @ s o B € O & ® & # ¢ B @ & & H & % &

. REVISION: SECTION:

Appendix H

MANUAL NUMBER: PAGE:

"J; {‘4—} '“-:? ‘-:-.:' "5":' ﬁi‘ {E‘? ¢} < {5{ il '-:5-' %‘x lé'c} L T 43 ?.r" » & U P - 3 6 7 0 R e V 1 ; 2
]
i
Lk N >

Lt i

2

Upon reaching an end=-of-file block or the physical end-of-file, an abnormal
return is made with AO negative (n=0 or 1) and the tape is rewound. In order
to have CREAD} read another tape or the same tape again, zero must be stored
in the address CREAD$ + 2 to instruct the routine of the situation.

CPNCH$

The CPNCH$ routine accepts images and writes them on tape in a format which may
be transferred to cards by the service routine SERVRO or by UNIVAC 1050. The

CPNCH} routine is referenced in the following manner:
' LMJ 11,CPNCH$

- nw, address
in which

'nw'"" 18 the number of words (nw<14) in the card
image, and |

"address'" is the location of the first word of the
image.

The CPNCH$ routine is capable of stacking outputs on a single tape if referenced
properly. CPNCH$ may be entered by

LMJ 11,CPNCH

where n is equal to O, 1, 2, or 3. If n equals O or 1, control is returned to
one plus the address in 11 (B11). If n equals 2 or 3, control is returned to
the address in B11. The routine may also be entered by

SLJ _ CPNCH{+,

where control is returned to the following instruction. The following lists
state the action resulting from each of the values of n.

n =20 The routine gets tape unit assignment.
On first reference writes 98 word label block.
Places the address of CPNCH$+, in the lower
half of address MEXIT J+2. _
Accepts images until a reference of n=2 occurs,
then the sequence is repeated.

n =1 Identical to n=0 except a label block is not written.
User may use either n=0 or n=1 and get the same action,

provided the file has been opened by a reference to
CPNCH$HO. '

n =2=2 Writes terminal buffer on tape.

Sets up to accept next reference where n might
be O, 1, or 3.

ne=3 Writes an End-of-File on tape (user must
- reference n=2 prior to n=3.)

n =4 ' Performs n=2 and n=3.

REVISION: SECTION:

'Jﬁ-: ,, -’ __? ;. j e #»* A i + L .:::L_ ot " f:f'-'. ik g_}. s £ & e e 1..' i i

Appendix H
-+« UNIVAC 1107 SLEUTH 11 - - - ke
s e T e 4 i £ £ e & £ £ % g B o g% Ay e i i i & i 9

R MANUAL NUMBER: PAGE:
$37 i 3 o L2 i ¥ 4
5 % % & wm & A S & B T Up_3670 RE:V, 1 3
3. PRINT$

The PRINT} routine accepts images and writes them on tape in a format acceptable
for printing SERVRO or the UNIVAC 1050. |

The routine is referenced in the following manner:
LMJ | 11, PRINT$
F s,n,address
in which F is a FORM word of 12, 6, 18 and
”s” is the number of lines to be skipped before printing;
'n" is the number of words in the image (n€ 22); and

"address'' is the location of the first word of the image.

If "s" is equal to zero, overprinting occurs. If "s' ig larger than the number
of remaining printable lines on the page, the image 1s printed on the next page.
If "s" is greater than the number of lines available under marginal control,
the indicated image is printed on the top margin line of the next page. The

normal margin settings at load time for the PRINT$ routine are illustrated in
the following diagram.

- TITLE LINE

54 | (TEXT)

i

The title line contains the following information:

Page number (up to 999999)
Title (see note)
Time and Date

REVISION: SECTION:

MANUAL NUMGER!: PAGE:

~ UNIVAC 1107 SLEUTH I e dastab

4

UP-3670 Rev. 1

4.

Note: The title may be changed by transferring the start card image to the
address specified at location PRINT$+6, as the title is taken from the
third and fourth word of the start card at the beginning of every file
written on the tape. |

The PRINT$ routine is capable of stacking outputs on a single tape unit by
using the proper references. PRINT§ may be entered by

LMJ 11, PRINTH -+n
where n is equal to O, 1, 2, or 3. If n equals O or 1, control is returned
to one plus the address in 11 (B11). If n equals 2 or 3, control is returned
to the address B11. PRINT$ can also be entered by

SLJ PRINTS +4

Control is returned to the following instruction. The following lists state
the action resulting from each of the values of n.

n =20 The routine gets tape unit assignment.
On the first reference writes a 98 word label
block.

Places the two words from the start card in the
title line. |

Places the address of PRINT +4 in the lower
half of address MEXITH+1 |

Accepts images until a reference of n=2 occurs,
then the sequence is repeated. '

n =1 Identical to n=0 except a label block is not written.
User may use either n=0 or n=1 and get the same action,

providing the file has been opened by PRINT} +0, PLINE®,
or PMARGY.

n = 2 Writes the terminal buffer on tape.
Sets up to accept next reference where n might

be 0, 1 or 3. Next reference might also be
PLINE} or PMARGE.

n =73 Writes an End-of-File block on tape.
n = 4 Performs n=2 and n=3.
PLINE$

The PLINE} routine associated with the PRINT$ routine is provided to aid in
formatting the printer output. The routine is referenced in the following
manner: |

LMJ 11,PLINE$

+ n

| REVISION: SECTION:

MANUAL NUMBER: RPAGE:

oo ® 0w & B ®% % & % 0¥
| A dix H
U N l VA C]] 0 7 S I. E U I H l I ppeRcix
b e ar oy T
. i £ £ o b2 £ s £ e4 i 4

s e o ¥ 3 % £ S % # 1 i &b 5

UP-3670 Rev. 1

The routine positions the printer to logical line n-1. A subsequent call on
PRINT$, with s=1, causes the image to be printed on line n. (Logical line is
defined as the line number relative to the margin settings. Thus line 1 is the
top margin line). If the logical line called for has already been passed, the
routine moves the paper to the corresponding logical line on the next page.

PMARGH

EMARG$ is another routine associated with PRINTH to aid in formatting the
printer output. The reference to the routine 1s as follows:

MLMJ 11,PMARG$
+ a, b, ¢
where

a = total number of lines per page
b = logical line number of last line. of top margin
¢ = logical line number of last line of area to be printed

A reference to this routine also removes the title line from the printer
output and adjusts the paper to the new margins.

UNIVACGC

DIVISION OF SPERRY RAND CORPORATION

UP-=3670

