
UNIVAC
DATA PROCESSING DIVISION

MULTI-PROCESSOR SYSTEM

EXEC II

PROGRAMMERS REFERENCE MANUAL

UP-4058

This manual is published by the Univac Division of Sperry Rand Corporation
in loose leaf format as a rapid and complete means of keeping recipients
apprised of UNIVAC ® Systems developments. The information presented
herein may not reflect the current status of the programming effort. For the
current status of the programming, contact your local Univac Representative.

The Univac Division will issue updating packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of hardware and/or software changes and refinements. The
Univac Division reserves the right to make such additions, corrections,
and/or deletions as in the judgment of the Univac Division are required by
the development of its respective Systems.

® REGISTERED TRADEMARK OF THE SPERRY RAND CORPORATION PRINTED IN U.S.A.

01966- SPERRY RAND CORPORATION

UP-4058 UNIVAC 1108 EXEC II Preface
SECTION:

PREFACE

In implementing EXEC II on the 1108, compatibility with the
1107 EXEC II system has been maintained. Those hardware
features of the 1108 which do not exist on the 1107 are not
utilized by EXEC II. The user is warned not to attempt to
make use of these new hardware features, since the system
does not provide for them.

The above restriction does not apply to the 1108 function
code repertoire. Except for those functions reserved by
the Executive for its own use, all 1108 function codes
may be used. A list of reserved instructions, as well as
other restrictions imposed by EXEC II on worker programs,
is provided in Section 3 A. of this manual.

i
PAGE:

UP-4058 UNIVAC 1108 EXEC II Contents 1
SECTION: PAGE:

CONTENTS

Page

PREFACE i

CONTENTS to 4

1. INTRODUCTION 1 -1 to 1-2

A. HISTORY 1 -1

B. MANUAL ORGANIZATION 1 -1

C. EXEC II MINIMUM CONFIGURATION 1-2

2. SYSTEM LAYOUT AND DEFINITIONS 2-1 to 2-10

A. THE RESIDENT ROUTINES AND THEIR FUNCTIONS 2-1

B. SYSTEM DRUM STRUCTURE 1-4

1. EXEC 2-4
2. Processors and the Processor Scratch Area 2-5
3. Library PCF 2-6
4. Execution Area 2-7
5. User PCF 2-7
6. Symbiont Drum Buffers 2-9

C. WORKER PROGRAM AREAS IN CORE AND DRUM 2-10

3. SYSTEM CONTROLS 3-1 to 3-51

A. EXECUTIVE CONTROL FUNCTIONS 3-1

1. Multiprogram Control 3-2
2. Hardware Control 3-3
3. Interrupt Control 3-6

B. USER CONTROL OF SYSTEM 3-7

1. Job-EXEC Communication 3-7

a. RUN Control Card 3-7
b. ASG Control Card 3-9

2. Job-Operator Communications 3-10

a. MSG Control Card 3-10

3. System I/O Definition 3-11

a. EOF, FIN, and COL Control Cards 3-11
b. TPR and DPR Control Cards 3-12
c. HDG Control Card 3-13

4. Language Processor Controls 3-14

a. 1108 Assembler: ASM and PDP Control
Cards 3-14

b. COBOL: COB and CLP Control Cards 3-17
c. FORTRAN: FOR and LFT Control Cards 3-18
d. Source Language Correction 3-19

UP-40S8

3.

UNIVAC 1108 EXEC II

SYSTEM CONTROLS - Continued

5. Allocator Control

a. MAP Processor: MAP Control Cards
b. XQT, ABS and SOD Control Cards
c. The Allocator

6. User PCF Controls

a.
b.
c.

Elements and the ELT Control Card
Language Processor and Allocator Outputs
CUR (Complex Utility Routines)

7. Library Control: LBR Control Card
(XQT LIBRY)

8. System Generation: XQT RSDNT

9. Diagnostic Routines: Debug Control

a. ICS: ICS Control Card (XQT ICS)
b. PMD Control Card
c. Panic Dumps

10. Control Card Errors

a. Invalid Information
b. Misplaced Card
c. Control Cards

4. WORKER PROGRAMS

A. SPECIAL SYSTEM PACKAGES

1. SORT, LIFT, APT, PERT, etc.
2. Processors

B. USER-DESIGNED PROGRAMS

1. Input-Output Specifications

a. Symbionts and Co-operatives
b. Tape and Drum Routines

1) Tape Assignment Routines
2) Tape I/O Package
3) Drum r/o: Normal Mode and

Status Codes
4) Drum I/O: Packet Mode (DPKT$)
5) Block Buffering Package
6) Label and Item Package

Page

3-20

3-20
3-27
3-29

3-34
3-36
3-37

3-42

3-42

3-43

3-43
3-48
3-50

3-50

3-50
3-51
3-51

4-1

4-1

4-1
4-1

4-2

4-2

4-2
4-13

4-14
4-17

4-28
4-35
4-37
4-50

Contents 2
SECTION: PAGE:

to 4-101

UP-4058 UNIVAC 1108 EXEC II

4. WORKER PROGRAM - Continued Page

c. Direct I/O 4-58

1) General Information 4-58
2) Package Requirements 4-59
3) The Segregated Card I/O Package 4-63
4) The Dispatcher Subroutines 4-65

d. Conso le I/O
e. Paper Tape I/O Package

2. System Subroutines Other than I/O

a. Editing Routines

1) Resident Editing Routine
2) Clock Editing Routine
3) Generalized Output Editing

Routine: EOUI$
4) Format Specifications

4-70
4-72

4-74

4-74

4-75
4-76

4-78
4-85

b. Control Routines Other Than Input/Output 4-89

1) Error Interrupts
2) MSEA$
3) MREA$
4) MLOAD$
5) MCHN$

3. Diagnostic Subroutines

C. INITIALIZATION AND TERMINATION

4-89
4-90
4-91
4-91
4-92

4-93

4-101

Contents
SECTION: PAGE:

5. JOB SET-UP 5-1 to 5-11

A. RUN DECKS (EXAMPLES) 5-1

1. COBOL Compilation 5-1
2. Reassembly from Magnetic Tape 5-2
3. Compilation from Tape 5-3
4. PCF Table of Contents Listing Run 5-4
5. Execution of Programs on Magnetic Tape 5-6
6. Incorrect Deck 5-7

B. REMOTE OPERATION

1. Operating Instructions
2. Stop Cards

6. DIAGNOSTIC MESSAGES PRODUCED BY THE SYSTEM

A. RESIDENT (EXEC) CONSOLE PRINTOUTS

B. RESIDENT (EXEC) PRINTER MESSAGES

C. CUR PRINTER MESSAGES

D. ALLOCATOR PRINTER MESSAGES

E. MAP PRINTER MESSAGES

F. PMD PRINTER MESSAGES

5-8

5-9
5-11

6-1 to 6-35

6-1 to 6-11

6-12 to 6-17

6-18 to 6-24

6-25 to 6-29

6-30 to 6-33

6-34 to 6-35

3

UP-40S8 UNIVAC 1108 EXEC II

A. MAIN STORAGE LAYOUT

B. SYSTEM DRUM LAYOUT

1. Single-Channel Drum Layout
2. Multi-Channel Drum Layout (To be Supplied)

C. CONTROL CARDS

1. Listing and Function of Control Cards
2. Control Card Options
3. Format of Control Cards
4. Format of Processor Control Cards

D. SPECIAL BLOCK FORMATS

1. Print-Image Blocks

a. Drum Blocks
b. Tape Block for Print Images
c. Print Image Blocks Written in DLT-5 Format

2. Card-Image Blocks

a. Drum Blocks
b. Tape Blocks

3. Paper Tape Images on Magnetic Tape (via
symbiont action)

4. Program Elements on Magnetic Tape (via CUR)
5. Block Buffering Package File-Description Table
6. Label and Item Package Formats

a. Format of the File-Description Area
b. Format of Label Block
c. Format of Bypass Sentinels
d. Format of End·-o f- Fi 1 e Sentinel
e. Format of End-of-Reel Sentinel
f. Format of Fixed-Length Item Data Block
g. Format of Variable-Length Item Data Block
h. Multifile Reels

F. SYSTEM TABLE LAYOUTS (To Be Supplied)

G. 1107 EXEC II - DIFFERENCES (To Be Supplied)

Contents
SECTION:

APPENDIXES

Page

A-1 to A-1

B-1 to B-2

B-1

C-1 to C-10

C-1
C-3
C-7
C-9

D-1 to D-16

D-1

D-1
D-2
D-2

D-3

D-3
D-3

D-3
D-4
0-5
0-11

D-11
D-13
D-14
D-14
D-14
D-15
D-16
D-16

4
PAGE:

UP-40S8 UNIVAC 110B EXEC II 1
SECTION:

1. INTRODUCTION

A. HISTORY

This manual is intended to be a guide for programmers using the EXEC II
system on the 1108. Sufficient information has been included to provide
the user with fundamental concepts of the internal structure and operational
qualities of the system. Background information is also provided to permit
even those who are unfamiliar with EXEC II to learn the system.

The basic design of the 1108 EXEC II system is that of the 1107 EXEC II
system designed and implemented by Computer Sciences Corporation in 1962-63
for UNIVAC. This system has been in an operational status for three years.

This manual is a complete update of all the enhancements and extensions that
have been made by UNIVAC since 1963. It is completely reorganized and
structured in a manner that should facilitate quick referencing.

B. MANUAL ORGANIZATION

This manual has been organized into four major sections with suitable charts
and tables provided in a set of Appendixes. Section 2 deals with the
structure of the EXEC II system as it exists in core and drum. Definitions
and layouts are amply provided. Section 3 deals with controls; both the
control of the executive over the machine environment and the user control
over the executive is discussed in detail. Section 4 provides the programmer
with the references he requires to build and test a worker program. Inter­
faces to system routines are detailed along with an explanation, where appli­
cable, of the part of the job done by the software. Section 5 deals with
job set-up, essentially presenting the material in the previous sections in
capsule form.

Throughout the manual cross-references as well as references to other
manuals are provided. The 1108 Operator's Reference Manual is especially
useful for details on EXEC II operations; these are not provided in the
current manual except where necessary for textual clarity. A second useful
cross-reference is the 1108 Processor and Storage Manual, UP4053.

Certain conventions have been adopted with regard to symbolism in this manual:

1. All reference to machine instructions will be in terms of 1108 Assembler
mnemonics.

2. Control-registers are referred to by either their absolute addresses
(octal) or by the symbols X¢, X11, A¢, R3, etc. The user is not re­
quired to employ these symbols.

1
PAGE:

UP-4058 UNIVAC 1108 EXEC II 1
SECTION:

3. When it is necessary to refer to the particular bits in a word, they
will normally be numbered from right to left across the word, beginning
with zero. Any deviation from this will be made clear in the text.

4. In the description of calling sequences, capital letters and numbers as
well as punctuation will represent themselves. Lower case or Greek
letters are used to designate parameters to be supplied by the user;
parameter words will normally be referenced in the text with quotation
marks surrounding them.

5. References (especially in Section 2) to variable configurations are
based on the current availability of software. Each software shipment
is accompanied by a document which describes the software package in
terms of hardware. The latter document will prove more exact than this
manual in dealing with particular systems.

C. EXEC II MINIMUM CONFIGURATION

65,536 words of core memory
1 magnetic drum (FH-880) (3,000,000 (octal) words of drum)
1 card reader (standard or 1004)

card punch (standard or 1004)
printer (standard or 1004)
console with typewriter

The above requirements are for the system as it is currently defined.
The use of the hardware is outlined in the following sections. The
system is essentially modular, with additional power provided as
additional hardware is added.

2
PAGE:

UP-4058 UNIVAC 1108 EXEC II 2
SECTION: PA(;E:

2. SYSTEM LAYOUT AND DEFINITIONS

The Executive System is a program composed both of routines which remain in core
at all times (the resident routines) and of routines which remain on drum until
needed by the system (the non-resident routines).

Initially, resident routines must be brought into the machine by a bootstrap
operation. A tape bootstrap results in the placing of both the resident and non­
resident routines in their proper places on drum. A simulated drum bootstrap is
then performed to place the resident routines in the proper locations in core.
In the case of a manual drum bootstrap, the resident system is read into core
from drum. At the completion of the bootstrap, control is given to the control
card interpreter.

A. THE RESIDENT ROUTINES AND THEIR FUNCTIONS

The resident routines occupy core at all times and are protected from
destruction by worker programs. The resident routines must process interrupts,
provide input/output and editing functions desired by the worker programs,
keep account of variables indicating status of the worker program, provide
buffer space, and read in the non-resident routines when necessary. The lay­
out of these routines in core is pictorially shown in Appendix A.

CCIRES is the resident portion of the control card interpreter which serves
as the primary source of control for the sequencing of runs through the
system. The control card interpreter reads the control cards and calls in
various system functions as required to provide the construction and execution
of user programs. CCIRES serves as a transition between the system and the
non-resident portions of the control card interpreter which are described in
Section 2 B.1 ••

COMMUN contains the general communications region, the processor communica­
tions region, and the current control card image. MCR$, the general communi­
cations region, contains such information as next available drum address in
user's PCF, length and start of Blank Common, available area in core, run
identification, date and time of beginning of run, etc.

PARTBL, the processor communications region, contains in addition to that
information stated in the processor control card, descriptors for the source
input, source output, and object output, and location of drum scratch area.

VECTOR consists of a jump table for user entries into system routines and
various switches and flags used by the system. It allows the user to execute
a previously assembled program regardless of changes in the resident memory
allocation due to system updates.

1

UP-4058 UNIVAC 1108 EXEC II 2
SECTION:

CONFIG contains definitions of memory size, drum locations and sizes of
various parts of the system, and tables dependent upon the configuration of
the hardware. CHNTBL is the table defining channel assignments. ZPT$ is a
symbiont control table (described in Section 4 B.1 .a.). DBAVT and DBBASE
are tables giving drum block availability and the starting address of drum
blocks respectively. Tables which are used for tape operations are XTAB,
tape unit function table; XOLT, tape unit operational label table; XPVI,
tape unit physical unit table; XAWT, tape access word table; XSWT, tape unit
sentinel word table; and XMWT, tape unit masked word table. SLIM is a word
defining User Core limits. (See Section 2 C.)

ICS is also a resident routine. It is used by the system to read drum data
into core. All the functions of ICS available to the user can be found in
Section 3 B.9.a.

EXITS contains the exit points and coding which enable a worker program to
return control to the system. Reference Section 4 C.

A symbiont is an independent routine which transfers data between a peri­
pheral unit and an intermediate storage medium such as drum. Symbionts,
although they are not themselves resident routines, use resident routines
and tables. CONVT is a conversion table used by the 1004 symbionts, and
RDP and PRB are subroutines used by remote symbionts. Note that PRB and
RDP occupy the space normally used as the first core buffers; they are not
overlaid.

A cooperative is a program-dependent routine which transfers data between
core memory and an intermediate storage medium such as drum under the con­
trol of a worker program (or the system). Unlike the symbionts, the co­
operatives are resident. CREAD is the card read cooperative; CPNCH, the
card punch cooperative; PRINT, the print cooperative; and TAPE, the mag­
netic tape cooperative.

LOWCOR contains interrupt control tables, storage associated with the
dispatcher, and the logical unit table, XLVI. LOWCOR also contains
ZFILET, the file directory for drum blocks in the Symbiont Drum Buffer
area (See Section 2 B.6.). Routines in PARCON are provided to manipulate
the directory; see Section 4 B.1 .a. for a description of the directory
and the manipulative subroutines.

PAR CON is an element comprised of subroutines that perform utility
functions for symbionts. Many of these subroutines may be called from
the user's environment (See Section 4 B.1.a.). PARCON basically consists
of four sections:

(1) The symbiont control routines: ZREM, ZLOAD, ZINSP, ZINS, ZSUB1, ZSUB2.
These routines queue requests for symbionts, make available and release
core buffers, and load the symbionts.

(2) The buffer control routines: ZRCB$, ZRDB$, ZLDB$, ZLCB$. These
routines request and release core and drum buffers.

(3) The file control routines, which manipulate the drum file directory in
LOWCOR: ZFIL$, ZNEXT$.

(4) The communication routihes which inform the operator and allow him to
control the activity of the symbionts: ZTYPE$, ZTERM$, ZSPND$.

2
PAGE:

UP-4058 UNIVAC 110B EXEC II 2
SECTION:

INTRP provides the connection between a hardware interrupt and the system
routine that will process the interrupt. (See Section 3 A.3.) INTRP also
contains SIRT, the system interrupt return point, which is used as an exit
from a number of system routines. At SIRT, the queues maintained by the
dispatcher (see below) are checked to determine whether any item can be
acted on; if so the required action is taken and the queue updated. When
a symbiont is to be given control by this action, register B1 is set to the
address of the first location of the core buffer in which the symbiont is
operating and the cell ZSW$ is set to the index of the symbiont's entry in
the ZPT$ table in CONFIG. All registers and the carry and overflow indica­
tors are reset to the values which were in them prior to the interrupt, and
control is returned to the interrupted program (either worker program or
symbiont). Note: Any action indicated in the queues in the dispatcher will
occur before returning to the interrupted program. The normal method for
activating an inactive or suspended symbiont is to place it in the ready
queue. This will cause the INTRP routine to jump to the required symbiont
when it checks the queue.

The EDIT element provides editing routines for the system and the user.
The routines available to the user are EBO$-edit binary to octal, EBD$-edit
binary to decimal, EBF$-edit binary to Fieldata. All of the editing
routines available to the user are fully described in Section 4 B.2.a ••

The DRUM element contains the routines to perform drum I/O operations.
Those operations available to the user are described in Section 4 B.1.b ••

The CONSOL element provides typewriter input and output.

PAGE:

The KEYINS element contains the routines for unsolicited key-ins processing
(excluding console utility key-ins, such as "A" and "G" which are handled by
routines in the non-resident element GNP, called in by CONSOL when required).

The ERRORS element is a system errors control routine. The options available
to the user in changing the error actions are described in Section 4 B.2.b ••

The DSPCHR element contains the resident routine called the dispatcher. This
routine is the heart of all communications between the Processor and its
input/output devices. The dispatcher maintains a queue of channel requests
for each channel and will honor each in turn as the channel becomes avail­
able. In addition, the dispatcher controls the operation of the symbionts
and maintains a pool of buffer areas. Because the monitor system provides
subroutines for communication with each of the input/output devices, the user
will not normally have reason to link directly to the dispatcher. The dis­
patcher is further described in Section 4 B.1 .c ••

BOOT is the element brought in by the hardware bootstrap function, and it
must complete the input of the other system routines. It contains a simple
card load routine, a panic dump routine, and a method of patching the system
prior to writing it to drum.

LOAD is the routine which loads the non-resident routines into core from drum.
LOAD transfers elements from drum to core until it reaches the end of a link,
at which time it relinquishes its control. LOAD can also be referenced by a
worker program to load links or overlays from drum; refer to Section 3 B.5.a.
for information on constructing a segmented program and Section 4 B.2.b. for
information on referencing the loader.

Also part of the resident are core buffers. These 256-word blocks which
occupy the portion of memory following the last systems element may be used
by the various routines as buffers or occupied by the symbionts when they

3

UP-4058 UNIVAC 1108 EXEC II 2
SECTION:

are active. Note that in remote systems, the routines RDP and PRB occupy
the first core buffers at all times.

B. SYSTEM DRUM STRUCTURE

1. EXEC

The non-resident routines remain on drum until they are needed. Among
these routines are the symbionts, the control card interpreter, the time
elements, and the system manipulation elements. A pictorial description
of the system layout on drum is provided in Appendix B.

The Control Card Interpreter, the primary source of control for the
sequencing of runs through the system, consists of five elements:
CCIRES, CCI, ACCNT, and TIME. CCIRES is a resident routine and is de­
scribed in Section 2 A. The three non-resident elements form an overlay
which is brought in over the user's area of core (see Section 2 C.) when
CCl is in control. CCl is the heart of the routine and contains the
code for scanning card images and contains a table describing the vari­
ous control cards; ACCNT is the accounting routine which edits and out­
puts information concerning time of execution of the run and counts of
cards read and punched and pages printed. TIME is the routine which
provides the time and date; it consists of the routines EDATE$ and ETOD$
which edit the date and time of day respectively. The time routines,
which are described in Section 4 B.2.b., work with the system cells
MTOD$, containing the month in binary and the time in seconda from mid­
night, and MDATE$, containing the day, month, and year in Fieldata.

The system manipulations routines contain both resident and non-resident
elements. LOWCOR and BOOT are resident elements described in
Section 2 A.. BWRlTE is used to write the system and processors on drum
or to write the processors on tape. The RSDNT element is a MAP (de­
scribed in Section 3 B.5.a.) which specifies the core arrangement of the
system and is used to write the system on tape. The first link of the
MAP contains the element SCAT, the loading routine which reads the system
components from drum so that they may be written on tape. Within SCAT
are the variables DCHAN and HCHAN which respectively define the channel
of the drum on which the system resides and the channel of the tape on
which the system is to be written.

The second link contains both resident and non-resident elements which
are written on tape after being loaded into core by the routines of the
first link. For a description of system generation, refer to
Section 3 B.8 ••

The system utilizes routines of CUR (see Section 3 B.6.) as non-resident
routines while inserting source language or object output of a processor
into the user's area of core when they are needed. These programs,
which are called by the user, are described in Sections 3 B.4. and
3 B.5., respectively.

The symbionts, which are described in Section 4 B.1.a., are loaded,
when active, into the core buffers (see Section 2 A.). Each of the
symbionts and its function is described on the following page.

4
PAGE:

UP-4058 UNIVAC 1108 EXEC II I SECTION. 2 I PAGE, 5

PR1 Printer symbiont-transfers print files from drum to printer.

CR1 Card Read symbiont-transfers card read files from reader to drum.

CP1 Card Punch symbiont-transfers card punch files from drum to card
punch.

DMP Dump symbiont-transfers print, punch, or read files from drum to
tape.

LOD Load symbiont-transfers print, punch, or read files from tape to
drum.

PR7 Remote print symbiont-transfers print files from drum to remote
printer.

CR7 Remote read symbiont-transfers card read files from remote reader
to drum.

CP7 Remote punch symbiont-transfers card punch files from drum to
remote card punch.

CR4 1004 Card Read symbiont-transfers card read files from on site
1004 reader to drum.

PR4 1004 Print symbiont-transfers print files from drum to on site
1004 printer.

DLT Data Line Tape symbiont-transfers print files from drum to tape
in DLT-5 format. See Appendix D 1.c •.

QR1 Paper tape read symbiont-transfers data from paper tape to
magnetic tape.

Operating similar to the symbionts in that they are loaded into core
buffers when needed, are the following routines.

TAP Handles tape assignments from the console (also called TASGN).

GNP Handles 'G' and 'A' Keyins (also called GPSW23).

THP Console operator's tape handler - See Section 4 B.1 .a ..

2. Processors and the Processor Scratch Area

A processor (not to be confused with the hardware term "central pro­
cessor") is a special system program provided by UNIVAC for the 1108,
which performs one of several functions relative to the construction
of an object program. Three types of processors exist in the EXEC II
system:

1. Language Processors (See Section 3 B.4.)
2. Element Manipulative Processors (See Section 3 B.5. and

3 B.6.)
3. Diagnostic Processors (PMD; See Section 3 B.9.)

In normal operation, the processors reside on drum until such time as
one is called to perform its function. A processor is loaded and

UP-4058 UNIVAC 1108 EXEC •• - 2
SECTION:

executed as a worker program, much the same as a user's program (see
Section 4 A.).

Two drum areas are used by the system for processors. The first is the
area in which the processors reside, drum addresses 0035000 to 0420000
(octal notation). In this area, the processors are currently ordered
as follows:

PMD (see Section 3 B.9.b.)

Allocator (see Section 3 B.5.c.)

CUR (see Section 3 B.6.c.)

MAP (see Section 3 B.5.a.)

1108 Assembler (see Section 3 B.4.a.)

Procedure Definition
Processor (see Section 3 B.4.a.)

COBOL Library Processor (see Section 3 B.4.b.)

FORTRAN compiler (see Section 3 B.4.c.)

LIBRY (see Section 3 B.7.)

COBOL compiler (see Section 3 B.4.b.)

*LIFT or ALGOL (see below)

For those systems which contain LIFT as a processor (see Section
3 B.4.c.), it is at the end of the processor area; other systems contain
an ALGOL compiler or a program which responds to an ALG control card and
produces a message indicating that ALGOL is not available.

An area of drum is also reserved for the processors to use as working
storage; this area is called "Processor Scratch Area" and its location
is variable depending on the type of system provided. The starting
address of this area is contained in CONFIG (see Section 2 A.) as the
symbol ASCRH$. The area is currently defined as follows (see also
Appendix B):

1 Drum System -02000000 to 02377777 *
1 Drum Extended System -02000000 to 05377777 *
2 Drum System -03000000 to 04777777 *

* (octal notation)

NOTE: The last location in the processor scratch area is defined by
the system as the maximum legal drum address for worker programs;
i.e., any attempt to write into a higher drum address by a
worker program will be considered an error.

3. Library PCF

PAGE:

The Library PCF is a program complex file stored on drum for use by all
worker programs. (A Program Complex File is a random-access file of pro­
gram components.) It contains elements (see Section 3 B.7.), which may
be called by user programs but no element may be added, deleted or modi­
fied. To make changes to the Library, it is necessary to rebuild it in

6

UP-4058 UNIVAC 1108 EXEC II 2
SECTION:

the User's PCF (see Section 2 B.5.) and then transfer it to the Library
PCF as described in Section 3 B.7 •• The description of User PCF compo­
nents (see Section 2 B.5.) applies to the Library peF except that sym­
bolic elements are not normally retained in the latter. This is due to
size restrictions. The library supplied by UNIVAC in the system tape
shipment contains FORTRAN and COBOL routines (used by the respective
compilers; see Section 3 B.4.) and a number of other elements collec­
tively known as the "System Library". Those library routines available
to the user are described in Section 4 B.

The drum area occupied by the Library PCF is divided in the same way as
the User PCF area (see Section 2 B.5.) with constants in CONFIG (see
Section 2 A.) defining it.

PAGE:

The Library PCF is currently structured as follows (see also Appendix B),
Drum area used:

1 Drum System 0 420 000 - 0 577 777 *
1 Drum Extended System 0 420 000 - 0 577 777 *
2 Drum System 0 420 000 - 0 677 777 *

* (octal notation)

Table of contents length 10,550

Text area length 447,754 Drum System

709,642 2 Drum Systems

4. Execution Area

5.

The Execution Area on drum is the area used by the Allocator (see Section
3 B.S.c.) to build a worker program. The Loader (see Section 2 A.) uses
this program structure on the drum to load worker programs (except pro­
cessors) into core. The diagnostic system (See Sections 3 B.9. and
4 B.3.) uses the execution area to provide dump information. Normally
information regarding drum requirements is given to the Allocator, which
reserves required drum locations in the execution area.

The execution area is currently structured as follows (see also
Appendix B):

1 Drum System 0600 000-0777 777 *
1 Drum Extended System 0600 000-0777 777 *
2 Drum Systems 0700 000-1277 777 *

* (octal notation)

User PCF

The User PCF is a program complex file on drum. (A program complex file
is a random-access file of program components.) The difference between
the User PCF and the Library PCF (see Section 2 B.3.) is that the former
is completely under control of user jobs and is cleared between jobs,
while the latter is normally protected by the system against modification
by user jobs.

a. The PCF, as defined under EXEC II, is divided into two portions -
a Table of Contents and a text area. The Table of Contents (or TOC)

7

UP-4058 UNIVAC 1108 EXEC II 2
SECTION: PAGE:

contains five tables which describe entries in the text area. The
text area consists of program constituents; the largest such constit­
uent which may be individually referenced is called an "element".
Each element consists of one or more "pieces" stored separately on
drum. Each "piece" consists of one or more lines of code forming
either a table or text of a program in some form. The Table of Con­
tents contains five major tables arranged in the following order at
the beginning of the User PCF:

1. Element Table
2. Entry Point Table
3. Block Table
4. COBOL Library Table
5. Procedure Name Table

The Element Table contains an entry for each element, with a
"descriptor" containing the drum address of each piece.

The Entry Point Table consists of symbols defined in corresponding
elements in the text area as available to other elements. Any sym­
bol not appearing in this table may be referenced only within the
element which contains it. The Entry Point Table cross references to
the Element Table.

The Block Table contains references to common blocks in the text area,
as defined by source language processors (see Section 3 B.4.) or by
MAP (see Section 3 B.5.a.).

The COBOL Library Table consists of references to elements in the text
area produced by the COBOL Library Processor (see Section 3 B.4.b.)
or by the 1108 Assembler (Section 3 B.4.a.).

The Procedure Name Table consists of references to elements in the
text area produced by the Procedure Definition Processor (see
Section 3 B.4.a.).

The Table of Contents is updated by the system each time a change is
made in the text area. Deletion of elements is accomplished by re­
moving corresponding Table of Contents entries. The CUR processor
(see Section 3 B.6.c.) is called by the system or by user job to
manipulate the Table of Contents, as well as the text of the User PCF.

b. The text area of the User PCF consists of any combination of seven
types of elements. These are referenced by name, with various levels
of name definition described throughout Section 3 B •• They may also
be referenced by "entry points" (externally defined symbols), as de­
scribed above in paragraph a. They may also contain undefined symbols
which are meant to reference entry points in other elements. Undefined
symbols are also called "external references". Resolution of undefined
symbols is accomplished by the Allocator (see Section 3 B.5.c.) using
the Entry Point Table; deletion of an element is accomplished by de­
leting Table of Contents entries for the element; and insertion of an
element is accomplished by placing it in the text area following the
last element inserted and making entries as required in the Table of
Contents.

8

UP-40S8 UNIVAC 1108 EXEC II 2
SECTION:

The seven types of elements which may be in the User PCF in any
order are:

1. Symbo lic
2. Absolute (see Section 3 B.5.c.)
3. Relocatable (see Section 3 B.4.)
4. Processed MAP (see Section 3 B.5.a.)
5. Compressed Symbolic
6. COBOL Library (see Section 3 B.4.b.)
7. PROC (or procedure) (see Section 3 B.4.a.)

PAGE:

A symbolic element (types 1 or 5) consists of a single "piece", which
is the symbolic coding to be input to a processor (see Sections 3 B.4.
- 3 B.6.). The piece consists of images of the cards input by the
programmer.

An absolute element (type 2) consists of a single piece divided into
logical groupings for each program link and preceded by two tables.
The first is a header table which defines the size of the element,
sizes of storage blocks required, and references to the link table.
The link table follows the header table and contains references to
the links which follow, with space for the loader to mark "active"
the parts of the link which are in core. Each link consists of a
block of absolute code with beginning and ending points marked and a
set of Diagnostic Tables which are used by the diagnostic routines
(see Sections 3 B.9., and 4 C.).

A relocatable element (type 3) consists of two pieces called the
"preamble" and the text. The preamble contains entries for each
location counter up to the highest number counter used, entries for
each undefined symbol, and entries for each externally-defined sym­
bol listed in the Entry Point Table of the TOC. The text is a block
of relocatable binary card images, each of which contains the reloca­
table code words of the program and corresponding relocation informa­
tion.

A processed MAP element (type 4) consists of a number of tables cor­
responding to the MAP directives described in Section 3 B.5.a •• These
tables are arranged into a "piece" for each link, plus a "piece" con­
sisting of the DEF table, which contains entries originating in DEF
directives (described in Section 3 B.5.a.).

A COBOL Library element (type 6) consists of two pieces. The first
piece consists of COBOL card images as input to the COBOL Library
Processor; the second is a preamble containing the labels (up to
30 COBOL characters) of the COBOL paragraph entries in the first piece.

A PROC element (type 7) consists of two pieces. The first piece con­
sists of assembler procedures in card images; the second is a preamble
containing the labels of the PROC and NAME lines in the first piece.

c. The User PCF occupies a predetermined portion of drum in every
EXEC II system (see also Appendix B.).

1 Drum System
1 Drum Extended System
2 Drum Systems

* (octal notation)

01000000-02000000 *
01000000-02000000 *
01300000-03000000 *

9

UP-4058 UNIVAC 1108 EXEC II 2
SECTION: PAGE:

Note that the first location in the User PCF is defined by the system
as the minimum legal drum address for worker programs, and worker pro­
grams may not write below this address. The size of the User PCF and
its components is defined by constants in CONFIG (see Section 2 A.).

6. Symbiont Drum Buffers

A symbiont (see Section 2 B.1.) is an independent routine which trans­
fers data between a peripheral device and an intermediate storage
medium. Most symbionts use the drum as the intermediate storage medi­
um; for this reason buffers are provided on the drum for files
handled by symbionts.

Each buffer, or drum block, is a 256 word area on drum. The resident
system (see Section 2 A.) contains routines which control the use of
these buffers. Utilization of symbiont buffers by worker programs is
also provided for by means of system subroutines with worker program
entries (see Section 4 B.1 .b.).

Access is also provided to the symbiont buffers for co-operative
routines, which are program-dependent resident routines which trans­
fer data between the drum and the worker program (see Section 2 A.).

The drum area established for symbiont buffers is currently defined
as follows (see also Appendix B):

1 Drum System
1 Drum Extended System
2 Drum System

* (octal notation)

C. WORKER PROGRAM AREAS IN CORE AND DRUM

02 400 000-02 777 777 *
05 400 000-05 777 777 *
05 000 000-05 777 777 *

Worker programs are restricted to specified areas in core and drum. General­
ly, these areas are the portions of storage not reserved by the system. The
exceptions to this rule are the areas reserved for symbiont, drum, and core
buffers; these may be used by a worker program which properly requests them
(see Section 4 B.1 .b.).

The main areas available to the worker program are defined in Appendixes A
and B. All core between the upper limit of COMMUN (the last resident routine
in lower core) and the lower limit of ICS (the first resident routine in upper
core) is available to the worker program. On the drum, the worker program
may use the entire area encompassed by the User PCF and the Processor Scratch
area. Caution is advised in utilizing drum areas, since these areas serve
other functions.

The last three words of PARTBL (in COMMUM; see Section 2 A.) and the first
word of MCR$ (in COMMUN) contain information useful in determining worker
program areas as follows:

PARTBL+16 07750* Core size (65)
+17 07751* Address of start of User PCF (minimum legal drum address)
+18 07752* Address of end of Processor Scratch area

(maximum legal drum address)
+19 07753* Address of start of Processor Scratch area

MCR$ +0 00754* Address of next available location in User PCF

*Core addresses in octal notation.

10

UP-4058 UNIVAC 1108 EXEC II 3
SECTION: PAGE:

3. SYSTEM CONTROLS

A. EXECUTIVE CONTROL FUNCTIONS

This section outlines EXEC controls over the operating environment of the
machine. The basic structure of this environment (covered in detail in
other sections) is as follows:

System
Control

Worker
Programs

EXEC Operator

Symbionts

Programmer jobs are defined by the programmer's "RUN DECK" and usually in­
clude one or more worker programs which require the major part of the com­
puting capability of the machine; these are run serially.

Symbionts are I/O limited programs which perform most of the hardware func­
tions of the machine. These operate concurrent with and essentially indepen­
dent of the programmer's job and each other.

Control over machine operations is shared between the operator and the EXEC.
Decisions regarding the use of symbionts and error recovery procedures are
the domain of the operator while the EXEC insures that the programmer's re­
quirements and operating requirements are efficiently fulfilled.

To do its supervisory job, EXEC controls the multiprogram environment by
keeping check on all running programs, facilitating the sharing of hardware,
and reserving interrupt control to itself. These functions are outlined in
succeeding paragraphs.

1. Multiprogram Control

At any given time several programs may be in operation. These include:

a. An EXEC control routine, such as CCI (see Section 2 B.1 .), or at most
one worker program (see Section 2.).

1

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

1. Multiprogram Control

At any given time several programs may be in operation. These include:

a. An EXEC control routine, such as CCI (see Section 2 B.1 .), or at
most one worker program (see Section 2.).

b. One or more symbionts (see Section 2 B.1., 4 B.1 .a.).

To insure that these programs do not interfere with one another, EXEC is
entered each time control is to be transferred from one program to
another. At this time EXEC stores all information pertinent to the pro­
gram releasing control, restores the pertinent information for the pro­
gram demanding control, and releases control to the latter.

Worker programs release control only when interrupted (see Sections

PAGE:

3 A.2. and 3 A.3.) or when complete. Symbionts take control only through
interrupts after they are initialized and release control while waiting
for an interrupt or when interrupted or complete. EXEC control routines
such as CCI gain control when the system is initially loaded or when the
worker program is completed and release control when interrupted or when
a worker program is turned on.

EXEC also maintains control of the hardware environment by keeping track
of assigned areas in core and drum and all peripheral devices.> Any
attempt by a worker program to utilize areas restricted to system rou­
tines causes an interrupt to occur, and EXEC terminates the worker pro­
gram. EXEC also thwarts efforts by a worker program to utilize periph­
eral devices incorrectly, such as attempting to use a device already in
use or calling for a channel which does not contain the proper equipment
or does not exist. Hardware controls are detailed in Section 3 A.2. and
interrupt controls in Section 3 A.3 ••

To properly fulfill its supervisory function certain instructions as well
as the portions of core used by the resident (see Section 2 A.) and
registers 0, 32-64, and 80-87 are reserved exclusively for EXEC use. The
console, one card channel, and one printer channel must also be reserved.
To protect the user from ambiguous definitions, all symbols used by EXEC
for cross-communication (or for entry points from worker programs) con­
tain the symbol "$". While this symbol is not reserved, it is strongly
recommended that users avoid it so as not to chance duplication between
their own symbols and those of EXEC.

All function codes which are legal on the 1108 and do not appear in the
list below may be used by worker programs operating under EXEC lIon the
1108. No attempt is made by EXEC II to flag the use of instructions in
the 1108 repertoire which are illegal on the 1107.

2

UP-4058

2.

UNIVAC 1108 EXEC II 3
SECTION: PAGE:

The following list of reserved instructions must not be used by worker
programs, since proper operation of EXEC II depends on its exclusive use
of these instructions. 1108 Assembler mnemonics and octal function codes
are shown, with a note, "(1108)" or "(1107)" for functions which exist
in only one of the two machines. Functions which are not otherwise noted
are in the repertoire of both the 1107 and 110B. For further information
refer to the 110B Processor and Storage Manual (UP 4053).

W 7200 (1107) HKJ 7405 DOC 7510
LL 7211 (1107) HJ 7405 LFCM 7511
ER 7211 (11 OB) AAIJ 7407 JFC 7512
PAIJ 7213 LIC 7500 AFC 7513
SCN 7214 (11 OB) LICM 7501 AACI 7514
LIF 7215 (11 OB) JIC 7502 PACI 7515
LSL 7216 (11 OB) DIC 7503 ACI 7516 (1107)
lSI 7314 (1108) LOC 7504 PCI 7517 (1107)
SIL 7315 (1108) LOCM 7506
LCR 7316 (11 OB) TOC 7507

Hardware Control

The Executive, in its function as a supervisory program, maintains con­
trol of certain portions of the hardware. This consists of controlling
input/output, responding to hardware interrupts, reserving portion of
core and drum, and maintaining queues of buffer and I/O requests.

To aid in control, the Executive maintains tables for interrupt control,
(see Section 3 A.3.) magnetic tape assignment, channel requests and
channel status, symbiont activity, and core and drum availability. Al­
though the worker program need not reference these tables directly, the
user should be aware of the fact that the Executive must keep the tables
up to date.

Through its co-operatives and symbionts (described in Section 4 B.1 .a.),
the system acts as an interface between a worker program and the periph­
eral devices. The roles of the worker program, the symbionts, the co­
operatives, and the Executive itself are shown pictorially in diagram A
(see Section 3-5). Notice that many of the symbionts and co-operatives
utilize the drum for buffering purposes. The use of this fast-access
I/O device allows the system to return control without having to wait for
the availability of the slower I/O device requested. If no buffers are
available for symbiont or co-operative, however, the system will not re­
turn control until it has obtained a buffer by the action of a symbiont
or co-operative releasing one.

The co-operatives are resident routines (refer to Section 2 A.) and are
directly available to the worker program. Symbionts, however, are non­
resident and can be controlled only by the system or by manual inter­
vention in the form of a command to the system. Symbionts, if not al­
ready active, are loaded into core and activated in the following
instances:

a. a full block of line images is to be transferred to the printer or
card punch,

3

UP-40S8 UNIVAC 110B EXEC II 3
SECTION:

b. the operator enters a key-in via the console informing the system
that he wishes to activate a symbiont,

c. The operator at a remote 1004 depresses the proper alteration
switches to indicate that he wishes to begin transmission.
(Refer to Section 5 C.)

A worker program can theoretically perform r/o operations without
interfacing with the Executive. However, since the system keeps
account of the status of the various r/o devices, to prevent system
destruction the worker program should request channels through the
dispatcher when using direct r/o (Refer to Section 4 B.1 .c.).

Magnetic tape, drum, paper tape, and console r/o operations are
not handled through cooperatives, but library routines are available
to the worker program for performing these operations. The use
of library routines for magnetic tape and drum operations is described
in Section 4 B.1.b., console r/o in Section 4 B.1 .b., and paper tape
r/o in Section 4 B.1 .e ••

The Executive reserves for its own use certain portions of core
and drum (refer to Sections 2 A., 2 B., and 2 C., and Appendixes A and
B). Attempts by a worker program to write into these reserved areas
will result in an error termination. However, the worker program
may request core and drum buffers for its own use (refer to Section
4 B.1 .a.). The user should exercise caution in requesting buffers,
for if a worker program has buffers assigned to its control it is
denying the Executive the use of these buffers. When the system has
less buffers available, it may have to wait longer to answer the re­
quest for a buffer by a symbiont or a co-operative, thereby wasting
valuable central processor time or even causing the system to "hang"
if no buffers can be made available.

4
PAGE:

UP-4058 UNIVAC 1108 EXEC II

I WORKER PROGRAM I
EXEC II (1108 CORE)

INPUT OUTPUT

Co-operative Co-operative
(uses core (uses core
buffer for buffer for

data) data)

INTERMEDIATE STORAGE (NORMA LL Y DRUM)

t
CORE BUFFERS (1108 CORE)

INPUT OUTPUT
Symbiont Symbiont

+ +
Data Buffer Data Buffer

INPUT OUTPUT
Device Devi ce

(E. G. CARD (E. G. PRINTER)
READER)

Diagram A, Representation of the Relationships of Worker
Program, Symbiont, and Co-operatives (Console
Operator Controls not shown). Also see Table
of Symbionts (Section 4 B.1.a.)

3 5
SECTION: PAGE:

UP-4058 UNIVAC 110B EXEC II 3
SECTION:

3. Interrupt Contro I

Much of the activity occurring at any time in the operation of the
1108 involves some kind of interrupt. An interrupt is a notification
to the system that some special condition has occurred; these are de­
scribed below. To facilitate this notification certain memory locations
are reserved (refer to 1108 Processor and Storage Manual UP 4053) to
which an unconditional jump is made when an interrupt occurs; the
P-register, which contains the location of the next instruction to be
executed, is not affected by this jump. Under EXEC II, the interrupt
locations are reserved to the system, and are loaded with entrances to
system routines such as INTRP (see Section 2 A.). This routine handles
the condition which caused the I/O interrupt and returns control to the
routine which was interrupted, at the location which was in the
P-register when the interrupt occurred. Certain interrupts may be modi­
fied by the user, through corresponding system routines (see Section
4 B.2.b.). The following interrupts are handled by EXEC II:

a. External Request interrupts for each channel. These occur when
the peripheral device on the channel demands the attention of
the computer.

b. Input Data Termination interrupts for each channel. These occur
when the transfer of a data block from a peripheral device to core
terminates. This interrupt is internally controlled, since the size
of the block to be transferred is internally specified.

c. Output Data Termination interrupts for each channel. These are the
output equivalent of the input interrupt described in paragraph b.

d. Function Termination interrupts for each channel. These occur when
a peripheral device attached to the channel acknowledges the func­
tion, or command, transferred to it from core. This is obviously
also an internal interrupt.

e. Error Interrupts (as indicated in the 1108 Processor and Storage
Manual, UP 4053). These occur when specified errors (such as divide
overflow, illegal instruction, or attempt to write into protected
areas of core) are made by the operating program. EXEC II provides
for user modification of the error interrupt entry points (see
Section 4 B.2.b.).

f. Real-Time Clock interrupt. This occurs when a specified amount
of time has elapsed (as indicated by the decrementation of Register
R ~, the real-time clock, through zero). EXEC II provides routines
for usage of the real-time clock (see Section 4 B.2.a.).

g. External Synchronization interrupt. This occurs when a real-time
device demands access to the 1108, so as to provide the capability
of synchronizing the device with the 1108.

6
PAGE:

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

B. USER CONTROL OF SYSTEM

The primary control over the system available to the user is the
control card. This is, by definition, any card image with a "master­
space" (octal 00 punched as "7-8" on the card) in column 1, and is
usually "free-form" which means fields are not limited by the card
columns in which they are placed. Computer runs are organized into jobs
within which may be any number of programs. Between jobs, the system
clears worker-program areas in core and drum (see Section 2 C.), all
indicators applying to worker programs, and frees tape drives assigned
previously to worker programs. The usage of control cards and other
similar controls over system operation is described in this section.

1. Job EXEC Communication

a. RUN Control Card

Definition: The RUN card is a control card which marks the
beginning of a job. It is identified by the word "RUN" in
the card name field and contains a job priority code, an
identification name, an account name, an estimate of running
time and print output, and a print channel designation and a
punch channel designation (see Appendix C 3. for format).
All fields except the card name field, the identification name
and the account name are optional and may be omitted. The
RUN card fields are described below.

(1) Job Priority

This is a single alphabetic character (A-Z) in the
"option" field of the card which specifies the order
in which jobs are executed by the system. Jobs with
priority toward the beginning of the alphabet are taken
before those with priority toward the end of the alphabet.
If the field is omitted, "D" is supplied by the system.

(2) Identification Name

This is a field of from one to six characters from the
set A - Z , y)-9, +, =, ., $ • B 1 an k s are i 11 ega 1. I tis
a conventional identification which is normally supplied
by the programmer.

(3) Account Name

This is a field similar to the identification name field;
however, it is normally used by the computer center for
job accounting, and specifications for this field are
normally supplied by the center.

7
PAGE:

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

(4) Run Time Estimate

This is a decimal integer (0-1440) interpreted by the
system as the number of whole minutes estimated for the
job. A console typeout, "MAX TIME", informs the operator
as soon as this estimate has been exceeded. If the field
is omitted, "5" is supplied by the system.

(5) Print Output Estimate

This is a decimal integer (0-999999) interpreted by the
system as the number of pages of print output estimated
for the job. A console typeout, "MAX PAGES", informs
the operator as soon as this estimate has been exceeded.
If the field is omitted, "50" is supplied by the system.

(6)* Print Channel Designation

This is a decimal integer interpreted by the system as
the channel on which print files are to be output. It
is used to override the system's selection of the output
channel, e.g., when running remotely via a 1004 (see
Section 5 C.) in order to print at the 1108 site, or to
a remote site when the run deck was input at the 1108
site. It should also be specified if special forms are
to be mounted on the printer. If the field is omitted,
the system supplies the number of the standard on-line
printer.

(7)* Punch Channel Designation

This field is similar to the print channel designation field;
it is interpreted by the system as the channel on which punch
files are to be output. If the field is omitted, the system
supplies the number of the standard on-line punch.

System Response:

When the RUN card is encountered by CCI (see Section 2 B.1 .), the
EXEC ascertains that the previous run has been finalized; this
will have been done if a FIN card (see Section 3 B.3.a.) had
previously been encountered. If not~ the end-action normally
performed by the FIN card is done, and the new job announced by
typing the RUN card at the console.

*NOTE: Any printer or punch available to a system may be desig­
nated as "special". This prevents the unit from being
referenced unless it is explicitly specified on a RUN card.
Card readers may also be designated as "special"; any job
input via a "special" reader channel will have its output
directed to the same channel in the absence of explicit
channel designations on the RUN card. Only 1004 Card Pro­
cessors (on site or remote) may be designated as "special"
readers. Such "special" designations will be supplied by
UNIVAC Systems Programming on request.

8
PAGE:

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

The RUN card is then checked to ascertain that it contains valid
identification name and account name fields, which are stored along
with the estimates for run time and print output in the MCR$ table

PAGE:

in COMMUN (see Section 2 A.). If print and punch channels are desig­
nated, these are checked to determine that they specify valid chan­
nels with the proper equipment, according to CONFIG (see Section
2 A.); if so, the channel number is stored (in CONFIG) for use in
setting up the file directory entry in PARCON (see Section 2 A.)
for this file.

Current time of day is stored in the MCR$ table (starting time), the
TOC (user's PCF) is initialized, the starting address of processor
scratch area is stored in the MCR$ table, HDG option is turned off
(see Section 3 B.3.), and if no error was detected on the card, the
RUN card is placed in the print output file, after which CCl is
then re-entered to read another control card. If an error was found
on the card, it is handled as an invalid control card (see Section
3 B.10.).

b. ASG Control Card

Definition: The ASG card is a control card which calls for the
assignment of a magnetic tape unit for the current job. It is
identified by the word "ASG" in the card name field and contains
an options code and an assignment equation in which a "logical"
label (the program unit assignment) is equated to an "operational"
label (normally the title or identification of the tape file). The
absolute hardware designation for a tape unit may also appear on the
card under certain conditions. The ASG card fields are described
below (see Appendix C 3. for format).

(1) Options Codes

This is a single alphabetic character (C, E, F, H, K, L, 0,
R, X) which specifies tape density, parity, rewind, and certain
conversion options available (see Appendix C 2. for options)
for all assignments on the card. Up to four options codes may
be used; the system supplying codes for high density, odd
parity, no rewind, and no conversion for omitted codes. The
field may not be used if the "assignment equation" field is
omitted.

(2) Absolute Hardware Designation

This is a pair of decimal integers separated by a slash (/),
specifying the absolute channel and the absolute unit assign­
ments respectively. If this field is used, a maximum of a
single assignment equation may be associated with it. A maxi­
mum of ten hardware equations (with associated assignment
equations) separated by commas, may be specified. If no assign­
ment equation appears on the card, the hardware channel is
reserved, and EXEC will expect the next card to be an ASG card
with the assignment equation for the specified unit or another
hardware designation; up to ten such cards, with no assignment
equations and collectively specifying up to ten hardware units,
may be used. Since an assignment card is anticipated, its
omission creates an error (see Section 3 B.10.). If the field
is omitted, the operator will be notified by a typeout, "MOUNT
(operational label)", and must then provide the absolute assign­
ment.

9

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

(3) Assignment Equation

This is a pair of labels separated by an equal sign (=)
specifying the "logical" label and the "operational" label
respectively. The first must be a single character (A-Z, -,)
and the second up to six characters (A-Z, ¢-9, +, ., $).
Alternatively the second label and the equal sign may be omit­
ted, in which case the system will define it as scratch tape,
with operational label "*". As many assignment equations as
desired may appear on an ASG card as long as exactly one such
equation per absolute assignment is specified. Equations
should be separated by commas (,). Note that the logical
labels "_" and "j" may not be used by CUR (see Section
3 B.6.b.).

System Response:

When the ASG card is encountered by CCI (see Section 2 B.1.),
EXEC makes a series of tests, after which, if no error was detected,
the tape assignment tables XLUT in LOWCOR and XPUT in CONFIG
(see Section 2.) are modified to reflect the current assignment,
the assigned tape is rewound (if specified in the options code
field), the ASG card is placed in the print file, and CCI is re­
entered to read another control card. If any error is detected,
the card is treated as an invalid control card (see Section
3 B.10.). The tests performed on the ASG card are outlined below.

(1) If an absolute assignment is made, is the channel and unit
specified a valid magnetic tape channel? If not, this is an
error.

(2) Do any invalid characters appear on the card? If so, this
is an error.

(3) If the logical label has previously been assigned, the new
assignment is made and the notation "PREVIOUS ASSIGNMENT FOR
(logical label) IGNORED" will be placed in the output print
file following the ASG card. This is not handled as an error.

(4) If the absolute assigned unit has previously been assigned, a
console typeout "SERVO IN USE" occurs; this is an error.

(5) If the last assignment is followed by a non-blank character,
the card is handled as an error.

2. Job-Operator Communications

a. MSG Control Card

It is often useful to type comments or instructions to the operator
at the console during the execution of a job. It is also useful
to be able to delay execution of the run until some specified condi­
tion is fulfilled. The MSG control card provides this capability.

10
PAGE:

UP-40S8 UNIVAC 1108 EXEC II 3
SECTION:

The MSG card is a control card which causes a message to be typed
at the console and included in the print file output. It is
identified by the word "MSG" in the card name field and contains
an options code field and a message. The options code field may
contain either the letter "N", which suppresses typing of the card
at the console, or the letter "H", which causes a delay to be
initiated, or both. In the absence of these options, the system
simply types the card out at the console, places it in the output
print file and re-enters CCI (see Section 2 B.1.) to read another
control card. The operator is notified of the delay, if called
for, by additional typeout, "WAIT" following the message. To
proceed, the operator must then type in "S", which removes the
delay condition. (See Appendix C 3. for format.)

3. System I/O Definition

In normal system operation, jobs are selected from the drum, where
they are placed by the operator, using symbionts (see Sections
2 B.1., 2 B.6., and 4 B.1 .a.). A print file is placed on the drum
for each job to be printed via a symbiont. If required by the job,
a punch file may also be placed on the drum for symbiont action.
Several control cards are used to modify these input/output files, or
to assist the system in defining them. This section will describe
these control cards.

a. EOF, FIN, and COL Control Cards

These control cards are used in defining card files; the EOF
card is used to punctuate input or output data files, the FIN
card is used to punctuate input job files and the COL card is
used to change between 80-column mode, and 90-column mode when
the input source is an on-site 1004. These cards differ from
other control cards in that they are not "free-form"; the card
name field must be in columns 3-5 of the card, with blanks in
columns 2 and 6. If the card is not specifically this form, it
will be considered an invalid control card (see Section 3 B.10.).
The remainder of the FIN or COL card is ignored by the system; the
EOF card may contain identification information pertinent to the
data file, as in the case when relocatable files are punched out

PAGE:

of the user PCF, for example (see Section 2 B.5.). See Appendix C 3.
for formats.

(1) System Response to FIN Card

When a FIN card is encountered by CCI (see Section 2 B.1 .),
the current job is terminated. This involves clearing worker
program areas (see Section 2 C.), freeing all tape units not
in use by the system, closin~ print and punch files, clearing
all indicators referring to the job being terminated, bypassing
redundant FIN cards, and setting a systems mode switch so the
system will expect a RUN card next. While bypassing extraneous
FIN cards, the system is idling, and the operator will be so
notified by the typeout "IDLE". If the next card (other than
FIN card) is not a RUN card, an error exists (see Section
3 B.10.).

11

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

(2) System Response to EOF card

When an EOF card is encountered by eel, it is simply
placed in the output print file and bypassed. However,
if the card-read co-operative (see Section 48.1.a.)
encounters an EOF card in response to a read request by
a worker program, the character in column 7 of the EOF
card is stored in register A¢, and an abnormal return
to the user's program is made. This permits the worker
program to delimit input data files. (Any other control
card encountered in this circumstance will cause A¢ to
be set negative and the abnormal return taken; under no
circumstances will the control card image be available
to the worker program.)

(3) System Response to COL card

3

When a eOL card is encountered by CR4, the 1004 card-read
symbiont (see Section 4 8.1.a.), switches are set to change
the mode of reading from 80 to 90 or 90 to 80. Since the
system provides translation for input/output files referencing
1004, the image received by the worker program will be the
same whether the 1004 is an SO-column, SO/9C-column, or
90-column device; the normal mode will be 90 for the latter
and SO for the two former*. Thus, to read SO-column cards
on a 90 device, or to read 90-column cards on an SO device,
or to mix SO-column and 90-column on either an 80 or 90 device,
the COL card is required to notify CR4 that a mode change is
needed. The COL card is discarded after the mode change, and
is not given to either the system or worker program. The
system, other than CR4, will consider the eOL card an error
(see Section 3 B.10.).

b. TPR and DPR Control Cards

The TPR and DPR cards are control cards which define the print­
file storage medium. The DPR card, identified by the word DPR
in the card name field contains no other information, and signals
the system that print-files are to be stored on drum. The TPR card,
identified by the word TPR in the card name field, contains an
options codes field and a label field, and signals the system that
print files are to be stored on magnetic tape. The DPR card should
be used to reset after a TPR card has been used. (See Appendix C 3.
for formats.) Note that print-files which are stored on drum will
be printed as soon as possible, the system activating the print

*NOTE: SO-column images are 14 computer words in length;
90-column images are 15 computer words in length.
System routines will ignore the last word of a
90-column image; however, worker programs will
receive the entire 15 words. Normal mode may be
changed by operator selection as well as by the
COL card.

12
PAGE:

UP-40S8 UNIVAC 1108 EXEC II 3
SECTION:

symbiont (see Section 4 B.1 .a.) to do so. Printing a tape may be
accomplished only by explicit directions by the operator. If
neither card is present, print files are placed on drum.

TPR card fields

(1) Options code

This is any combination of the letters "D" and "S", where "s"
calls for switching tapes at the end of the job, while its
absence signifies that the same tape is to be used, and "D"
defines the tape layout as DLT-5 format and its absence calls
for standard format (see Appendix D 1.).

(2) Labe 1

This is up to six characters (A-Z, 1-9, +, =,
used as a tape label.

System Response to DPR card

$) which are

When eel (see Section 2 B.1.) encounters a DPR card, it sets a
switch which calls for print files to be output on the drum, puts
the card image in the print file, and returns control to eel to
read another control card.

System Response to TPR card

When eel encounters a TPR card, it sets a switch calling for print
files to be output on magnetic tape, indicating whether switching is
called for, and the format required. If no tape has previously been
assigned for this print file, the operator is notified by a typeout
"MOUNT. PR" or "MOUNT. DL"; he must then assign a tape unit for the
system to use for print output. The TPR card is placed in the print
file and control is returned to eel to read another control card.

c. HDG Control Card

The HDG card is a control card which calls for a heading line to be
placed at the top of each page in the print file. It is identified
by the word "HDG" in the card name field, and an options code field
and a title field. The options code field may contain any combina­
tion of the letters "N" and "P", where "N" signifies no heading is

PAGE:

to be printed (reset) and "P" calls for resetting the page count to 1.
In the absence of these options, the heading is printed with the page
count incremented for each page. The title field contains the in­
formation to be printed in the heading line (along with the date and
page count). Any number of HDG cards may be used within a job.
(See Appendix C 3. for format)

System Response

When CCI encounters an HDG card, it sets up heading-print indicators
as outlined above, places the HDG card in the print file, and returns
control to CCI to read another control card. Note that if an HDG
card follows directly after a RUN card, the heading will take effect
on the page on which the RUN card is printed.

13

UP-40S8 UNIVAC 1108 EXEC II 3
SECTION: PAGE:

4. LANGUAGE PROCESSOR Controls

A LANGUAGE PROCESSOR is a special program which translates an input,
or source, language into an output, or object, language. The term
source code is used to denote the symbology of the source language and
differs normally among different processors. The term object code is
used to denote the symbology of the object language, and is generally
compatible among different processors. Two types of object code are
produced by the processors discussed in this section: Machine, or
absolute, code which is the operating language of the machine in its
operational form, and Relocatable code which is an intermediate form,
similar in structure to machine code, but requiring further processing
before it can be used operationally. The basic difference between
machine code and relocatable code is in references to core storage. All
such references are absolute in the former case, while they are relative
to a given base in the latter. The language processors described in this
section always produce relocatable code. The block of source or object
code is referred to as an "element" (see Section 3 B.6.a.).

Since the differences between the language processors depend essentially
on the differences between the source languages they accept, the descrip­
tions in this chapter will be organized according to source language. In
addition to the basic language processor, an auxiliary processor is avail­
able to facilitate the handling of a given source language; the auxiliary
processor will be discussed along with the corresponding language proces­
sor.

a. 1108 Assembler ASM and PDP Control Cards

The 1108 Assembler is an assembly-level language; that is, there is
essentially a one-to-one relationship of source code statement and
object code statements. Most of the statements of the source language
are simply mnemonic representations of machine instructions, with
certain special statements, called assembly directives, available to
increase the power of the processor. One of these directives, called
the PROC, or procedure, is used to cause object code generation based
on parameters; this permits the programmer to produce large blocks of
coding in a relatively short time.

The language processor associated with the 1108 Assembler is called
the "1108 Assembler". An auxiliary processor facilitates the usage
of PROCs and is called the "PROC Definition Processor", or PDP. For
detailed information on these processors, refer to the UNIVAC 1108
Assembler Manual (UP 4040) and UNIVAC 1108 Assembler Procedures
Manual (UP 4042). The remainder of this section describes the control
available over the processors which deal with the Assembler source
language.

(1) ASM Control Card

The ASM card is a control card which is used to call the
Assembler. It is identified by the word ASM in the card name
field, and contains an options code field, an input source field,
a source code name field, an output source code name field and
an object code name field. The significance of each field is
described below. (For format, see Appendix C 3.)

14

UP-4058 UNIVAC 1108 EXEC II 3
SECTION: PAGE:

(a) Options Code Field

This is one or more letters (A,C,I,J,L,M,N,P,Q,S,W,X,Z)
which modify assembly. (For details regarding options,
see Appendix C 2 ••)

(b) Input Source Field

This is a single character (A-Z*) specifying where the
source code is situated when the assembler is called.
"A"-"Z" specify a logical tape unit, properly positioned
to the source language element; "*" specifies the User
PCF on the drum (see Sections 2 B.S. and 3 B.6.) as the
location of the source element, while the absence of a
character calls for card input. The source language is
on punched cards directly behind the control card in the
input file.

(c) Source Code Name Field

This is a pair of labels separated by a slash (/). Each
label consists of up to six characters (A-Z, ¢-9, +, ., $)
and represents the name and version of the source element,
respectively. If the version is omitted, the slash should
be omitted, and the processor uses spaces for the version
field.

(d) Output Source Code Name Field

This field is identical in form to the source code name
field except that the first character of the name and the
version must be alphabetic (A-Z). It is used to specify
that an updated source language element (which may be iden­
tical to the original source element) is to be stored in
the User PCF. In the absence of this field, the processor
discards the output source element. Note, however, that
the original source element remains in the User PCF if it
was input from there.

(e) Object Code Name Field

This field contains a name and version similar to the out­
put source name field; if the version is omitted, the
processor uses the output source code name, and if this is
missing, the processor uses the original source code name.
In addition, this field may contain a "flag", which consists
of a string of alphabetic characters enclosed in parenthe­
ses. If the flag is omitted, the processor supplies zero
as a flag. The flag is used as an additional identifier
in conjunction with the XQT, ABS, and seD control cards
(see Section 3 B.5.b.). Object code elements are always
output to the User PCF (see Section 2 B.5.).

15

UP-4058 UNIVAC 1108 EXEC II 3
SECTION: PAGE:

System Response to ASM card

When CCI (see Section 2 B.1.) encounters an ASM card, it places
it in the print file and stores parameters from the card and
from CONFIG in PARTBL, a parameter table in COMMUN (see Section
2 A.). If tape or card input is specified, the system assumes
the next item in the specified input device to be the input
element. If drum input is specified, the user PCF (see Section
2 B.5.) is searched for the source element; if not found there,
the library PCF is similarly searched. If still not found, or
if it is not uniquely defined, or if its drum location cannot be
properly determined from the Table of Contents entry (see Section
2 B.5.), an error message is added to the print file (see
Section 3 B.1.) and the card is bypassed, CCl being re-entered
to read another control card. If punch options have been speci­
fied, ELT cards (see Section 3 B.6.a.) are punched for the re­
quired elements. The assembler is then loaded by CCIRES (see
Section 2 A.) as a worker program (see Section 4 A.2.) and pro­
duces the required object element and print or punch output
according to the options codes field. After completion CClRES
is re-entered, where a check is made for error options; if errors
occurred, the message

"ERRS IN ELEMENT PRODUCED"

is placed in the print file. CCl is then reloaded to insert
the relocatable element in the User PCF if the output element
is error-free, or if option to ignore errors has been used, and
to continue by reading another control card.

(2) PDP Control Card

The PDP card is a control card which is used to call the PROC
Definition Processor. This processor makes entries in the Table
of Contents of the user PCF while loading the procedure into the
user PCF. These entries permit other elements to call procedures
thus processed (see Section 2 B.5.). There is no difference be­
tween the source language, 1108 Assembler procedures, and the
object language for this processor. The card contains the same
fields as the ASM card, except for the output source name field,
for the reason just stated. (For format, see Appendix C 3.).
The options code field must be selected from the set
(A,C,l,J,L,P,W,X).

System Response to PDP Card

The PDP card is handled similarly to the ASM card, with the
following exceptions:

(a) The input element may be either source code or the output
of the PROC Definition Processor.

(b) If no list option is used, no list is produced (see
Appendix C 2.).

(c) No relocatable element is produced.

16

UP-4058 UNIVAC 1108 EXEC II 3
SECTION: PAGE:

b. COBOL: COB and CLP Control Cards

COBOL (acronym for Common Business Oriented Language) is a problem­
oriented, or machine-independent language; this implies that the
relationship between the source code and the object code is normally
one-to-many, since a single step in the solution of a problem may
involve many machine operations. The translation of COBOL statements
to object code is performed by a compiler, which in the 1107 and 1108,
does not involve the production of assembly-level code. COBOL state­
ments are directly translated to relocatable code by the COBOL com­
piler. This processor is controlled by the COB card.

To simplify even further the building of COBOL programs, a COBOL
Library Processor is provided in the EXEC II System. This places
COBOL source elements into a COBOL library in the User PCF (see
Section 2 B.S. and 3 B.6.) so that they may be incorporated into
COBOL programs. COBOL library elements are called into COBOL pro­
grams by the "COPY" and "INCLUDE" verbs. The COBOL Library Processor
is controlled by the CLP card. (For details of COBOL language and
the associated processors, refer to UNIVAC 1108 COBOL Manual UP 4048.)

(1) COB Control Card

The COB card is a control card which calls the COBOL compiler.
Its form is similar to that of the ASM card (see Section
3 B.4.a.). The options code field must be selected from the
set (A,B,D,E,I,J,L,M,N,O,P,R,S,U,V,W,X,Z). Refer to Appendix C
for format and options.

System Response to COB card

The COB card is handled similarly to the ASM card, with the
following exceptions:

(a) A special option letter, "K", is required to make COBOL
Library elements available through the "COPY" verb.

(b) More than one relocatable element may be produced; these
will be integrated into a single program when allocated
(see Section 3 B.5.c.) or executed.

(c) The COBOL compiler, instead of the assembler, is called.

(2) The CLP Control Card

The CLP card is a control card used to call the COBOL Library
Processor. It is similar in form to the PDP card (see Section
3 B.4.a.). Options codes for the CLP card must be selected
from the set (A,I,J,L,S,X). Refer to Appendix C for format
and options.

System Response to the CLP card

The CLP card is handled similarly to the PDP card (see Section
3 B.4.a.) with the exception that the input element may be
either a source element or COBOL library element, and the COBOL
Library Processor instead of the PROC Definition Processor,
is called.

17

UP-40S8 UNIVAC 1108 EXEC II 3
SECTION:

c. FORTRAN: FOR and LFT Control Cards

FORTRAN (acronym for FORmula TRANslator) is a problem-oriented
language like COBOL (see Section 3 B.4.b.) except that it deals with
formulas instead of problem statements. The FORTRAN compiler trans­
lates FORTRAN statements directly into object code. Since several
versions of FORTRAN have been produced (the implementation of the
1107 and 1108 being FORTRAN IV), it is useful to be able to handle
more than one version. A software package called LIFT was produced
for the 1107 and 1108 to translate FORTRAN II into FORTRAN IV. This
permits FORTRAN II programs to be compiled on the 1107 and 1108, by
a two-step process. LIFT is available as a processor, and is con­
trolled by the LFT control card. The FORTRAN compiler is controlled
by the FOR control card.

For additional information on FORTRAN and the FORTRAN compiler, see
the UNIVAC 1108 FORTRAN IV Programmer's Reference Manual. For addi­
tional information on LIFT see the UNIVAC 1108 LIFT Programmer's
Reference Manual.

(1) FOR Control Card

PAGE:

The FOR card is a control card used to call the FORTRAN compiler.
Its form is similar to the ASM card (see Section 3 B.4.a.). The
options code field must be selected from the set
(A,D,G,I,J,L,N,P,S,T,W,X,Y,Z). See Appendix C for format and
options.

System Response to FOR card

The system handles the FOR card the same as the ASM card, except
that the FORTRAN compiler instead of the assembler is called.

(2) LFT Control Card

The LFT card is a control card used to call the LIFT processor.
(Note: LIFT is also available as a special systems package; see
Section 4 A.1 ••) It is similar in form to the PDP control card
(see Section 3 B.4.a.). Options must be selected from the set
(J,N,P,T). See Appendix C 2.

System Response to LFT card

The LFT card is handled similarly to the ASM card, with the
exception that the source element is in FORTRAN II language on
cards or tape (not in PCF) and the object element is in
FORTRAN IV language. The LIFT Processor instead of the Assembler
is called. (The input source field is used only for information
purposes. The output source code field is meaningless). The
output element must be processed by the FORTRAN compiler to be
used. (NOTE: Not all systems contain LIFT as a processor; in
some it is available only as a special systems package).

18

UP-40S8 UNIVAC 1108 EXEC II 3
SECTION:

d. Source Language Correction

Each language processor produces, if called for, an output source
language element. The listing produced by the processor matches

PAGE:

that element, and sequence numbers are assigned to each line of
source code in it. This permits the programmer to make corrections
to source elements without resubmitting the original card deck. A
source language element on the drum or on magnetic tape may be merged
with corrections on cards. Source code lines to be inserted or over­
laid should appear the same on the correction card as they would in
an original input deck. These cards, along with correction location
directive cards tell the processor where and how to make corrections.
The form of the correction location directive card is:

-line 1, line 2

where the "_" in column 1 identifies the card as a correction location
directive and the two line number fields correspond to line numbers
in the source element to be updated. Three types of corrections may
thus be entered:

(1) Deletions:

"Line 1" specifies the line number of the first line to be
deleted, "Line 2" specifies the line number of the last line
to be deleted. All lines in the source element from "Line 1"
to "Line 2" inclusive are deleted.

(2) Overlays:

The form of this card is similar to that of the deletion card;
source code lines to replace the deleted lines are on cards
which follow the correction location directive. One or more
lines are thus deleted and replaced with one or more lines; the
number of replacement lines may be greater than, less than, or
equal to the number of deleted lines.

(3) Insertions:

"Line 1" specifies the number of the line preceding the insert.
The comma and "Line 2" are omitted. Source code lines to be
inserted directly after the line specified as "Line 1".

It should be noted that little error checking is done on correction
decks. The programmer should use care to ascertain that "Line 1" is
smaller than "Line 2" on deletion and overlay cards, and that the
correction deck is sequenced by ascending "Line 1" fields, in addition
to checking that the directives specify corrections as he wishes them.
If these precautions are not taken, the action of the processor is
unspecified; an "infinite loop" is a possible result, the processor
cycling without producing anything.

19

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

Corrections are merged into the output source language element. The
programmer may store this as an updated source element or may ignore
it, in which case, the correction deck will not be reflected in the
source element in the User's PCF (see Sections 2 5. and 3 B.6.).
Correction cards should follow the control card which calls the
language processor; input source field on that card should specify
the location of the original element.

5. ALLOCATOR Control

a. MAP Processor: MAP Control Card

The MAP (memory allocation processor) is a special program which
produces a structural plan of a program for use by the Allocator

PAGE:

(see Section 3 B.5.c.). It requires a set of input directives which
will be described in paragraph 2 of this section. The MAP card is a
control card used to call the Memory Allocation Processor. The form
of MAP card is similar to the ASM card (see Section 3 B.4.a.). The
options field must be selected from the set (A,I,J,N,P,S,W,X). Refer
to Appendix C for format and options. The output of the Memory Allo­
cation Processor is called "MAP" and is stored in the User PCF (see
Section 2 B.5.). The name given to the MAP is used as a program
name by the allocator. MAP directives follow the MAP control card
in the RUN deck.

(1) System Response to MAP Control Card

The system handles the MAP control card as it does the ASM con­
trol card except that the output element is a processed MAP,
and the Memory Allocation Processor, instead of the assembler,
is called. Errors encountered during processing are indicated
in Section 6. Note that source language corrections may be
made to MAP elements (see Section 3 B.4.d.).

(2) MAP directives

The following is a listing of directives acceptable to the MAP
processor. These are explained in succeeding paragraphs, with
special terminology defined as required. The format of every
directive card is "free-form", i.e., fields are not limited to
specific card columns. Three fields appear on the card; the
first is a label associated with the directive, and begins with
a non-blank character in column 1. The label is up to six
characters long from the set (A-Z, 0-9, +, ., $), the first of
which must be alphabetic (A-Z). It may be omitted if desired.
The second field is the directive itself; this field starts with
the first non-blank character following the first blank column
of the card. Directives must be selected from the following
set (this field may not be omitted).

SEG ENT
BLK DEF
CHN FIX
USE SET

20

UP-4058 UNIVAC 1108 EXEC II 3
SECTION: PAGE:

The third field on the directive card is an information field;
this may contain a number, a symbol, or a pseudo-algebraic
formula representing a portion of a program, depending on the
directive. It may not be omitted. The directive may be con­
tinued on a second card by use of a semicolon on the first card;
the semicolon causes the remainder of the current card and all
leading blanks on the next card to be ignored. The maximum
number of directives which may be supplied is not specified;
however, no more than 90 BLK directives and 29 CHN directives
may be used, and not more than 50 USE directives may appear in
any link. The description of the various directive cards
follows.

(a) SEG

This card defines a program segment. A program segment is
defined as that portion of memory which is committed by a
single reference to the loader. Within a segment,
subsegments may be defined as portions of the segment which
overlay one another. Segments may be built up from reloca­
table elements, common blocks (see BLK directive explana­
tion), or other segments, and similarly with sub?egments.
The information field of the card contains the names of the
portions of the segment interconnected by pseudo-algebraic
symbols denoting their relationships; the following is a
list of symbols which may be used:

"-"

" " ,

"*"

is a binary operation indicating that two constituents
are to occupy memory simultaneously.

is a binary operation indicating that two constituents
(subsegments) are to occupy the same part of memory,
thus overlaying one another. (They will begin at the
same memory address, though they may not end at the
same address if they are of different sizes.)

is an unary operation signifying that the constituent
which follows is to be automatically loaded. Automatic
loading is specified when the c~nstituent is refer­
enced by a jump to an entry point within it (see
Section 2 B.5.). When.the program is executed, a jump
will be made to the entry point specified, if the con­
stituent is in core, or the loader will load it if it
is not in core and then jump. As opposed to this,
manual loading requires a call to EXEC to load the
the constituent, whether or not it is currently in core,
(see Section 4 B.2.b.), before jumping to a specified
point.

"(),, are used to indicate grouping. Normally the "_" has
greater precedence than ",". The parentheses may alter
the order of their application or may be used to de­
limit a constituent, similar to algebraic notation.

21

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

For simplicity in setting up a segment, a diagramming
technique is used. A vertical co-ordinate is employed
to specify different points in time, not necessarily
sequenced, while a horizontal co-ordinate specifies
increasing memory addresses. In the following examples,
"A", "B", and "c" are constituents of the segment as
indicated in the preceding discussion. "NAME" is the
label as previously described; if omitted, the name of
the first constituent on the card will be used. The
directive card format is indicated on the left and
corresponding diagram on the right.

NAME SEG A-8

A 8

NAME SEG A, 8

A

8

NAME SEG A-(8, C)

8

A

C

NAME SEG A, (8-C)

A
or

NAME SEG A, 8-C

B C I
It should be noted that parentheses on the SEG card

PAGE:

define a separate calIon the loader and thus define each
constituent within parentheses as a segment. Constituents
not within parentheses must not be separately loaded. Thus
in the third example above "A(B-C)" calls for "B" and "C"
to be loaded separately, while "A,B-C" calls for "B" and
"C" to be loaded simultaneously. By specifying a separate
SEG card where the loading requirement desired cannot be
specified on a single card, flexibility is achieved. For
example:

NAME SEG A-(B-C,D) specifies separate loading of "B" and ItCH

E SEG B-C specifies simultaneous loading

NAME SEG A-(E,D) of "B" and "c"

22

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

Structurally, the two cases presented are otherwise
identical. In specifying automatic loading, the "*"
applies only to those subsegments in the parentheses
level being introduced.

Every segment which is not made part of another segment

PAGE:

is called an "independent" segment. The fixed part of all
independent segments will always be in memory as the program
is being executed; no overlap is permitted in the memory
allocated for independent segments. If the Allocator deter­
mines that an element which is not mentioned on a SEG card
is to be included in the program, it will be an independent
segment if more than one independent segment references it.
It will become a dependent portion of the independent seg­
ment which contains the only reference to it. In the
absence of a MAP, all elements are considered to be indepen­
dent segments.

The Allocator assigns storage for core and drum. The same
segment description serves for both, congruent areas being
assigned in both, regardless of the particular amount of
storage required of each medium.

(b) BLK

The BLK directive is used to identify a labeled common
block to the Memory Allocation Processor. The label field
is not meaningful, and the information field contains the
names of one or more common blocks separated by commas. A
common block is a communication area in core or drum; if it
is used within a link (see paragraph on CHN directive), it
may have a name and is then called "labeled common"; if it
is used as a communication between links, it must not have
a name and is called a "blank common". Common blocks are
specified in COBOL or FORTRAN (see Section 3 B.4.) by means
of a COMMON statement. In the 1108 Assembler, the INFO
directive is the means for specifying storage requirements,
including common blocks. The INFO directive takes the
following form:

label INFO g c1, c2, •••

where "label" is the name of the group, "g" is the group
number and "c1, c2, ••• " indicates a list of location counter
numbers which are included in the group. Storage is
assigned sequentially beginning with c1. The significance
of the group number is as follows:

o Absolute; no storage required, no relocation

Assign bank storage

2 Assign bank 2 storage

3 Assign drum storage

4 Assign "blank common" (bank 2) storage

5 Assign bank 1 "labeled common" storage

23

UP-4058 UNIVAC 1108 EXEC II 3
SECTION: PAGE:

6 Assign bank 2 "labeled common" storage

7 Assign drum "labeled common" storage

33 Assign bank data

34 Assign bank 2 data

37 Assign bank 1 "labeled common" data
(initial contents loaded)

38 Assign bank 2 "labeled common" data
(initial contents loaded)

In the absence of an INFO directive, all even numbered
location counters (including zero) are assigned to group 2,
and all odd number location counters are assigned to
group 1, in order of increasing location counter number.

The name of a common block may not duplicate the name of
any element or any other common block in the program. Nor­
mally common blocks are referenced relative to their base
instead of by externally-defined symbols (see Section
3 B.6.); external references may be used, however, if no
ambiguity is introduced. The size of a common block will
be determined by its maximum reference, thus assuring
sufficient storage. Different block lengths may be speci­
fied by different elements.

Initial contents may be specified for a common block in any
segment which references it. If more than one segment
specifies initial contents, the last such segments loaded
will supply the values used. If the segment which specifies
initial contents for a common block is reloaded, the common
block is re-initialized. Specification of initial contents
in FORTRAN is accomplished by means of the BLOCK DATA
feature. For COBOL, the initial contents are specified by
means of VALUE statements. In 1108 Assembler programs, the
special groups 33, 34, 37, 38 are used to designate data
blocks with initial values; 33 and 34 may be used for non­
common areas, while 37 and 38 specify common areas. No
location counter appearing in an INFO statement having one
of these group numbers may appear in any other INFO state­
ment. These groups must be assembled separately from groups
0-7, and all location counters used must be explicitly
referenced in an INFO line. Data blocks (common or other­
wise) may not contain external references (see Section
2 B.5.) and may not include information which requires re­
location. A block may appear on both a BLK card and a SEG
card in any order, in which case the Allocator handles it
along with the segment specified on the SEG card.

Common blocks which do not appear on a SEG card will be
allocated according to group number, or according to the
Allocator's rules for handling segments which are not
mentioned on SEG cards.

24

UP-4058 UNIVAC 1108 EXEC II 3
SECTION: pAGE:

(c) CHN

This card defines a program link. A program link is an
independent program with the possible exception of a core
area shared with other links and magnetic tape assignments
(see Section 3 B.1.b.). The shared core area is called
"blank common"; note that "labeled common" areas (see BLK
directive) are not shared between links. "Blank common" is
specified by group 4 on an INFO card in the 1108 Assembler
and in the COMMON statement in FORTRAN.' It may not be
specified for COBOL programs. An EXEC subroutine (see
Section 4 B.2.b.) provides the capability of executing a
particular link after the previous program has released
all I/O channels it was using. In FORTRAN the link is
called by the line CALL CHAIN (r,t) in which "r" is the
link number (see below) and "t" is ignored.

The CHN card must immediately precede the group of all
other cards for the given link. Its label field is meaning­
less, and its information field contains a single integer
(1-32,767) which is used to identify the link, and may
optionally contain a "flag" similar in meaning to that on
the XQT, ABS, and SCD card. (See Section 3 B.5.b.)

The Allocator processes each link independently, with
the exception of the "blank common" area. Symbols must
be uniquely defined within a link, but may be duplicated
between links. The CHN directive may not be used in a
MAP specified on an SCD card (see Section 3 B.S.b.).

(d) USE

The USE card is included in a MAP to resolve ambiguities
which exist between elements. If an externally defined
symbol (or "entry point", see Section 3 B.6.) appears in
more than one element, the USE card contains the name and
version of the element desired. The label field of the
card is meaningless, and the information field contains the
name and version (separated by a slash, "/") of one or more
elements separated by commas. The Allocator attempts to
resolve ambiguities by a set of rules (see Section 3 B.4.c.)
among which is the specification of the USE card.

(e) ENT

The starting symbol (label of first instruction to be
executed) of a program (or link) must be specified to the
Allocator. This starting symbol may be specified in one
of the Constituent elements, or it may be designated on
the ENT card. Starting symbols are built into all FORTRAN­
compiled elements which do not begin with a FUNCTION, SUB­
ROUTINE or BLOCK DATA statement. The starting address of
a COBOL program is indicated by the beginning of the PRO­
CEDURE division. A starting address is indicated for an

25

UP-4058 UNIVAC 1108 EXEC II 3
SECTION: PAc;E:

1108 Assembler-assembled element by an expression in the
terminating END directive in the assembly. Any exter­
nally defined symbol may be defined as the starting address
of a program by including an ENT card containing the sym­
bol in its information field. If the Allocator encounters
more than one starting address for a program, the one on
the ENT card is used if an ENT card is included in the
MAP; otherwise, it will use the first starting address
encountered and will produce an error diagnostic (see
Appendix E).

The label field of the ENT card is meaningless.

(f) DEF

The DEF card is used by the Allocator in creating a re­
locatable element as specified on an SCD card (see Section
3 B.5.b.). It is ignored when the calIon the Allocator
is made by an XQT or ABS card (see Section 3 B.5.b.).

The label field on the DEF card is meaningless; the in­
formation field contains externally-defined symbols (see
Section 2 B.5.) or redefinition equations, separated by
commas. A redefinition equation has the form
"name 1 = name 2", where "name 1" is the symbol to be used
external to the output relocatable element. External sym­
bols (except "name 1") on the card must be selected from
the set of all external symbols of constituent elements.
Any symbol in this set not named on a DEF card will not be
available for use outside the output element.

(g) SET

The SET directive permits the designation of the area
available to the Allocator for the program being processed.
If the SET is used with multiple-link programs, it applies
for all links and must be included with the first link
described. The SET directive does not apply to FIXed
segments.

The label field of the SET card is meaningless; the in­
formation field contains one or more address pairs of the
following form, separated by commas:

"from/to" or "Dfrom/to"

"D" is used to specify drum. (Note that a blank following
the "D" is illegal and will produce a diagnostic). "from"
and "to" are absolute addresses specifying the beginning
and end of available area, respectively. Core is assumed
if drum is not specified.

26

UP-4058 UNIVAC 1108 EXEC II
SECTION:

As many SET cards as needed may be used; the areas
specified are cumulative.

(h) FIX

3
PAGE:

The FIX directive permits specification of the core
location to be used as the beginning of a segment. Any
segment may be fixed which is not wholly included in an
overlay (i.e., subsegments may not be fixed). The label
field on the FIX card is meaningless, while the information
field has the following form:

name, bank 1, bank 2, drum

"Name" is the name of the segment to be fixed. The other
three subfields designate the absolute core address to be
used as the initial location of the segment in bank 1,
bank 2 or drum. Any address may be omitted, in which case
the Allocator will choose it. The commas must be present
in the card to define the fields. It is the responsibility
of the user to insure against impossible assignments re­
sulting from the use of a FIX directive.

b. XQT, ABS, SCD Control Cards

XQT, ABS and SCD cards are control cards used to call the Allocator.
They contain an options field (see Appendix C 2.), a flag field,
and a name field. The SCD card causes the Allocator to create a
relocatable element (sometimes called a sub-complex, since it nor­
mally is produced from more than one element) in which no external
references (see Section 2 B.5.) exist. The ABS card causes the
Allocator to create an absolute element. The output element in both
of the above cases will be stored in the User's PCF (see Sections
2 B.5. and 3 B.6.). The XQT card calls for a program to be executed;
if necessary, the Allocator will first create an absolute element, as
is done for the ABS card. The card fields are described below.
(See Section 3 B.5.c. for description of Allocator operation.)

(1) Options field

This field contains a group of alphabetic characters used to
specify special handling by the Allocator (see Appendix C 2.).
It must be selected from the set (A,C,E,K,L,M,N,P,T,V,W,X,Y,Z)
except that "E", "L", and "Z" may not be used on the SCD card,
and "P" may be used only on the SCD card. "K" and "V" may be
used only on the ABS card.

(2) Flag field

This field contains a single alphabetic character. It is used
by the Allocator to resolve ambiguities in selecting elements
to be included in allocation (see Section 3 B.5.c.).

27

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

(3) Name field

This field contains a pair of labels separated by a slash (/).
Each label contains up to six characters (A-Z, 0-9, +, ., $),
the first of which must be alphabetic (A-Z) and represents the
name and version respectively of a relocatable element or a
processed MAP. In the XQT card only, it may also refer to an
absolute element. The version field may be omitted (in which
case the slash must also be omitted); however, this 'omission
will result in an ambiguity if more than one element in the
User PCF has the given name. In ABS and SCD cards, the name
field may contain a second pair of labels as described above,
separated from the first pair by a comma. These labels are

PAGE:

used as the name and version respectively of the output element.

System Response to SCD card

When CCI (see Section 2 B.1.) encounters an SeD control card, it
places it in the print file and stores parameters from the card in
PARTBL, a parameter table in COMMUN (see Section 2 A.). If punch
output is called for, an ELT card (see Section 3 B.6.a.) is created
for the output relocatable element. The Allocator is then loaded by
CCIRES (see Section 2 A.) as a worker program (see Section 4 A.2.)
and produces the required relocatable elem&nt ("subcomplex") and
print or punch output according to the options field. After comple­
tion CCIRES is re-entered, where a check is made for error options if
errors occured, in which case the message

"ERRS IN ELEMENT PRODUCED"

is placed in the print file. CCI is then reloaded to insert the re­
locatable element in the User PCF (see Section 2 B.5.) provided it
is error-free or an option to ignore errors has been exercised, and
to continue by reading another control card.

System Response to ABS card

The ABS card is handled similarly to the SCD card with the following
exceptions:

(1) No punch option is available.

(2) The output is an absolute element rather than a relocatable
element.

System Response to XQT card

The XQT card is handled similarly to the SCD card with the following
exceptions:

(1) No punch option is available.

(2) Checks are made on the name field to determine whether the
following special programs are being called for;

(a) CUR

(b) ICS

(see Section 3 B.6.c.)

(see Section 3 B.9.a.)

(c) LIBRY (see Section 3 B.7.)

28

UP-40S8 UNIVAC 1108 EXEC II 3

c.

SECTION:

(3) No output is produced if the input is an absolute element;
otherwise, an absolute element which is not entered in the
User PCF is produced.

(4) When the Allocator exits, LOAD is entered (see Section 2 A.)
load and execute the program specified, as a worker program
(see Section 4 B.). CCIRES is re-entered upon program
termination.

The Allocator

to

The Allocator is an element manipulative processor, i.e., a special
program which collects program elements (see Section 3 B.6.) and
interconnects them. Cross-references between elements are resolved
and relative locations assigned. Depending on how the Allocator is
called, it may go on to produce an absolute program stored in the
User's PCF (see Sections 2 B.5. and 3 B.6.). Finally, this absolute
program may be loaded into core and run.

The Allocator will also, unless requested otherwise, construct a

PAGE:

group of tables which serves as one of the inputs to the diagnostic
system (see Sections 3 B.9. and 4 B.3.). In order to provide flexible
and sophisticated segmentation ability, an auxiliary processor called
the Memory Allocation Processor is provided (see Section 3 B.5.a.)
which produces an allocation plan with which the Allocator works. In
the absence of this plan, called a "MAP", the Allocator produces a
"reasonable" output assuming that all elements are to occupy core
simultaneously.

Three separate control cards result in calling the Allocator (see
Section 3 B.5.b.) to cause it to perform the functions described above.

To comprehend the operation of the Allocator, Sections 3 B.5.a.(MAP)
and 2 B.5. (Elements, User peF) should be fully understood.

ALLOCATOR Operation

(1) The name field of the calling control card (XQT, SCD, ABS) is
used to locate an element by searching the User PCF (see Section
3 B.6.). Only relocatable and MAP elements are considered ex­
cept in the case of the XQT card which causes absolute elements
to be considered. If no element is found with the name specified
on the calling control card, the Library PCF (see Sections
2 B.3. and 3 B.7.) is similarly searched. If no element is
located there, an error is indicated and the allocation is abor­
ted. If more than one element with the given name is found, the
Allocator uses selection rules (see paragraph 4, below) to choose
a single one; if the selection rules do not define a single ele­
ment, an error is indicated and the Allocator selects an element
arbitrarily. Once exactly one element is chosen, the Allocator
determines whether it is a relocatable element, a MAP, or (in the
case of the XQT card call) an absolute element; if it is an
absolute element, the Allocator takes the system normal exit
(see Section 4 C.). If it is a relocatable element, it must
be included in the output element.

29

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

(2) If the located element was a MAP, it is used to search the
User's PCF for relocatable elements; if the User's PCF does
not contain the element sought, the Library PCF is searched.
If an element sought is not found, it is deleted from the al­
location process, an error is indicated, and allocation con­
tinues. The relocatable elements sought are defined by SEG
cards; any segment or subsegment specified in the information
field of a SEG card which is not defined on the label field of
another SEG card is assumed to be a relocatable element. If any
such search causes more than one element to be found which has
the name specified on the SEG card, the selection rules (see
paragraph 4 below) are used to define a single element; if this
procedure fails to define exactly one element, an arbitrary
element is chosen and an error is indicated. Each relocatable
element chosen will be included in the output element.

(3) For every relocatable element which the Allocator is to
include in the output element, a table of undefined symbols
(see Section 2 B.5.) is built. Every symbol in this table is
used as a key to search the Entry Point Table (see Section
2 B.5.) in the User's PCF; if the symbol is not matched in the
User's PCF Entry Point Table, the Library PCF Entry Point Table
is similarly searched. If the symbol is found, every element
defining the symbol (as indicated in the Entry Point Table) is
considered. If the symbol is not defined by the Entry Point
Table, the relocatable element names themselves are searched
and if a match occurs, each element with the given name is
considered. If the input element was a MAP, the label fields
of SEG cards are also searched for a match against the symbol.
If the symbol is defined by at least one element and by a SEG
card, the Allocator considers that no definition has been found.
If more than one element defines the symbol (and no SEG card
defines it), the selection rules are used to determine the
single element required (see paragraph 4 below). If the selec­
tion rules do not define exactly one element, the Allocator
considers that no definition has been found. If no definition
is found for the symbol (either a "no-find" condition, or am­
biguity as outlined above), an error is indicated and the sym­
bol remains undefined. If a definition is established by a
relocatable element, that element will be included in the out­
put element. The procedures described in this paragraph are
continued until every symbol has a definition (either as an
entry point or as the name of a segment or element) or is
noted as a "no-definition" error.

(4) The selection rules for resolving ambiguities as indicated in
previous paragraphs are as follows:

(a) If one of the elements under consideration has already
been chosen for inclusion in the output element, that
element is used (if more than one such element exists, one
is used arbitrarily with no error indication given).

(b) If the MAP being utilized by the Allocator contains a USE
card which specifies the name and version of exactly one
of the elements under consideration, that element is chosen
to be included in the output element.

30
PAGE:

UP-40S8 UNIVAC 110B EXEC II 3
SECTION:

(c) If a flag is specified on the calling control card and if
exactly one of the elements has a flag in which the letter
of the control card flag appears, that element is chosen
for inclusion in the output element.

PAGE:

(5) Once all the constituent elements have been chosen, the Allocator
proceeds to combine them into a single relocatable element. If
no MAP is provided, a single link is assumed, all segments of
which are independent, and common areas are defined by group
number (see BLK directive for details). If a MAP is provided,
its directives are followed to modify the above assumption.

The size of "blank common" is determined by taking the largest
reference to it in any link. The size of "labeled common" is
determined by taking the largest reference to it in the link in
which it is to be allocated. The sequence of allocating indepen­
dent segments within a link is arbitrary, usually in the order
in which elements were chosen. An independent segment is alloca­
ted by determining the total core and drum area required for each
location counter declared in the segment. The base relocatable
address for each such counter is initially zero, and is incremen­
ted by the amount allocated to it for each independent segment.
Every symbol in the segment is assigned to a relocatable address,
relative to its location counter. All references to such a sym­
bol are equated to its relocatable address.

If any references to undefined symbols remain in the segment,
these are equated to zero and remain undefined (an error has
been indicated). Every independent segment in the link is thus
allocated.

When the entire link has been built, the starting symbol is so
marked. The starting symbol is determined by the specification
on an ENT card or by the specifications in constituent elements
if no ENT card is supplied. If no constituent contains a start­
ing symbol indication and no ENT card is supplied, no starting
symbol is designated, and an error is indicated. If the ENT
card contains a symbol not defined in the link, the same action
is taken. If more than one starting symbol indication exists in
the constituents, the first is designated as the starting symbol,
and an error is indicated. When every link has been allocated
and starting symbols designated, the relocatable output element
is complete. All "patches" (see paragraph 7) included with the
input to the Allocator are inserted. If the calling control card
was SCD, the Allocator determines whether any DEF card was sup­
plied with the MAP specified (if a MAP was specified). If so,
all symbols listed on the DEF card are marked as external refer­
ences and included in the Entry Point Table for the output
element. If SCD was the calling control card, the Allocator
exits at this point.

31

UP-4058 UNIVAC 1108 EXEC II 3
SECTION;

(6) Once the relocatable form of the output element is complete
the Allocator may build an absolute element. To do this, in
the absence of a MAP, the assumption is made that all worker
program areas in core and drum (see Section 2 C.) are available
and makes no provision for FIXing the absolute location of any
element. If a MAP was provided, the specifications of SET and
FIX cards modify these assumptions.

PAGE;

Each location counter used in the first link is given a value
corresponding to an absolute memory location in the available
areas in core or drum, as required. The absolute assignment
leaves exactly enough room for information included und~r pre­
ceding location counters in the same area (bank 1, bank 2 or
drum), and enough space must be available after the last such
assignment for all remaining information to fit. (If not, an
error exists and the Allocator aborts.) The relocatable address
addresses assigned in creating the relocatable element are modi­
fied by adding the value of the location counter to the reloca­
table address. This is called "relocation" and results in
absolute memory assignments consistent throughout the link. All
location counters are then re-initialized and the next link is
allocated. When all links have been processed, an absolute
program exists and allocation ends.

In this process, information is associated with the absolute
element to designate to the diagnostic system and to the loader
such specifications as:

(a) Where the "starting symbol" is, in absolute form

(b) Where each segment in the program is, in absolute form.

(c) Which areas are "labeled common" or blank common" areas. ,

(d) What information is to be loaded into a common area
initially, and under what circumstances, if any, it
is to be re-initialized.

The above listing is not exhaustive; however, it indicates the
kind of information with which the loader and diagnostic system
work.

(7) Patches

The Allocator contains prOV1Slon for relocatable "patches" to
be entered when an absolute program is to be built. A "C" option
letter on the calling control card indicates that patches are to
be made. Each patch may be relocated according to information on
the card and will overlay the location specified on the card when
the absolute program is built. Patch cards should appear in the
RUN deck following the control card which calls the Allocator.
They should be segregated by EOF cards (see Section 3 B.3.a.)
into groups for each program link, with each group terminated by
an EOF card. Links which are not to be patched must have an EOF
card in the patch deck to keep the Allocator synchronized with
the deck. If a given location is patched twice, the last patch
will be used. Approximately 100 patches will be accepted by
the Allocator. The format of patch cards follows.

32

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

(a) Element Name Header: This card should precede all
patches for the element.

Starting in Col 1.

Next column after
name/version

Columns following comma

Element Name/version

Comma (,)

*Location counter

(b) Instruction patches (all fields except location counter
are octal). Also refer to 1108 Processor and Storage
Manual for interpretation of instruction fields.

Columns 1-6

Columns 9-12

Columns 14-15

Columns 17-18

Column 20

Columns 22-27

Columns 29-31

(c) Data patches (all fields
octal).

Columns 1-6

Columns 9-20

Columns 22-24

Columns 26-28

Relocatable location

Function code and
j-designator

A-register

X-register

h-indicator
(indirect, increment)

u-field (operand)

*Location counter
(bits 0-15)

except location counter are

Relocatable location

Data

*Location counter
(bits 0-15 or 18-33)

*Location counter
(bits 0-15)

PAGE:

*The "Location Counter" is a programmed specification of the relative starting
point of a section of code. Relocation is accomplished with respect to a given
location counter as a base. In the "Element Name Header" card (paragraph a) the
Location counter is the base for relocating the location field in "Instruction"
and "Data" ,cards (paragraph b and c). In the "Instruction" card, the Location
counter is the base for relocating the "u-field". In the "Data" card, two
location counters are used, the first for relocating bits 18-33 and the second
for relocating bits 0-15. If only one is used, bits 0-15 are relocated rela­
tive to this base. Location counters are specified as one, two or three digit
integers, the first of which must be zero if an octal number is desired. If the
field is blank, no Location ~ounter is specified and relocation does not occur.

In "Instruction" and "Data" cards, the Location counter may also be specified
as "Element name, Location counter number" in order to use a base specified in
a different element. In this case, the fields shown for location counter will
be enlarged as required and will be terminated by a blank.

33

UP-40S8 UNIVAC 1108 EXEC II 3
SECTION: PAGE:

6. User PCF Controls

An understanding of the structure of the User PCF is assumed in
this section. Refer to Section 2 B.5. for a description of the User peF.

a. Elements and the ELT Control Card

An element is the largest program unit of a given type which may
be individually referenced. (A "program unit" is a portion of code
used in structuring a program.) Seven types of elements are
currently defined:

Type Symbolic

This type of element contains source language (see Section 3 B.4.)
statements. A language processor (see Section 3 8.4.) accepts one
Type element as input whenever it is called.

Type 2 Absolute

This type of element contains machine code (see Section 3 8.4.). The
loader and diagnostic routines (see Section 3 B.9.) word with one
Type 2 element whenever they are called. The Allocator (see Section
3 B.4.c.) may be called to produce one Type 2 element.

Type 3 Relocatable

This type of element contains relocatable code (see Section 3 8.4.).
Each language processor (see Section 3 B.5.c.) may be called to
produce one Type 3 element. The Allocator uses one or more Type 3
elements as input to produce a Type 2 element or a new Type 3 element
(sometimes called a "subcomplex").

Type 4 Processed MAP

This type of element contains a program plan. The MAP processor
(see Section 3 B.5.a.) produces one Type 4 element whenever it is
called. The Allocator accepts one Type 4 element as input whenever
it is called.

Type 5 Compressed Symbolic

This type of element is operationally identical to Type 1 elements.
One may be produced (by option selection) by language processor.

Type 6 COBOL Library

This type of element contains COBOL source language statements to be
used by COBOL programs. One Type 6 element is produced by the COBOL
Library Processor whenever it is called. (See Section 3 B.4.b ••)

Type 7 Procedure Definition

This type of element contains 1108 Assembler source language PROCs.
One Type 7 element is produced whenever the Proc Definition
Processor (see Section 3 B.4.a.) is called.

34

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

Every element is identified by its name which is a string of
characters (A-Z, 0-9, +, ,$) beginning with an alphabetic (A-Z).
To permit several elements with the same name to be in the PCF,
each element is also identified by its version which is a secondary
name similar in form to the name as described above. When no
ambiguity is introduced by so doing, an element is referenced by
name; to avoid ambiguity the reference should be "name/version".
For even greater capability in identifying an element, a il£g may be
associated with it. This is a string of alphabetic characters (A-Z)
which is retained in the following manner as a 26 bit switch: every
letter in the alphabet is associated with a bit in the switch; when
the bit contains a zero, the letter is absent in the flag; when the
bit contains a one, the letter is present in the flag. This permits
a given element to be updated while retaining its original form for
use while the update is being checked out.

Elements are manipulated or produced by the language processors
(see Section 3 B.6.b.), the Allocator (see Section 3 B.6.b.), the
ELT card, described in this section, or by CUR (see Section
3 B.6.c.). Each of these causes elements to be inserted or deleted
in the User PCF.

Whenever an element is inserted into the User PCF, a check is made
to determine whether its name and version duplicate the name and
version of an element already in the PCF. If so, the old element is
deleted, i.e., marked as unavailable for use. An element without
a version specified is different from one with a version even if
their names are identical.

Each type of element is composed of "pieces" (see Section 2 B.S. for
description of the structure of elements on drum). Whenever an
element is input to or output from the User PCF, these pieces must
be separated by EOF cards (see Section 3 B.3.a.). Column 7 of the
EOF card preceding the piece contains a descriptor number corres­
ponding to the piece, which specifies the sequence in which the
pieces are punched (or written on tape). The EOF card may be omit­
ted for a Type 1 (symbolic) element, since only one piece is speci­
fied for this type.

ELT control card

The ELT card is a control card used to input an element into the
User PCF from a card file. It is produced whenever elements are
punched on cards from the User PCF. It is identified by the word
ELT in the card name field, and contains a name field, a type field,
a date field and a time field separated by commas. These fields are
described below:

Name: This field, the only essential one other than
the card name, contains the name and version of
the element, separated by a slash (/), and the
flag associated with the element enclosed in
parentheses. (See paragraph 1 of this section
for a description of name, version, flag.)

35
PAGE:

UP-4058 U.NIVAC 1'108 EXEC II 3
SECTION:

Type: This field contains a single integer (1-7) specifying
the element type, as indicated in paragraph 1 of this
section. If omitted, type 1 is assumed.

Date: This field is a six-digit decimal integer of the form
"yymmdd" (year, month, day). It and the time field
together a~e stored in the PCF to indicate when the
element was created or last altered. If data is
omitted, the current date will be stored when the
element is inserted into the PCF.

Time: This field, stored as is the Date field, contains
the time corresponding to creation or last alteration
of the element as a decimal integer (0-86400) speci­
fying the number of seconds from midnight. If omitted,
the current time will be stored when the element is
inserted in the PCF.

System Response to ELT card

When CCI encounters an ELT card, it places the card into the output
file and determines that room exists in the User PCF area on drum
for an element to be inserted. (Since the size of the element is
not known, this determination may be overruled later if the element
is found to be too large.) The CCI reads the Table of Contents of
the User PCF into core, and proceeds to load CUR (see Section

PAGE:

3 B.5.c.) as a worker program (see Section 4 A.2.). CUR transfers
the element found on card images following the ELT card into the User
PCF, and re-enters CCI to read another control card. Note that
(except for symbolic elements) CUR requires EOF cards (see Section
3 B.3.a.) preceding each "piece" of the element.

b. Language Processor and Allocator Outputs

The Language Processors (see Section 3 B.4.) and the Allocator and
Memory Allocation Processor (see Section 3 B.5.) produce output in
the form of elements. (See Section 3 B.6.a ••) This output is nor­
mally placed in the User PCF'(see Section 2 B.5.) and may be punched
or printed by programmer specification. The following table shows .
the type number of elements (see Section 3 B.6.a.) produced by the
processors into the PCF; for optional output, see Appendix C 2. and
the sections dealing with the various processors (as indicated above).

36

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

Processor Into User PCF PUNCH** PRINT***

1108 Assembler Type 3· , 1* 3,5 1 ,3

PROC Definition Processor Type 7 5,7 7

COBOL Compiler Type 3· , 1* 3,5 1 ,3

COBOL Library Processor Type 6 5,6 6

FORTRAN Compiler Type 3· , 1* 3,5 1 ,3

LIFT Processor Type 1 1,5 1

Allocator Type 2 or 3 2 3****

Memory Allocation Processor Type 4 4,5 4

* For the indicated cases. Type 1 elements are produced only
when output source names are specified. Type 5 elements are
not placed in the User PCF, except by ELT card input handling
(see Section 3 B.6.a.).

** Punch output is produced when specified in the options field
of the calling control card. (See Appendix C.2 ••)

*** Print output is controlled by options specifications (see
Appendix C 2.).

PAGE:

**** Allocator print output consists of the absolute areas assigned
to elements, by control counter, and may include a list of sym­
bols defined in the elements. In no case is a detailed listing
of all locations of an absolute element produced. Note also
that the Allocator produces no output when the input is an
absolute element and the call is made by an XQT card.

c. CUR (Complex Utility Routines)

CUR is an element manipulative processor, i.e., it is a special
program which manipulates elements in the User PCF. It is called by
means of an XQT control card with the name "CUR" in the name field.
It operates by means of pseudo-instructions punched on cards following
the "XQT CUR" card. While operating, it produces a printed listing of
the pseudo-instructions and any special or error conditions which may
arise. (See Section 6 for diagnostic messages.)

CUR Pseudo-instruction cards are free-form, i.e., the fields are not
defined by specific card columns. Each card contains a pseudo­
directive and an information field. The pseudo-directives are listed
below and explained in succeeding paragraphs. If an error is indica­
ted while CUR is operating, all following operations are listed but
not performed, and CUR exits via the system abort exit (see Section
4 C.). The format' of the CUR pseudo-instruction card requires only
that the pseudo-directive be separated by a blank from the information
field which follows it; otherwise any columns may be used for either.
(See Appendix D 4. for the tape format of program files.)

37

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

CUR Pseudo-Directives (alphabetic order)

DEL Mark element in User PCF deleted.

* (See Input elements from cards below.)

ERS Erase the entire User PCF.

FIND Locate element in tape file.

FLG Alter the flag of an element.

IN Input the entire User PCF from tape.

LIST List element on printer.

OUT Output the entire User PCF to tape.

PCH Output element on card punch.

PAC Make space occupied by deleted elements available.

PEF Position tape to end-of-file.

TEF Write end-of-file on tape.

TOC List the Table of Contents on Printer.

TRD Input element from tape.

TRI Rewind tape with interlock.

TWR Output element to tape.

VER Alter version of element.

* Card input is accomplished by means of the ELT control card (see
Section 3 8.6.a.). No pseudo-directive is provided to perform
this function.

Pseudo-Directive Information field Operation

PAGE:

(1) DEL NAME/VERSION Delete element, NAME/VERSION,
from the User PCF. If the
element has no VERSION, the
field should contain NAME only.
Note: Deleting does not cause
the space occupied by the ele­
ment to be made available.

(2) ERS not used Erase the entire contents of
the User PCF; all drum space
designated as User PCF is
thus made available.

38

UP-4058 UNIVAC 1108 EXEC II

Pseudo-Directive Information field

(3) FIND unit, NAME/VERSION

(4) FLG, f NAME/VERSION

(5) IN

(6) LI ST NAME/VERSION

3
SECTION: PAGE:

Operation

Locate element NAME/VERSION
on logical tape drive·"unit";
"unit" is specified as a
single letter corresponding to
the logical unit on an ASG
card (see Section 3 B.1.b.).
If the element has no version,
the field should contain NAME
only. Tape is searched in a
forward direction until an end­
of-file is encountered or the
element is located. If end­
of-file is encountered, the
tape is rewound and the locate
operation re-initialized; if
the element is not located,
an error is indicated. When
found, the tape is positioned
to the beginning of the re­
quired element.

Change the flag of element
NAME/VERSION (if the element
has no VERSION, NAME only
should be specified) to "f",
where "f" is a flag as speci­
fied in the object element
name field of processor con­
trol cards (see Section
3 B.4.).

Read all elements in the file
on logical tape drive unit
into the User PCF; unit is a
single letter corresponding to
the logical unit field on an
ASG card (see Section
3 B.1.b.). If any element so
entered duplicates the name
of an element already in the
PCF, the old element is de­
leted. The Table of Contents
(not on tape) is altered to
reflect the input elements.

List element NAME/VERSION
(if the element has no VERSION,
NAME only should be specified)
on the printer. This function
is not available for element
Types 2 and 4. Note: The
listing of a Type 3 element
will be interpretive, i.e.,
special relocation information
is interpreted.

39

UP-4058 UNIVAC 1108 EXEC II 3
SECTION: PAGE:

Pseudo-Directive Information field Operation

(7) OUT

(8) PCH

(9) PAC

(10) PEF

(11) TEF

(12) TOC

unit, TYPE, TYPE, ••• Write all non-deleted elements
whose type number is indicated
(as "type") on logical tape
drive "unit"; "unit" is a
single letter corresponding

NAME/VERSION

not used

unit, unit, •••

unit, unit, •••

T1, T2, •••

to the logical unit field on
an ASG card (see Section
3 B.1.b.). If no type number
is indicated, all elements are
output. The Table of Contents
is not output to tape.

Punch element NAME/VERSION on
cards (if the element has no
VERSION, NAME only should be
specified). An ELT card (see
Section 3 B.6.a.) and required
EOF cards (see Section
3 B.3.a.) are punched.

Compress the PCF so that space
occupied by deleted elements
is made available; similarly
compress the Table of Contents.

Position logical tape drive
(or drives) "unit" past end­
of-file. "unit" is a single
letter corresponding to the
logical unit field of an ASG
card (see Section 3 B.1.b.).

Write end-of-file on logical
tape drive (or drives) "unit".
"unit" is a single letter
corresponding to the logical
unit field of an ASG card
(see Section 3 B.1.b.).

List tables "T1", "T2", etc.,
of the Table of Contents on
the printer.
(TN = EL Element Table

EP Entry Point Table
PN Procedure Name Table
CL COBOL Library Table
BL Block Table)

If the information field is
omitted, all tables are
listed.

40

UP-4058 UNIVAC 1108 EXEC II

Pseudo-Directive Information

(13) TRD

(14) TRI unit, unit, •••

(15) TRW

(16) TWR unit, NAME/VERSION

(17) VER NAME/ORIG, NEW

3
SECTION: PA(;E:

Operation

Read one element from
logical tape drive "unit"
into the PCF (if this element
has a name which duplicates
that of an element already
in the PCF, the old element
is deleted) • "unit" is a
single letter corresponding
to the logical unit field of
an ASG card (see Section
3 B.1.b.).

Rewind logical tape drive
(or drives) "unit" and inter­
lock them against further
operation. "unit" is a
single letter corresponding
to the logical unit field of
an ASG card (see Section
3 B.1.b.).

Similar to the previous
pseudo-instruction, except
that the rewound drive (or
drives) is not interlocked.

Write element NAME/VERSION
(if the element has no
VERSION, NAME only should be
specified) on logical tape
drive "unit". "unit" is a
single letter corresponding
to the logical unit field of
an ASG card (see Section
3B.1.b.).

Change the VERSION of element
NAME/ORIG to NEW. If NEW is
omitted the VERSION is elimi­
nated. If this causes dupli­
cation of the name of another
element in the PCF, the
other element is deleted.

If, while performing any operation, the User PCF area on the drum
is exceeded, an error is indicated. If any card is malformed in
any way, or if any element is malformed, an error is indicated.

After all CUR operations have been performed, the updated Table of
Contents is rewritten on the drum.

41

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

7. LIBRARY Control: LBR Control Card (XQT LIBRY)

In addition to the User PCF, a special complex is provided called the
system library. The structure of the system library is similar to the
User PCF (see Section 2 B.3.). Elements may be called from the library
(whenever a search does not locate a given element in the User PCF) , but
may not be entered into the library individually. The only method of
changing a system library is to create a complete library complex in the
User PCF and transfer it, as described below, into the Library PCF.

The LBR is a control card used to call for a system routine to transfer
the User PCF in toto to the Library PCF. Alternatively, this routine

PAGE:

may be called by an XQT card with the name "LIBRY" in the name field. No
other fields are defined for either calling control card.

System Response to the LBR (XQT LIBRY) card:

When CCI encounters an LBR (or XQT LIBRY) card, it places it in the print
file and calls the element "LIBRY" to transfer the User PCF to the Library
PCF, after which CCI is re-entered to read another control card. It is
suggested that deleted elements and symbolic elements be removed from the
User PCF before LIBRY is called.

B. System Generation: XQT RSDNT

The complete EXEC II system is described in Sections 2 A. and 2 B.. When
a system tape is prepared, it must contain the resident and drum portions
of EXEC in absolute form, all processors in absolute form, and all library
elements in relocatable or absolute form, as required. Assuming that
these are already loaded into core and drum, a system routine (in reloca­
table form, which is entered into the User PCF) is provided for creating
the system tape. This routine is called "RSDNT" with a version indicative
of the EXEC size of the system to be built. To call the tape-creating
routine (for an BK EXEC system), an XQT control card (see Section
3 B.5.b.), with the name "RSDNT/v65 or "RSDNT/v32" in its name field must
be used. ("RSDNT/v12" may also be used to create a 12K EXEC system in
65K of Core.)

Technique

The EXEC II system is generated and maintained by UNIVAC systems Program­
ming. Any user alteration in it is normally the responsibility of the
user. However, it is recommended that a "backup" system tape be created
whenever a new system shipment is received. "RSDNT" provides the capa­
bility of system tape copying. To copy a tape, it should be "boot­
strapped" (see 110B EXEC II Operator's Reference Manual), the resident
routines supplied on the tape must be entered into the User PCF (see
Section 3 B.6.), and a RUN Deck calling for "RSDNT" should be entered.
If any changes are to be made in the library, these must be done prior
to the calIon "RSDNT" (see Section 3 B.7.). Note that the resident
routines in relocatable format are currently placed in the fourth file
of systems tapes supplied by UNIVAC.

42

UP-40S8 UNIVAC 1108 EXEC II 3
SECTION:

9. Diagnostic Routines: Debug Control

The EXEC II system contains a system of diagnostic routines available
to the user for debugging programs. These routines are divided into
two distinct groups:

1. Independent diagnostic programs

2. Dependent diagnostic subroutines

PAGE:

The second of these groups is discussed in Section 4 B.3 •• The following
three sections will outline diagnostic routines which are essentially
independent of the user's program. Actually, ICS, the first of the inde­
pendent routines discussed, contains dumping routines which are accessible
to a user program in operation; however, since ICS is a control routine,
called independently, it is discussed here. The post-mortem dump and
panic dump capabilities covered in the latter two of the next three
sections are fully independent of any user program, since they operate
after a program under checkout has terminated.

a. ICS: ICS Control Card (XQT ICS)

ICS (abbreviation for Initial Checkout System) is a simple control
routine which may be used for utility and checkout purposes. It is
called by either an XQT card (see Section 4 B.5.b.) with the name
"ICS" in the name field, or an ICS card, which is a control card con­
taining the word ICS in the card name field. The ICS card has no
options and no other field on it; it is responded to by the system
exactly as the "XQT ICS" card is. Many of the functions of ICS have
been replaced by more sophisticated techniques; however, ICS may be
utilized whenever it is appropriate. A description of ICS follows.
(1108 Hardware manuals should be consulted as needed for clarification
of hardware references in this section.)

Operation of ICS:

When ICS is turned on, it reads cards of a special format, and
performs operations as specified on the cards. All ICS operations
deal with absolute machine addresses which are not checked by ICS;
the system is easily violated, and caution in its use is recommended.
If ICS is to be used during the operation of a user program, a special
system calling sequence is necessary to turn it on (see Section
4 B.3.). ICS itself has the capability of jumping back to the user
program if the absolute location of the return point is specified.
The system may also be used for set-up or post-mortem checkout capa­
bilities with the call as mentioned in the definition paragraph.

Certain operations may be specified to ICS on the cards which follow
the calling control card. The format of these cards is fixed, with
operations determined by the position of blank columns in the card.
Only columns 1 through 32 of the card (except the multiple-word load
card) are used. Unused columns may contain user's comments or may be
left blank. The following table summarizes the ICS cards. Inter­
pretation of specific fields are discussed in the following para­
graphs.

43

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

Note that all twelve of the operations originally designed into
Ies are included in the table. However, these are currently
divided into three sets:

(1) Obsolete operations (numbers 4-7 on table). Tape and drum
write operations have been deleted from ICS in latest versions
of EXEC 11.

(2) Remote system operations (none available). Internal dump
operations are the only ICS operations available in such
systems (see Section 4 B.3.f.).

(3) Non-remote system operations (numbers 1-3, 8-12 on table).
All operations which are not obsolete (1, above) are available
in systems without remote capability.

PAGE:

Any call to rcs (in a system in which rcs is not provided, such as 2,
above, will result in the printout "NO rcs", and the job will be
aborted (termination via MXXX$, see Section 4 C.).

44

ICS CARD FORMATS

'.
CARD COLUMNS

OPERATION
123 456 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 MEMORY PRINT R F F F F F F T T T T T T

2 JUMP J J J J J J

3 DRUM READ D D D D D D D D

4 DRUM WRITE* D D D D D D D D T T T T T T T T

5 TAPE REWIND* U

6 TAPE READ* U F F F F F F

7 TAPE WRITE* U F F F F F F T T T T T T

8 SNAPSHOT L L L L L L R F F F F F F T T T T T T

9 MEMORY CLEAR F F F F F F T T T T T T

10 INSTRUCTION LOAD L L L L L L F F J J A A B B H U U U U U U

11 WORD LOAD L L L L L L W W W W W W W W W W W W

12 MULTI-WORD LOAD L L L L L L NW W W W W W W W W W W W (words 2-6 are each 12

characters beginning in the next available column).

* Obsolete. Not included in latest versions of EXEC II.

Note: Blank columns indicated are required for proper interpretation of the card. Each field must be
filled with non-blank characters as indicated (including leading zeros). "R" in cards 1 and 8
is a single digit (0, 1, 2, 3, 4, 5, 6, 7) interpreted as register groups, as follows:

R = 0 NO REGISTERS
1 R-registers
2 A-registers
3 A-registers and R-registers
4 B-registers
5 B-registers and R-registers
6 B-registers and A-registers
7 B-reqisters and A-reqisters and R-registers

..
11\
n
~
o z

'11

•
" 11\

c::
'1j
I
~
o
CJ1
00

c z
~
(]

~
~

o
m
m
)(
m
n
--

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

(1) Memory Print

"R" designates the register groups to be printed. "FFFFFF" and
"TTTTTT" represent, in octal notation, the lower and upper core
limits respectively of the memory area to be printed as soon as
this card is interpreted.

(2) Jump

"LLLLLL" designates the core location, in octal notation, to
which control is to be transferred. The jump is made as soon
as this card is interpreted, with all registers and the carry
and overflow indicators reset to the values they had when ICS
was entered.

(3) Drum Read

"DDDDDDDD" designates the drum address from which the access

PAGE:

word is to be read. The read operation continues, according to
the access word, from the following drum address. This operation
is performed as soon as the card is interpreted.

(4) Drum Wri te

"DDDDDDDD" designates the drum location to which the access
word is to be written; this is followed by all words between
core locations "FFFFFF" and "TTTTTT" inclusive (locations in
octal notation) written to the area on drum starting with the
location following the access word. The access word is con­
structed by ICS, and contains the number of words transferred
in the high-order 18 bits, and the address "FFFFFF" in the low­
order 18 bits. This operation is performed as soon as the card
is interpreted. (obsolete)

(5) Tape Rewind

"U" designates a logical tape unit, corresponding to the logical
unit field of an ASG card (see Section 3 B.1.b.) which is to be
rewound. This operation takes place as soon as the card is
interpreted. (obsolete)

(6) Tape Read

"U" designates tape unit as described in paragraph 5. One
block is read from the given tape into core, beginning with
location "FFFFFF" (in octal notation), as soon as the card
is interpreted. (obsolete)

(7) Tape Write

"U" designates tape unit as described in paragraph 5. One block
is written on the given tape from the core area between octal
locations "FFFFFF" and "TTTTTT" inclusive, as soon as the card
is interpreted. (obsolete)

46

UP-40S8 UNIVAC 1108 EXEC II 3
SECTION:

(8) Snapshot

Location "LLLLLL" (octal notation) is overlaid with an instruc­
tion calling for a memory print. The balance of the card is
interpreted as described under Memory Print above. Note that
the merr.ory print is not performed until location "LLLLLL" is
accessed as an instruction. The instruction overlaid is per­
formed after the memory print is completed. A maximum of six­
teen such cards is accepted by lCS.

The location overlaid is restricted to a valid instruction,
which is not altered in any way during program operation, nor

PAGE:

may it be referenced as data. It may also not be an SLJ or LMJ
instruction specifying ~ndexing, or an SLJ instruction specifying
indirect addressing or an EX instruction which ultimately refer­
ences an SLJ or LMJ instruction.

(9) Memory Clear

The core area between octal locations "FFFFFF" and "TTTTTT"
inclusive is cleared to zero as soon as this card is interpreted.
Note that a PMD card (see Section 3 8.9.b.) with "Q" option
letter contains information which is interpreted as a Memory
Clear card by the systeM.

(10) Instruction Load

Location "LLLLLL" (octal notaticn) is overlaid with an instruc­
tion, as specified in the remainder of the card. "FF" represents
fur.ction code, "JJ" is the j-designator, "AA" and "8B" are the
a-register and x-register desigr.ations respectively, "H" is the
increment-indirect field, and "UUUUUU" is the memory operand
similar to the Assembler conventions. All fields are in octal
notation. Note that the instruction inserted is not executed
until it is accessed as an instruction.

(11) Word Load

Location "LLLLLL" (octal notation) is overlaid with the octal
configuration "WWvVWWWWWWvVWW". Any octal configuration is ac­
ceptable to ICS in this manner.

(12) Multi-word Load

"N" core locations (N=1-6) are overlaid with the octal con­
figurations specified in the card. The field in columns 9-20
overlay octal location "LLLLLL" and successive fields (begin­
ning in columns 21, 33, 45, 57, 69 respectively) overlay suc­
cessive locations. Any octal configuration is acceptable to
IeS in this manner.

Note that cards may be punched by the assembler in this format
if a "Q" option letter appears on the ASM card (see Section
38.4.a.).

47

UP-4058 UNIVAC 1108 EXEC II 3
SECTION:

NOTE: The cards described in paragraphs 2, 10, 11 and 12 may be
used in conjunction with the bootstrap routine to form a
simple card loader (console jump switch 15 must be set).
Locations 000200 to 000337 (octal) may not be loaded in
this manner. In addition, system patches may be entered
by the same means (setting console jump switch 13); in
this case, the terminating card should be a jump to lo­
cation 000005. If used in this way, the operations card
should not be preceded by a call to ICS. This card load
routine is not available if the system has no standard
card reader; it may not be used from a 1004 Card
Processor.

b. PMD Control Card

The PMD card is a control card used to call the Post-Mortem
Dump routines. These routines are special systems programs which
print specified areas of core, drum and registers after termination
of a worker program. The information printed is available in the
Execution Area on drum (see Section 2 B.4.), provided the Alloca­
tor was not prevented from constructing the required tables (see
Section 3 B.5.c.) by use of the "z" option (see Appendix C 2.).
The PMD card is identified by the word "PMD" in the card name
field, and contains an options field and a specifications field.
Generally, this card has "free-form", i.e., specific card columns
do not determine the fields; however, if the "Q" option is speci­
fied, the card has a fixed format as follows:

Column 2
Column 3
Column 4
Columns 5-7
Column 8
Columns 9-80

"Q"
"E" or blank (programmer's choice)
blank
"PMD"
blank
identical to the "Memory Print card" for ICS
(see Section 3 B.9.a.)

The fields of the PMD card are described below. (See Appendix
C 3. for format.)

(1) Options Field

This is a string of letters from the set (A,B,C,D,E,I,Q,V,X).
A maximum of one of the letters (A, D, I) may be used, "X"
'applies only in conjunction with (A, D, I) and "Q" is a
special option which is restricted as mentioned in the pre­
vious paragraph. (See Appendix C 2 ••)

(2) Specifications Field

This field has three forms depending on the options chosen.
If the "Q" option is used, the specifications field is
identical to columns 9-80 of the ICS memory clear card,
as previously mentioned. If any of the special options
(A, D, I) is used, the specifications field contains a
sequence of element or segment names (see Section 3 B.5.
on "segments", Section 3 B.6. on "elements") separated by
commas and terminating with a blank. All dumps applying

48
PAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

to PMD cards with this format will be in octal notation.
Otherwise, the specification field contains four sub­
fields, separated by commas, and terminating with a
blank; if a field is to be omitted, the comma which
follows it should appear on the card so that the in­
terpreting routines will not misinterpret the card.
The subfields are as follows:

Name: An element name (if blank all of user core is
specified).

Start: "n$m", where m is the location counter number

3

(in decimal notation) and n the first address
relative to that location counter (in decimal
notation) to be dumped. (If "m" or "n" is
omitted, a zero value is assumed; if the entire
field is omitted, interpretation of the card ends,
and all of the element name is assumed with all
dumps produced in octal notation.)

Length: Number of words to be dumped in decimal notation.
(If blank, all of the area specified by the pre­
vious subfields is implied.)

Format: This may contain a single letter; as follows,
or any user-defined format in FORTRAN notation,
enclosed in parentheses. A description of FORTRAN
Format specifications is included in Section
4 B.2.a ••

A

E

F

I

o or blank

System Response

Alphanumeric (16 A 6)

Floating Decimal (8E 14.8)

Fixed Decimal (8F 14.8)

Integer (81 14)

Oc ta 1 (80 1 4)

When eel (see Section 2 B.1.) encounters a PMD card, it places
it in the output print file and proceeds to call in routines to
interpret it. If the conditions required for dumping, as
specified by the options used, and the required tables are

.available (except for "Q" option), the dump routines are
called in and executed. If the tables are not available,
or if through an error the program was not executed, an error
message (see Appendix E) is placed in the print file. If for
any reason no dumping takes place, the PMD card is ignored
with no error indication. After processing the PMD card, eel
is re-entered to read another control card.

49
PAGE:

UP-40S8 UNIVAC 1108 EXEC II 3
SECTION:

c. Panic Dumps

Under some circumstances, it may not be possible to complete a job.
If such a condition occurs and the job has not yet terminated, it is
still possible for the programmer to get useful information for de­
bugging. The information is obtained by a panic dump, which is an
octal listing of specified areas of core in absolute terms. This
technique should not be used to replace other diagnostic techniques;
rather, it is a last resort, to be used only under conditions which
prohibit normal use of the system. To specify a panic dump, the
programmer must give the beginning and ending locations (in octal
notation) of those core areas required.

Panic Dump Procedure

While this procedure is essentially an Operator's job, the programmer
should understand it to emphasize the "last resort" aspect of it.

PAGE:

The operator must perform a manual bootstrap of the system with con­
sole jump switch 14 set. When the computer halts, the first location
to be dumped is manually entered into the P-register. The START
button is pressed and when the computer halts again, the last location
to be dumped is similarly entered into the P-register. The specified
area is then printed. This procedure is repeated for each such area
to be dumped, after which the console jump switch is reset, and the
system restored by a manual bootstrap.

The format of the dump is six words to the line, in octal notation,
with the address of the first word on the far left of the line, also
in octal. A pair of asterisks following the address indicates dup­
lication of the information of the previous line, in which case the
duplicate line is omitted.

10. Control Card Errors

Any of a number of conditions causes a control card to be considered
erroneous by the system. Two of the major causes of control card errors
are:

1. Invalid information in the card.

2. Card misplaced in deck or missing.

a. Invalid Information

The first error listed occurs when the formatting rules for the
control card have been violated, or when an invalid character has
been detected, or when an unrecognizable control card is encountered
(such as a COL card in a deck not input from the 1004). Descriptions
of the control cards in Sections 3 B.1. through 3 B.9. and Appendix
C indicate the proper construction of each control card. When this
error occurs, a message is placed in the print file:

"ABOVE CONTROL CARD IN ERROR - IGNORED"

If another control does not immediatly follow the error (and under
some other conditions), the job is aborted, i.e., no further proces­
sing of any kind is done in the current job. All succeeding cards

50

UP-4058 UNIVAC 110B EXEC II 3
SECTION:

until the next RUN card are bypassed in this case with messages:

"REMAINING CONTROL CARDS IGNORED"

"DATA CARDS ENCOUNTERED BY SYSTEM-IGNORED"

Careful checking of all control cards used will prevent this
error. Note that errors in CUR pseudo-instructions cards (see
Section 3 B.6.) also cause job abortion.

b. Misplaced Card

The second type of error may occur when the system expects a RUN
card (see Section 3 B.1.a.) or ASG card (see Section 3 B.1.b.)
which is not encountered. The following messages signal this
condition (and cause job abortion):

"RUN CONTROL CARD MISSING-DECK NOT ACCEPTED"

"ASG CARD MISSING"

Misplaced TPR or DPR cards (see Section 3 B.3.b.) also cause the
second type of error condition. If any cards are encountered
between the RUN card and a TPR or DPR card (other than a possible
HDG card; see Section 3 B.3.c.), the TPR or DPR card is ignored
with the message "UPCERR" provided. This condition does not cause
job abortion.

c. Control Cards

It is generally impossible for a worker program to make use of
any control card; the only exception is the EOF card (see Section
3 B.3.a.). Any attempt to do so causes the worker program to be
notified of an error condition by an abnormal return from the card
read routine, CREAD (see Sections 2 A. and 4 B.1 .a.), with register
A¢ set negative. All subsequent calls to CREAD produce the same
result.

51
PAGE:

UP-40S8 UNIVAC 110B EXEC II 4
SECTION:

4. \NORKER PROGRAMS

A. SPECIAL SYSTEM PACKAGES

1. SORT, LIFT, APT, PERT, etc.

Certain special programs are available for use under EXEC II. These
are described in detail in other documents; it is the purpos~ of
this section to clarify that aspect of their usage which involves
interfacing with EXEC II.

Programs such as SORT may be called upon by a user job only if they
are in the User PCF (see Section 2 B.5.). It must be brought in
to the User PCF by the same techniques employed for user-designed
programs. This implies that the special program must exist in card,
tape, or other form external to the operating system before it may
be used.

One exception to this is LIFT; two versions of LIFT are available.
The first is a special package (as above) which produces card out­
put. The second is a processor (see Section 4 A.2.) which pro­
duces a symbolic element in the User peF as output.

All interfaces between packages such as SORT and EXEC II are
identical to the interface between any user-designed program and
EXEC II (see Section 4 B.), and the system reacts similarly to
both.

2. Processors

The EXEC II system includes a set of special programs available to
user jobs. These may be called without first bringing them in,
since they are built into the system and reside on drum when not
in use. In this aspect they resemble other non-resident system
routines. The method of calling each of the processors is described
in Sections 3 B.4., 3 B.5., 3 B.6., and 3 B.9. References to
other documentation is provided in these sections for processors
not fully described in this manual.

Despite the fact that the processors are included in the system,
they are restricted in their operation in the same way user-designed
programs are. In this, they resemble the special packages mentioned
in Section 4 A.1. Once a processor has been loaded and turned on,
the system reacts to it as it would to any user-designed program.

1
PAGE:

UP-40S8 UNIVAC 1108 EXEC II 4
SECTION:

B. USER-DESIGNED PROGRAMS

This section outlines the interfaces between user-designed worker pro­
grams and various parts of the system. Calling sequences are included
for use of the system routines to handle input-output, perform editing,
utilize the Real-Time Clock, or provide diagnostic control.

Note t~at the specialized worker programs discussed in Section 4 A. use
the same interfaces as are described in this section; however, the user
need not concern himself with interface techniques in order to efficiently
use the special packages even though he must understand these techniques to
design and build his own programs.

All linkages are given in 1108 Assembler mnemonics. An understanding
of the Assembler is prerequisite to the proper use of this section.
Alternative linkages are given in terms of special Assembler PROC directives
designed for ease in coding. These generate the linkage as given in
1108 Assembler mnemonics. All routines not specifically designated as
resident routines are contained in the system library. The resident
routine entry points are contained in a jump table in VECTOR (see
Section 2 A.); the worker program jumps to the location in VECTOR in
which a jump to the required routine is stored. Since VECTOR remains
constant, no changes are necessary to worker programs when system
revisions are made, even if a change is made in the location of any
subroutine available to worker programs.

1. Input-Output Specifications

a. Symbionts and Co-operatives

A symbiont is a special program which transfers data between
a peripheral device and an intermediate storage device. A
co-operative is a special routine which transfers data between
a worker program and an intermediate storage medium. A worker
program receives its input from an input co-operative which takes
data from the intermediate storage area into which an input
symbiont placed it, and gives its output to an output co­
operative which places data into intermediate storage for action
by an output symbiont. The co-operative routines are included
as part of the resident (see Section 2 A.) while the symbionts
are retained on the drum as independent non-resident programs
(see Section 2 B.1.).

(1) Table of Symbionts and Co-operatives

Table 4-1 ~ists the symbionts with their respective
co-operatives, their function and the stimuli which turn
them on and off. Also included in the table are special
routines which operate like symbionts but do not transfer
data; these are marked with an asterisk. Following this
table is a description of calling sequences for the co­
operatives. (paragraph 3-8). Note that symbionts are not
called directly by worker programs. An outline of symbiont
operation is included in paragraphs 9-16, and some remarks
about particular symbionts are in paragraph 17.

2
PAGE:

UP-4058 UNIVAC 1108 EXEC II 4 3
SECTION: PAGE:

Table 4-1 Symbionts and EXEC Control Routines Which Operate Like Symbionts

Symbiont Initiated Terminated Cooperati ve Initiated Termina ted
Name By By Function of Symbiont Name By By Function of Cooperative Reference

CP 1 THP or end-file Transfer images from tape CPNCH Worker Pro- Transfer punch files from
CPNCH or drum to an on-site card gram or core to tape or drum.

punch. system

CP7 THP or end-file Trans fer images from tape or CPNCH Worker Pro- Transfer punch fi les from
CPNCH drum to a remote card punch. gram or core to tape or drum.

system

CRI GNP end-fil e and Transfer card images from CREAD Worker Pro- end job
"FIN" card on-si te standard card reader gram, system, Section

to drum. CRI 4 B.1.a.

CR4 GNP 2 "FIN" cards Transfer card images from CREAD Worker Pro- Transfer card files from
on-site 1004 card processor gram, system, main storage to core.
to drum. CR4

CR7 Remote 1004 Remote stop Transfer card images from CREAD Worker Pro-
operator card remote 1004 card processor gram, system,

to drum. CR7

DLT PRINT end-file Transfer print files from PRINT user job Transfer print images
drum to tape after convert- from main storage to
ing to DLT-5 format. tape or drum.

DMP THP end of data Transfer specified symbiont
files from drum to tape.

GNP Consol e sel f termi- Analyze keyin and load 1108
operator nating routine to provide requested Operators
keyin action Reference

Manual
LOD THP end of data Transfer specified symbiont

files from tape to drum.

PRT THP or end-file Transfer print images from
PRINT drum or tape to standard

printer

PRT THP or end-file Transfer print images from PRINT user job end job Transfer priClt images Section
PRINT drum or tape to on-site from main st:)rage t:) 4 B.1.a.

1004 prir.ter tape or drum.

PR7 THP or end-file Transfer print images from
PRINT drum or tape to remote

1004 prir.ter.

QPl THP end-file Transfer images from tape Section
to paper tape punch (not 4 B.l.e.
1004).

QRl THP paper tape Transfer images from paper
stop code tape punch to magneti c tape

(r.ot 1004).

TAP GNP self termi- Assign magnetic tape uni t
nating according to console keyin. 1108

Operators
THP* GNP self termi- Perform speci fied magnetic Reference

nating tape operations according Manual
to console keyin.

* Specifies Control Routine.

UP-4058 UNIVAC 1108 EXEC II 4

(2)

(3)

SECTION:

Calling sequences for co-operative control:

CREAD$ paragraph 3

CPNCH$ paragraph 4

PRINT$ paragraph 5

PLINE$ paragraph 6

PMARG$ paragraph 7

PAPER$ paragraph 8

The card read and punch co-operatives transfer 14-word
Fieldata images between the drum and worker program. The
low-order 24 bits of word 14 are zero-filled.

The followi~g linkage is used to obtain a card image:

LMJ 11 , CREAD$

+ address

(abnormal return point)

(normal return point)

The alternative linkage is:

C$READ address,abnormal return point

The field "address" designates the core location to which
the image is to be transferred. It may also contain the
designator of any of the index registers 1-10, in which
case, the designated index register will be loaded with the
address of the next image in the co-operative routine's
core buffer, with no transfer occurring. The next subse­
quent call to the co-operative will destroy the image.
Note that a 14-word area is required for an 80-column
image while a 15-word area is needed for a 90-column
image. The cell TCARD$ (absolute location 01137 octal)
contains a 14 or 15 in the low order 6 bits to indicate
the number of words in the card currently being read; the
next least significant 6 bits contain a zero for 80-column
or a 1 for 90-column. The "abnormal return point" is the
location to which the co-operative returns control as a
control card is encountered.

Register A~ will be set negative on abnormal return unless
an EOF card (see Section 3 B.3.a.) caused the return. If
the control card was an EOF card, AP is loaded right justified
and zero-filled with the character found in column 7 of the
EOF card. Following the abnormal return due to an EOF card,
subsequent calls to the co-operative will transfer data card
images while calls to the co-operative subsequent to any
other abnormal return will result in an abnormal return being
taken with no transfer of images. The "abnormal return address"
indicated in the alternative linkage causes'generation of a
jump to the designated address at the "abnormal return point".

4
PAGE:

UP-4058 UNIVAC 1108 EXEC II 4
SECTION:

If this field is omitted, the line following the PROC call is
taken as the "abnormal return point".

(4) The following linkage is used to transfer a card image to
the punch co-operative:

LMJ 11 , CPNCH$

+ n,address

The alternative linkage is:

C$PNCH address,n

The field "address" designates the core location from which
the image is to be transferred. The field "n" is a number
between 0 and 14 specifying the number of words in the
i mag e • If" n " i s 0 mit ted, a val u e. 0 f 1 4 i s ass um e d • I f
"n" is given as less than 14, the co-operative transfers
"n" words into the top of a 14-word blank-filled image
area, thus filling the image with trailing blanks. The
transfer will be completed, in any event, before return
from the co-operative. (If the punch file is to be output
on a 90-column device, the maximum value for "n" is 15;
this replaces the 14 throughout the preceding paragraph.
If a system has both an 80- and 90-colum~ punch, one of
them must be designated as "special", and may be accessed
only by channel selection on the RUN card; see Section 3 B.1.a.).

(5) The print co-operative transfers 22-word Fieldata images
between drum and worker program.

The following linkage is used to transfer a print image:

LMJ 11 ,PRINT$

P s,n,address

(In which: P FORM 12,6,18)

The alternative linkage is:

P$RINT address,n,s

The field "address" designates the core location from which
an image "n" words long (0~n~22) is to be transferred. The
field "s" is used to generate a control to skip "s" lines
prior to printing. If "n" is zero, a blank line is printed;
if "s" is zero, overprinting occurs. If "s" is omitted from
the procedure call, it is assumed to be 1; if "s" is greater
than the number of logical lines per page (see paragraph 7),
a control to eject the current page is set; if "n" is omitted
it is assumed to be 22. If "n" is less than 22, a stop code
(77) is generated following the last word of the image; print
images may thus be variable in length.

5
PAGE:

UP-4058 UNIVAC 1108 EXEC II 4
SECTION:

(6) Included in the print co-operative are subroutines to control
printer formatting and to specify a change in the type of paper
required. The following linkage sets up a control to position
the page to logical line n-1, so that a subsequent calIon
PRINT$ (with "s"=1) will be set up for printing on line n.

LMJ 11 ,PLINE$

+ n

The alternative linkage is:

P$LINE n

If field "n" is zero, the control will be set to eject the
current page (just as i,f "n" were 1); if the current logical
line is greater than "n-1", the control will be set to position
to logical line n-1 of the following page. If the current
logical line is equal to "n"-1, PLINE$ will have no effect.
Note that the logical line number is relative to the margin
settings; thus logical line 1 is the first printable line on
the page after the top margin.

(7) At the beginning of each job (when a RUN card is encountered;
see Section 3 B.1.a.), the print co-operative is reset to define
a page as consisting of 66 lines allowing 4 lines of margin at
the top and 4 lines of margin at the bottom. This leaves 58
printable lines; the first of which falls on the fifth line
of the page.

The following linkage sets up a control to alter the
settings of the margins:

LMJ 11 ,PMARG$

+ length, top,bottom

The field "length" specifies the number of lines per page.
The field "top" specifies the last line of the top margin
relative to the top of the page. The field "bottom" specifies
which line, relative to the top of the page, is to be the
last printable line. Thus, the standard setting is 66,4,62.
Note that the paper tape loop on 1004 printers must correspond
to the "length" in order to get compatible operation.

(8) The following linkage is used to specify a paper change.
It causes a message to be inserted in the print file which
will be typed at the console when the print symbiont reaches
this point.

LMJ 11 , PAPER$

+ count,address

The field "count" specifies the number of characters in
the message to be typed, and the field "address" is the core
location of the message.

6
PAGE:

UP-40S8

Bits

ZPT$

ZPT1$

ZPT2$

UNIVAC 1108 EXEC II 4

35

SECTION:

(9) All symbionts and control routines which operate like
symbionts (the term "symbiont" will be used to denote
both) are directly controlled by the resident routine
PARCON (see Section 2 A.1 .). Note that the number of
symbionts is limited to 43 by the limited number of queue
slots in the dispatcher (see Section 4 B.1 .c., part 4).
PARCON requires a 1-word entry in each of three tables

Statu s

in CONFIG (see Section 2 A.1.) for the symbiont. The
formats of these entries are as follows:

30129 24123 18 17 121 11 6 I 5 , , I
Symb iont Name Core Location

I I

I
I I

S Drum Address
I I

MESSAGE

"Symbiont name" is the three-character Fieldata name by
which the console operator references the symbiont.

"Core location" is computed by PARCON as the address of the
first location of the core buffer in which an active symbiont
is currently operating.

"Status" is a flag indicating the current condition of the
symbiont (O=inactive, 1=suspended, 2=active).

"S" is a single-character signal which is part of an
unsolicited console key-in directing symbiont action (such
as "I"=initiate, "S"=suspend, etc.).

"Drum address" is the absolute address of the first location
of the symbiont on the drum. Proper computation of this
address requires that the map for the resident system
include the symbiont in a segment containing all symbionts,
and only symbionts. (The first line of the symbiont, which
is an external reference (see Section 2 B.5.), is equated
to a core address by the allocator when the system is
generated; this core address is the symbiont's relative
drum address. Constants in CONFIG are used in conjunction
with the relative drum address to compute an absolute drum
address).

"MESSAGE" is a one-word field used to permit operator­
Symbiont Communication. Any message input by the operator
will be loaded into this field and thus is available to
the symbiont.

7
PAGE:

0

UP-4058 UNIVAC 1108 EXEC II
SECTION:

The system sets a cell called ZSW$ to the index of the
ZPT$ entry (relative to the beginning of the ZPT$ table)
whenever a symbiont is given control. Register X1 will
concurrently be set by the system to the address "core
location" in the ZPT$ entry.

4

Whenever an unsolicited key-in involving symbiont action
occurs (normally identified by a "." as first character),
the control routine GNP is called in; this routine inter­
prets the signal character (field "s" in ZPT$ table) and
enters the subroutine in PARCON which will perform the
desired operation. The symbiont itself (or other resident
routines) may also enter subroutines in PARCON to perform
specified operations. The subroutines of PARCON are
described in the following paragraphs (Note that these
subroutines are not defined by the system for worker
programs):

ZINS paragraph 10 ZFILE$ paragraph 13

ZIN,SP paragraph 10 ZNEXT$ paragraph 13

ZREM paragraph 11 ZSUB1 paragraph 14

ZRCB$ paragraph 12 ZSUB2 paragraph 14

ZLCB$ paragraph 12 ZLOAD paragraph 14

ZRDB$ paragraph 12 ZSPND$ paragraph 15

ZLDB$ paragraph 12 ZTERM$ paragraph 16

Since the symbionts interact closely with the system, no
provision is made for saving and restoring registers when
it releases and regains control. The only registers
available for free use by symbionts are the "volatile"
registers B11 through A5 and R1 through R3. All other
registers used by a symbiont must be saved and restored
by the symbiont between transfers of control.

(10) The subroutine ZINS is used to place an entry in one of
the queues maintained by the dispatcher (see Section
4 B.1 .c.). It requires that A¢ contain the index of the
symbiont's entry in the ZPT$ table (relative to the
beginning of the table); and that A1 contain the index of
the point in the symbiont (relative to the first location
of the core buffer in which the symbiont is operating) to
which control is to be returned after the action specified
in the queue entry is completed; and that A2 contain the
address of the location which identifies the queue. The
calling sequence is:

LMJ 11 ,ZINS

If a symbiont, which is currently active needs to place an
entry into a queue, the subroutine ZINSP should be used.
This requires that A2 contain the address of the location
which identifies the queue (as above); and that ZSW$
contain the index of the symbiont's entry in the ZPT$

8
PAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

table (relative to the beginning of the table); and that
X11 contain the absolute address of the point in the sym­
biont to which control is to be returned after the action

4

is specified in the queue entry is completed. When this
subroutine is entered, A¢ is loaded from lSW$, A1 is loaded
with the difference between X11 and X1, and X11 is loaded with
the address of SIRT in INTRP (see Section 2 A.). The sub­
routine then enters ZINS.

The calling sequence to this subroutine is:

J ZINSP or LMJ 11 ,lINSP

The action performed by ZINS is to place an entry into the
proper queue and exit to the location specified in X11.

(11) ZREM is the subroutine used to remove an entry from one of
the queues maintained by the dispatcher (see Section 4 B.1 • c.).
A2 must be set as for ZINS, described in paragraph 10. The
calling sequence for this subroutine is:

LMJ 11,ZREM

The subroutine removes the first entry from the queue,
updates the queue to reflect the availability of the slot
it has just released, and then exits to the location specified
by B11 •

(12) Five subroutines are provided to control the use of core
and drum buffers (see Section 2 A. and 2 B.6.). To request
a buffer, the following subroutine linkages are used:

LMJ 11,ZRCB$ (core buffer)

LMJ 11,ZRDB$ (drum buffer)

LMJ 11 ,ZRDBI$ (input drum buffer)

These linkages enter subroutines which load the address of
the next available buffer into A¢. If no buffer is availa­
ble, A¢ is loaded with a zero. If the request was made by
a worker program, the subroutine returns control to the
worker program (via the address in B11) whether or not a
buffer was actually found. If the request was made by a
symbiont, the subroutine will not return control to the
symbiont unless a buffer is available; if no buffer is
available for a symbiont, the subroutine ZINSP (see
paragraph 10) is entered to place the request in the
proper queue (Note that ZINSP does not return control
to the symbiont).

To release a buffer, the following linkages are used:

LMJ 11 ,ZLCB$ (core buffer)

LMJ 11,ZLBD$ (drum buffer)

9
PAGE:

UP-4058

Bits

UNIVAC 1108 EXEC II 4
SECT10N:

These linkages require that A¢ contain the address of the
buffer to be released. The subroutine will mark that
buffer available and return control to the location
specified in B11.

Each time a buffer is emptied, it should be released. A
new request must then be made when a buffer is again
needed. This procedure permits serval requesting routines
to share the same buffer, thus allowing them to continue
despite a shortage of buffer areas.

(13) Associated with symbiont drum files (stored in the sym­
biont drum buffers described in Section 2 B.6.) is a
file directory maintained in LOWCOR (see Section 2 A.).
The format of each 1-word entry in the directory is:

T

25 24

p o

"T" contains a code which specifies the "type" of the file
and may also identify a particular channel. Many of
these codes are installation variable. However, the
following (which do not contain channel designators)
are standard (octal numbers are given):

00 Output print file

01 Input card file

02 Output card file

*03 DMP dummy entry

*04 LOD dummy entry

*06 Input paper tape file

*07 Output paper tape file

24 DLT-5 print file

Starred numbers designate types which are not
associated with an actual drum file, but which use
the file directory for storing parameters for
specified symbiont action.

"P" is a priority code; larger priority numbers are
handled first.

"D" is normally the drum address of the first block of the
file. When no actual drum file is associated with the
entry, this field is used to store parameters.

10
PAGE:

o

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

Two subroutines in PARCON are used to maintain the file
directory. To add an entry in the directory, A¢ should be
loaded with the word to be added and the following linkage
executed:

LMJ 11 ,ZFILE$

4

If the file directory is full when the above linkage is
executed, no entry is made, and A¢ is set negative. If the
entry is successfully made, A¢ is set positive. Control
is always returned to the location specified in X11.

To remove an entry from the directory, A¢ should be loaded
with the type code desired (right justified), and the
following linkage executed:

LMJ 11, ZNEXT$

The subroutine ZNEXT$ will search the directory for the
highest priority entry for the indicated type code (in
A¢). If found, the entry word is loaded into A¢ and the
entry is deleted from the directory. If no entry of the
indicated type is found, A¢ is set negative. Control is
always returned to the location specified in B11.

(14) Three subroutines are provided in PARCON for use in
initiating a symbiont. The first is used to get the index
of the symbiont entry in the ZPT$ table. This subroutine
requires that the name of the symbiont be loaded into A¢
(right justified) and the following linkage executed:

LMJ 11, ZSUB1

If the symbiont is found, control is returned to the
location specified in X11 with A1 set to the required
index. If the symbiont is not found, the operator is
notified by a console typeout and control is returned
to SIRT in INTRP (see Section 2 A.).

The second subroutine provided is used to check the sym­
biont loader for activity, and activate it if it is
inactive. This subroutine requires that A1 be set to the
index of the symbiont entry in ZPT$ table and the following
linkage executed:

LMJ 11 ,ZSUB2

If the loader is already active, control is returned to
the location following the address in B11. Otherwise the
loader and the symbiont to be loaded are both marked
active in ZPT$ table, and the index to the symbiont entry in
ZPT$ is loaded into the "symbiont name" field in the loader's
entry in ZPT$. Entry is then made to ZINS (with A¢, A1
and A2 properly reset) to place an entry for the loader into
the "ready" queue. X11 is not reset when ZINS is entered.
The symbiont loader is thus made to look like a symbiont
to the system.

11
PAGE:

UP-4058 UNIVAC 1108 EXEC II 4
SECTION:

When the entry in the "Ready" queue for the loader gets
to the top of the queue, the subroutine ZLOAD is entered;
this is the symbiont loader. Using the dummy entry in the
ZPT$ table (into which was stored the index to the ZPT$
entry for the symbiont to be loaded), ZLOAD requests a
core buffer (using ZRCB$) and loads the requested sym­
biont into it. ZSW$ is then set to the symbiont's index
in the ZPT$ table, and X1 is set to the address of the first
location in the core buffer. ZLOAD is inactivated at this
point and the dispatcher (see Section 4 B.1 .c.) is entered
to release the drum channel and place the symbiont into
the "Ready" queue. Upon completion of its operation, the
dispatcher exits to SIRT in INTRP (see Section 2 A.). The
symbiont called for is effectively active at this point.

(15) A symbiont may temporarily suspend operations by means of
the linkage:

LMJ 11,ZSPND$

When this subroutine is entered, the ZPT$ table entry for
the currently active symbiont is marked with a 1 in the
"status" field to mark it suspended. The difference .
between the addresses in X11 and X1 is loaded into the
first location in the symbiont's core buffer. (Note that
the symbiont must therefore provide a constant in its
first word which should be assembled as the relative
start point, and which is updated by such routines as
ZSPND$). This permits re-entry to the symbiont when the
operator next addresses it by an unsolicited Key-in. ZSPND
'returns control to SIRT in INTRP (see Section 2 A.) after
completing its operations.

(16) A symbiont may terminate operations by means of the
linkage:

LMJ 11,ZTERM$

This subroutine notifies the operator of symbiont termina­
tion and then releases its core buffer by using the sub­
routine ZLCB$. (A~ is first loaded with the address
in X1 , which contains the address of the first location
in the core buffer of the currently active symbiont).
The ZPT$ table entry for the symbiont is then marked inac­
tive ("status"=O), and ZTERM$ returns control to SIRT in
INTRP (see Section 2 A.).

(17) It should be noted that certain symbionts are "channel­
dependent", i.e., they are associated with particular
channels co~taining specific hardware devices. This is
true of the print, card read, card punch and paper,tape
symbionts. Some clarifying remarks regarding these
symbionts are included here.

There ar~ three card read symbionts: CR1, CR4, and CR7.
These are associated with channels containing a standard
card-reader, an on-line 1004 card processor, and aCTS
unit which links to a remote 1004 card processor,
respectively. If an installation has more than one

12
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

channel containing any of this equipment, an additional
entry for the second channel's symbiont is created for

4

the ZPT$ table which references the ~ symbiont as the
first channel with a different name. Thus, entries may be
found in ZPT$ table for symbionts called CR1, CR2, CR3,
all of which refer to the symbiont CR1. The symbiont
CR4 may also be referenced by entries with names CR5, CR6,
similarly CR7 may be renamed CR8, CR9.

The same discussion holds true for the print symbionts,
PRT (usually named PR1 on the first printer channel), PR4,
and PR7. The card punch symbiont CP1 contains coding for use
with a 1004 card processor, and thus may be renamed CP4,
CPS, CP6 as well as CP2, CP3. CP7 may be renamed CP8, CP9.
The paper tape symbionts exist only in the form associated
with standard paper tape units (not 1004 processors
equipped with paper tape read or punch units). However,
more than one standard paper tape read or paper tape
punch channel is possible; the symbionts QR1 and QP1 are
correspondingly renamed QR2, QR3, and QP2, QP3.

The symbiont DLT exists in only one form, since it is
associated with a magnetic tape unit which is dynamically
assigned; similarly for the symbionts DMP and LOD.

The symbionts DMP and LOD and the control routines GNP,
TAP and THP provide the console operator with the useful
capabilities described in the 1108 EXEC II Operator's
Reference Manual. These symbionts are therefore not
discussed in detail in the present manual.

b. Tape and Drum Routines

This section includes a description of all system routines
providing interface with magnetic tape units and the FH-880
or FH-432 drum. The section is divided into six parts. Parts
1 and 2 deal with tape subroutines: tape assignment being
discussed in part 1 and the resident tape I/O package in part 2.
Parts 3 and 4 deal with the resident subroutines: normal mode
routines in part 3 and packet mode routines in part 4. The
last two parts in this section deal with the buffering routines
for drum and tape included in the standard library; the Block
Buffering package is discussed in part 5, and the Label and
Item package in part 6. Note that the former is used for
tape or drum blocks of any format, while the latter deals with
LION format tapes.

A discussion of end-action subroutines (including the standard
verification routines) and access words is provided in Section
4 B.1 .c. This discussion should be used to clarify those
portions of the current section which mention requirements for
end-action or access words.

13
PAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

(1) Tape Assignment Subroutines:

(a) Six routines are provided in the standard library
dealing with magnetic tape assignments. Four of
them (marked '*', below) may not be used in end­
action routines. The tape subroutines are:

*TASGN$ paragraph b TLABL$ paragraph c

THRU$ paragraph b *TSCRH$ paragraph b

*TINTL$ paragraph d *TSWAP$ paragraph d

All of the above routines require that a "logical"
tape label be specified (this is the same as the
"logical" label on the ASG control card described
in Section 3 B.1.b.). The "logical" label of the

4

tape unit is a single character (A-Z,-, or right
parenthesis) used to refer to the unit within a worker
program. The system provides the capability for
equating the logical label to an "operational" label,
the name by which the tape is known to the operator.
Normally, the operator is responsible for providing a
physical unit assignment corresponding to an "operational"
label, while the programmer provides the correlation
between the "operational" label and his "logical" label.
This is the case when the above subroutines are used.
These subroutines, however, do not notify the operator
of the requirement for a physical unit assignment.
(When an ASG card is used, the programmer may optionally
specify physical unit assignments; if he does not, the
system notifies the operator to make the assignment and
waits until he does so).

(b) Tapes may be assigned by two of the subroutines, and
released by one. To assign a "logical" label
to an "operational" label, the "operational" label
should be loaded into A¢ (right justified and zero­
filled) and the following linkage executed:

LM] 11 ,TASGN$

+ 0, ' logical'

(abnormal-return-point)

(normal-return-point)

The "logical" field should contain a "logical" label,
enclosed in quotation marks. If the "logical" label
is invalid, or if the "operational" label has not
been equated to a physical unit by the operator,
control is returned to the "abnormal-return-point".
If the assignment is made, control is returned to
the "normal-return-point".

14
PAGE:

UP-4058 UNIVAC 110B EXEC II
SECTION:

Similarly, a scratch tape (operational label= ,*,)
may be assigned by the following linkage (A~ is not
used):

LMJ 11 ,TSCRH$

+ 0, 'logical'

(abnormal-return-point)

(normal-return-point)

4

The fields correspond to the TASGN$ linkage, except
that an abnormal return is made when no scratch tapes
are available. Note that the difference between a
scratch tape and a labeled tape is that the system
prohibits reassignment of an "operational" label
while it is in use, except for "*"; thus any number
of scratch tapes may be assigned.

The above linKages may be made by the following
procedure calls:

T$ASGN 'logical' ,(abnorm)

T$SCRH , logical' ,(abnorm)

These procedures should contain the address of the
abnormal-return-routine in the "(abnorm)" field.
The system loads the abnormal-return-point in the
linkage with

J (abnorm)

if this address is provided, or with

NOP

otherwise.

To release a "logical" label, thus clearing the
physical and "operational" assignments associated
with it, the following linkage is used:

LMJ 11 ,THRU$

+ r,'logical'

The 'logical' field should contain a "logical" label.
The "r" field designates rewind options as follows:

r=O Rewind all units.

r=1 Do not rewind units.

r=3 Rewind all units with interlock.

All physical units associated with the given "logical"
label will be released, with the rewind control
applying to each such unit. The operator will be
notified that the physical units are now free.

15
PAGE:

UP-40S8 UNIVAC 1108 EXEC II 4
SECTION:

Since this linkage is executed between jobs (with
r=O) for all "logical" assignments remaining from the
previous job, this linkage need not be used unless a
tape unit can be released well prior to job termina­
tion.

The above linkage may be generated by the procedure
call:

T$HRU 'logical' , 'signal'

The 'signal' field is used to generate a value for
"r", and should contain one of the following,
surrounded by quotation marks:

RWND sets "r"=O

NORWND sets "r"=1

INTLK sets "r"=2

If 'signal' is omitted "r"=O is assumed.

(c) The worker program may recover the "operational"
label associated with a given "logical" label by
the linkage:

LMJ 11,TLABL$

+ O,'logical'

The "logical" field should contain a "logical" label
surrounded by quotation marks. The subroutine loads
Ayj with the "operational" label (right justified and
zero-filled); if no "operational" label is associated
with the given "logical" label, Ayj is cleared to
zero. Control is returned to the worker program
following the linkage.

(d) Any number of physical units may be assigned to a
given "logical" label. These physical units may be
cyclically referenced by use of the following linkage:

LMJ 11 ,TSWAP$

+ r,'logical'

The 'log i ca l' field should conta'in a "log ical" 1 abe I;
the "r" field is the same as the "r" field of the
THRU$ linkage (see paragraph b), except that it
applies to the old physical unit only. The subroutine
loads A¢ with the next real number and activates
the next physical unit associated with the "logical"
label ~rior.to returning control to the worker program
(following the linkage). The above linkage may be
generated 'by th~ following procedure call:

T$SWAP 'lo.9ical' , 'signal'

16
PAGE:

UP-4058 UNIVAC 1108 EXEC II 4
SECTION:

The 'signal' field is identical to the 'signal' field
for THRU$ (see paragraph b).

If the same multireel file is to be used more than
once in a worker program, the tape-swap cycle must
be re-initialized with the following linkage:

LMJ 11 ,TINTl$

+ 'logical'

The "logical" field should contain the same "logical"
label used in the TSWAP$ linkage. The above linkage
may be generated by the following procedure call:

TSINTL 'logical'

Rewind control is not available in the TINTL$ sub­
routine.

(2) Tape r/o Package

The tape I/O package facilities for performing the
following operations on a UNISERVO tape unit.

a. Rewind
b. Rewind interlock
c. Read (forward, backward)
d. Write
e. Write file mark
f. Set mode
g. Search read (forward, backward, masked)
h. Position (forward, backward)
i. Position to end-of-file
j. Position to start-of-file
k. Contingency Write

The particular UNISERYO* tape unit to be used for a tape
operation is specified by its logical unit designation.
These logical unit designations are represented by the
Fieldata code representation of a letter of the alphabet;
for example, a reference to logical unit F is specified by
coding 'F' in the proper half-word of the calling sequence.
Reference to an unassigned unit will produce a message and
error termination.

The tape I/O package can maintain simultaneously one
operation for each logical unit being used by the program.
Operations for units on the same channel will be performed
in the order requested. A request for a tape unit already
in action will result in a delay in the package until that
unit is free. When the return is made from the tape I/O
package, all of the parameters in the linkage have been accepted
by the package and thus may be altered as desired.

*Trademark Sperry Rand Corporation.

17
PAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

The 1108 EXEC II tape I/O package functions with UNISERVO
IlIA, UNISERVO IVC, UNISERVO VIC, or UNISERVO VIIIC tape
units. Not all of the remarks on the following pages
apply to all types of units. Those remarks applying
to only one unit or the other will be identified with the
notation "IlIA", "IVC", or "VIIIC".

(a) Status Codes.

Associated with each operation being performed by a
tape unit is a status code. It has the values -

o Normal completion

In process

2 Abnormal completion

3 Unrecoverable error

4

Some types of error interrupts will cause the package
to reposition the tape and try to reperform the
operation. Several attempts will be made, as appro­
priate for the type of operation and the particular
error condition. Should repeated recovery efforts
fail, the operator is notified. He may elect to
accept the operation "as is", to initiate another
set of recovery cycles, or to declare a fault condi­
tion. In the latter case the operation is terminated
with a status of 3.

For read operations the unacceptable information will
be left in core and the tape will be positioned beyond
the unreadable block (after the block for forward
tape motion, before the block for backward tape motion).
This positioning may not be reliable for certain types
of tape read failure.

Some types of error interrupts are not considered
recoverable. These also produce a typewriter message
but will return a status of 3 without operator action.

An abnormal completion is given in the following
conditions:

Physical end of tape or beginning of tape, depending
on the direction of motion.

A file mark encountered.

The user may query the status of the most recent
operation on a particular unit by means of the linkage

LMJ 11 , TCHK$

+error, unit

+abnormal, in process

18
pAGE:

UP-4058 UNIVAC 1108 EXEC II 4

Code

SECTION:

If the status code is 0, the tape check routine will
return following the calling sequence. Status codes
1, 2, and 3 will produce jumps to the addresses given
for "in process", "abnormal", and "error", respectively.
After any of these returns the arithmetic registers
will be left as

A¢ Status

A1 Final access word

A2 Tape status word

The final access word, if relevant, will contain an
indication as to how far the input or output opera­
tion proceeded before its termination. For positioning
forward or backward, the final access word represents
the number of blocks yet to be passed over when the
positioning operation terminated. The tape status
word has the form

Status Acode Chan Un it Mode

in which "Code" indicates the nature of the interrupt
causing the termination. This is of interest only
in the case of abnormal or error status. "ACODE" is
used to hold part of the "Code" information. (IVC),
(VIC), (VIIIC).

The "Status" field is repeated in the second six bits
of the tape status word. The "Channel" and "Unit"
fields pertain to the physical channel and unit
currently assigned to the logical unit designated.
"Mode" contains a bit representation as follows:

Bit
(Numbered Right-to-Left)

o

2

3

4

5

Meaning, if ON (1 bit)

Density is 200 ppi. (low)*

Density is 800 ppi. (extra
high)*

Indicates contingency write
(IlIA) or erase operation
(IVC, VIC, VIIIC)

Character count errors are
to be ignored

Read or search read opera­
tion was done

BCD to Fieldata software
convertor is on

*If bits ° and 1 are both off (O-bits), density is 556 ppi.
Both bits cannot be on simultaneously.

19
PAGE:

UP-4058 UNIVAC 1108 EXEC II 4
SECTION:

All of the indicators just listed apply to all tape units
except where otherwise specified.

The tape status check linkage may be generated by the
procedure call

T$CHK unit abnormal, error, in process

If the "in process" parameter is omitted, the generated
linkage will loop through the subroutine until the
operation is completed. If the "error" parameter is
omitted, MERR$ will be substituted.

(b) The Tape Operations

The tape operations listed above are performed by
subroutines within the tape I/O package. The linkages
have the general form

LM] 11, Txxx$

+end-action, unit

+access word

+sentinel

+mask

The "end-action" field specifies the location of the
user's end-action subroutine or may be zero if none is
desired. The tape operation will occur on the UNISERVO
having the logical designation "unit". For read, write,
and search the "sentinel" word is required only for
search read operations; the "mask" word is required only
for masked search operations for the UNISERVO IlIA's.
For position operations, the access word is replaced by
the number of blocks to be passed over.

These linkages may also be made by calls to library
procedures in the form

T$xxx unit, end-action count, core-addrs,
direction sentinel, mask

The first of these three lists contains the logical unit
designation in quotation marks and the location of the
end-action subroutine. If the "end-action" parameter is
omitted, no end-action will occur. The second list
specifies the access word using the notation described in
Section 4 B.1 .c .. For position forward or backward opera­
tions, the second list is the number of blocks to be
passed over. The third list, the "sentinel", is present
for search read operations only. These procedures will
generate two, three, or four words.

20
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

1. Rewind

A tape unit is rewound by the linkage

LM] 11 , TRW$

+end-action, unit

The operation is marked as complete and the
end-action executed if no error interrupt is
received within a few milliseconds after the
rewind has begun. No abnormal status will be
produced.

The rewind linkage may be generated by the
procedure call

T$RW unit, end-action

2. Rewind-Interlock

A tape unit is rewound and interlocked against
further operations (until reset by the operator)
by the linkage

LM] 11 , TRI$

+end-action, unit

The operation is marked ai completed and the
end-action executed if no error interrupt is
received within a few milliseconds after the
rewind has begun. No abnormal status will be
produced.

The rewind interlock linkage may be generated
by the procedure call

T$RI unit, end-action

3. Read

A block may be read into core, moving the tape
in a forward direction, by the linkage

LM] 11 ,TRF$

+end-action, unit

+access word

The operation is completed normally (status=O)
by satisfying the access word or by reaching
the end of the block or tape. If the former
occurs, the tape will move on to the end of
the block. An abnormal completion (status=2)
may be produced by attempting to read past
the end-of-file mark.

4 21
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

The read forward linkage may be generated by
the procedure call

T$RF unit, end-action count,
core addrs, direction

A block may be read into core, moving the
tape in a backward direction, by the linkage
(VIC), (VIIIC):

LMJ 11, TRB$

+end-action, unit

+access word

The operation is completed normally
by satisfying the access word or by
the beginning of the block or tape.
former occurs, the tape will move on
beginning of the block. An abnormal
(status=2) is produced by attempting
past the beginning of tape.

The procedure call

T$RB unit, end-action count,
core addrs, direction

(status=O)
reaching
If the
to the
completion
to read

will generate the read backward linkage.

4. Write

An area of core may be written to tape as a
single block by the linkage

LMJ 11 , TWR$

+end-action, unit

+access word

The operation is terminated by satisfying the
access word (status=2) or by an unrecoverable
error (status=3).

The write linkage may be generated by the
procedure call

T$WR unit, end-action count,
core addrs, direction

4 22
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

5. Write File Mark

An end-of-file mark is written on tape with
the linkage (IVC), (VIC), (VIIIC):

LMJ 11 , TEF$

+end-action, unit

The write file mark linkage may be generated
by the procedure call

T$EF unit, end action

6. Set Mode

4

These linkages determine even or odd parity and
high, low, or extra high (lVC, VIC, VIIC) density.
They may also be used to turn the BCD-Fieldata
hardware convertor on or off (IVC, VIC, VIIIC),
set 7 or 9 track mode (VIC, VIIlC) and condition
to accept or reject frame count errors. If none
of these linkages is used, odd parity and high
density are an assumed standard. The setting
specified by one of these linkages will remain
in effect unti~ an ASG card which will always
reset to standard unless otherwise specified is
encountered.

The linkages have the form

LMJ 11, xxxx$

+end-action, unit

and may be generated by the procedure call

x$xxx unit, end-action

where xxxx is:

TSDX
TSDH
TSDL

TSPO
TSPE

TSKO

TSKF

set extra-high density (800 ppi)
set high density (556 ppi)
set low density (200 ppi)

set odd parity
set even parity

turn on (optional) BCD-Fieldata
hardware convertor
turn off (optional) BCD-Fielda~a
hardware convertor

23
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

TACE condition to accept character
count errors

TRCE condition to rej ect character
count errors

TSST set 7 track mode (VIC, VIIIC)
TSNT set 9 track mode (VIC, V I I IC)

Any of these operations are ignored for IlIA
units.

7. Search Read Forward

The search read forward operation moves the
tape in a forward direction comparing a
specified sentinel word against the first
~ord of each block. When equality is found,
that block (including the first word) is read
into core under control of an access word
exactly in the manner of a read forward opera­
tion. A search read forward is performed by
the linkage

LMJ 11, TSF$

+end-action, unit

+access word

+sentinel

4

The search read forward operation may be
terminated by a successful search followed by
reading forward until the access word is
satisfied or until the end of the block is
reached (status=O); by an unsuccessful search
(status=2) which reaches the end-of-file mark;
(or end of tape) or by an unrecoverable error
(status=3). Note: The "direction field" of the
access word may not contain a 1 or a 3 for this
to work properly.

The search read forward linkage may be generated
by the procedure call

T$SF unit, end-action count
core-addrs, direction sentinel

8. Search Read Backward

The search read backward operation moves the
tape in a backward direction comparing a
specified sentinel word against the last word
of each block. When equality is found, that
block (including the last word) is read into

24
PAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

core under control of an access word exactly
in the manner of a read backward operation.
A linkage (IlIA, VIC, VIIIC)

LMJ 11 , TSB$

+end-action, unit

+access word

+sentinel

or the procedure call

T$SB unit, end-action count,
core addrs, direction sentinel

4

Status conditions are generated analogously to
those for a search read forward. Note: This
operation will not work properly if the "direction"
field of the access word contains a 1 or a 3.

9. Mask Search Forward (IlIA)

The mask search forward operation is performed
by the linkage

LMJ 11 , TMSF$

+end-action, unit

+access word

+sentinel

+mask

or the procedure call

T$MSF unit, end-action count,
core address, direction
sentinel, mask

The mask search forward operation functions
as does the search forward operation except
that the comparisons of the sentinel word
with the first word of each block are made
with respect to the "mask". Comparison is
made only for those portions of the word for
which one bit appears in the mask. The first
word brought into core for masked search
operations is the sentinel word "AND-ed" with
the mask word (IlIA). Note: This operation
will not work properly if the "direction"
field of the access word contains a 1 or a 3.

25
PAGE:

UP-40S8 UNIVAC 1108 EXEC "II
SECTION:

10. Mask Search Backward

The mask search backward operation is perfromed
by the linkage (IlIA)

LMJ 11 , TMSB$

+end-action, unit

+access word

+sentinel

+mask

or the procedure call

T$MSB unit, end-action count,
core address, direction
sentinel, mask

The mask search backward operation functions
in the same manner as does the mask search
forward except that the tape is moved in a
backward direction, and comparison is made
between the sentinel and the last word of
each block. Note: This operation will
not work properly if the "direction" field
of the access word contains a 1 or a 3.

11 • Position Forward

A tape may be positioned forward a specified
number of blocks by the linkage

LMJ 11, TPF$

+end-action, unit

+block count

A position forward operation is completed
normally (status=O) by satisfying the block
count. Abnormal completion (status=2) occurs
by reaching a file mark (IVC, VIC, VIIIC) or
the end of tape warning. The final access word
returned by the tape check subroutine or end­
action is replaced by the number of blocks
remaining to be passed over at the time the
operation was terminated.

The position forward linkage may be generated
by the procedure call

T$PF unit, end-action
block count

4 26
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

12. Position Backward

A tape may be positioned backward a specified
number of blocks by the linkage

LMJ 11 , TPB$

+end-action, unit

+block count

A position backward operation is completed
normally (status=O} by satisfying the block
count. Abnormal completion (status=2) occurs
by reaching the physical beginning of tape,
or a file mark. The file access word returned
by the tape subroutine or end-action is
replaced by the number of blocks remaining
to be passed over when the operation was
terminated.

The position backward linkage may be generated
by the procedure call

T$PB unit, end-action
block action

13. Position to Start-of-File

A tape may be moved backwards past the
last file mark or to the load point, which­
ever comes first, by the linkage

LMJ 11 , TPS$

+end-action, unit

A stqtus code of 2 will never be generated.
The final access word is meaningless.

The position to start-of-file linkage may be
generated by the procedure call

T$PS unit, end-action

14. Position to End-of-File

A tape may be positioned forward past a file
mark by the linkage

LMJ 11, TPE$

+end-action, unit

A status code of 2 will never be generated.
The final access word is meaningless.

4 27
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

The position to end-of-file linkage may be
generated by the procedure call

T$PE unit, end-action

15. Contingency Write

UNISERVO IlIA units provide for a contingency
write operation. This operation is inserted
automatically by the tape package under certain
conditions or may be specified by the programmer
with the linkage

LMJ 11 , TCW$

+end-action, unit

or the procedure call

T$CW unit, end-action

The operation terminates by completing the
contingency write pattern on tape (status=O),
by attempting to write past the end of tape
warning (status=2) or by an unrecoverable
error (status=3).

A contingency write operation is automatically
performed prior to a write (TWR$) or write
tape mark (TEF$) provided that the previous
operation on that particular tape unit was
not any of the following: write (TWR$),
write tape mark (TEF$), rewind (TRW$),
rewind interlock (TRI$), or contingency write
(TCW$). This automatic insertion will handle
most of the situations in which a contingency
write is needed.

A call to TCW$ for IVC, VIC, or VIIIC units
will cause 4 inches of tape to be erased, in
a forward direction.

(3) Drum I/O: Normal Mode and Status Codes

(a) Drum Status: DCHK$

Associated with an operation being performed by the
package is a status code. It has the values

o Normal completion

In process

2 Abnormal completion

3 Unrecoverable error

4 28
PAGE:

UP-4058 UNIVAC 1108 EXEC II 4

35

Code

SECTION:

In case of an error interrupt, the package will
attempt to repeat the operation. If after 20
attempts the error interrupt still persists, a status
code of 3 will be set. An abnormal completion code
is returned under the following conditions:

On any of the operations, a nonexistent
drum address was specified by the user or was
reached in the course of the operation.

On a search-type operation, no match was found
by the drum synchronizer.

The user may query the status of the most recent drum
operation by means of the linkage

LMJ 11, DCHK$

+error/abnormal, in process

If the status is 0, the drum check routine will
return following the calling sequence. A return is
given to the address specified by "in process" for
status code 1, and to that speci fied for "error/abnormal"
for status 2 or 3. After any of these returns, the
arithmetic registers will be left as

Status code

A1 Final access word

A2 Drum status word

The final access word, if relevant, will contain an
indication as to how far the input or output opera­
tion proceeded before its termination. The drum
status word has the form

30 29 24 23

Status I Drum Address

"Code" indicates the nature of the interrupt causing
the termination. This field is useful to the pro­
grammer only for abnormal or error status. In the
case of abnormal completion, the possible octal values
of the code field are:

34 The operation reached a nonexistent drum
address

54 The operation began with a nonexistent drum
address

04 The end of a drum block (see below) was
reached without a match for the block
search or block search read operations.

29
pAGE:

o

UP-4058 UNIVAC 110B EXEC II
SECTION:

The "Status" field is repeated in the second six bits
of the drum status word.

The "Drum Address" field contains the low-order 23
bits of the word following the end-of-block word (see
below) for any drum operation which was terminated by
reaching the end of a drum block or the drum address
of the match for search or block search operations.
These meanings for the "Drum Address" field hold true
whether the completion was normal or abnormal.

The drum linkage may be generated by the procedure
call

D$CHK abnormal, in process

If the "abnormal" field is omitted, the MERR$ return
point will be assumed. If "in process" is omitted,
return is to $-1 causing the program to loop until drum
activity has terminated. If both fields are omitted,
the procedure name must be followed by a period, i.e.,

D$CHK

(b) The Normal Mode Operations

The drum operations are performed by subroutines
within the drum I/O package. The linkages have the
general form

LMJ 11 , Dxxx$

+end-action, loc drum adrs

+access word

and/or

+sentinel

4

The "end-action" field specifies the location of the user's
end-action subroutine or may be zero if none is desired.
Any drum operation begins with that drum location given by
the low-order 23 bits of the word addressed by "loc drum
adrs". For operations involving transfer between core and
drum, an access word is given in the calling sequence; for
search type operations a sentinel is given. Both are present
for a search read or a block search read operation.

These linkages may also be made by calls to library procedures
in the form

D$xxx loc drum adrs, end-action~count,
core adrs, directionDsentinel

30
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

The first of these three lists contains the location
of the drum address to be used and the location of
the end-action subroutine. If the end-action para­
meter is omitted, no end-action will occur. The
second bit specifies the access word using the
notation described in Section 4 B.1 .c. The third
list has a single expression which becomes the senti­
nel. Should an access word or a sentinel not be
required for a particular drum operation, the
corresponding list is omitted from the procedure
call. These procedure calls will generate three
or four words.

1. Drum Read

A simple drum read is produced by the linkage

LMJ 11 , DR$

+end-action, lac drum adrs

+access word

The operation is terminated by satisfying the
access word (status=O), encountering an invalid
drum address (status=2), or by an unrecoverable
error (status=3).

The drum read linkage may be generated by the
procedure call

D$BR loc drum adrs, end-action6count
core adrs, direction

2. Drum Block Read

A drum block consists of an area beginning with
a specified drum address and continuing until a
word of all one bits (called the end-of-block word)
has been passed. The block is considered to include
the end-of-block word. The word following an end­
of-block word may contain in its low-order 23 bits
another drum address which may be used for chaining.
It is given to the user in the drum status word of
any block operation terminated with status=O for a
block read, or block search read operation, or with
status=2 for a block search or block search read
operation.

A drum block may be reached by the linkage

LMJ 11 , DBR$

+end-action, lac drum adrs

+access word

The operation is terminated by satisfying the
access word or by reading the end-of-block word

4 31
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

(both have status=O, the drum status word con­
tains the chain address), encountering an invalid
drum address (status=2), or by an unrecoverable
error (status=3).

The drum block read linkage may be generated by
the procedure call

D$BR loc drum adrs, end-action~count
core adrs, direction

3. Drum Search

A drum search consists of comparing each word
on drum beginning with the specified drum
address until a user-supplied sentinel word is
found. A drum search is performed by the linkage

LMJ 11 , DS$

+end-action, loc drum adrs

+sentinel

The operation is terminated by a "find" (status=O,
drum status word contains the final address), by
encountering an invalid drum address (status=2),
or by an unrecoverable error (status=3).

The drum search linkage may be generated by the
procedure call

D$S loc drum adrs, end-action~sentinel

4. Drum Block Search

A block search behaves as a drum search except
that the search operation is prevented from
searching past an end-of-block word.

A block search is performed by the linkage

LMJ 11 , DBS$

+end-action, lac drum adrs

+sentinel

The operation is terminated by a "find" (status=O,
drum status word contains the find address), by
encountering an end-of-block (status=2, drum status
word contains the chain address), by encountering
an invalid address (status=2), or by an unrecoverable
error (status=3).

The drum block search linkage may be generated by
the prodecure call

D$BS lac drum adrs, end-action~sentinel

4 32
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

5. Drum Search Read

A search read operation consists of a drum search
operation followed by a read operation beginning
automatically with the find address.

A search read operation is performed by the
linkage

LMJ 11 , DSR$

+end-action, loc drum adrs

+access word

+sentinel

The search portion of the search read operation
may be terminated by a find (in which case the
control unit enters the read portion of the
operation without causing an interrupt), by
encountering an invalid address (status=2), or
by an unrecoverable error (status=3). The read
portion may also be terminat~d by encountering
an invalid address (status=2), by an unrecoverable
error (status=3), or by satisfaction of the access
word (status=O). The portion of the operation
which caused an abnormal or error termination can
be determined by comparing the initial and final
values of the access word.

The drum search read linkage may be generated by
the procedure call

D$SR loc drum adrs, end-action~count
core-adrs, direction6sentinel

6. Drum Block Search Read

A block search read consists of a block search
operation followed automatically by a block read
operation beginning with the find address. Thus
it may be considered as a search read operation
for which neither searching nor reading is
permitted to continue past an end-of-block word.

A block search read is performed by the linkage

LMJ 11 , DBSR$

+end-action, loc drum adrs

+access word

+sentinel

4 33
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

A block search read operation may be terminated
by satisfying the access word or encountering the
end-of-block word during the read portion
(status~O, drum status word contains the chain
address), by encountering an invalid address in
either portion (status~2), drum status word
contains the chain address), or by an unrecoverable
error in either portion (status=3).

The drum block search read linkage may be generated
by the procedure call

D$BSR

7. Drum Write

loc drum adrs, end-action6count,
core adrs, direction6sentinel

A drum write is produced by linkage

LMJ 11, DW$

+end-action, loc drum adrs

+access word

A drum write may be terminated by satisfying
the access word (status=O), by encountering an
invalid drum address (status=2), or by an
unrecoverable error (status=3).

The drum write linkage may be produced by the
linkage

D$W loc drum adrs, end-action6count,
core adrs, direction

8. Drum End-Action

End-action is fully described in Section 4 B.1 .c.
In the particular case of drum end-action, the
following quantities are available in registers
when the end-action code is entered:

B11 Return point

Ayj Status

A1 Final access word

A2 Drum status word

A3 Location of packet supplied to the
packet mode operation (see Section
4 B.1.b.4.)

4 34
PAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

9. Unrecoverable Errors

An error signal from the drum control unit or the
drum channel synchronizer which persists after 20
attempts to perform the requested operation will
result in error status. In some cases it may be
possible to circumvent the error and obtain useful
data from the drum. Listed here are codes
returned in the drum status word and their
abbreviated meanings.

The codes 14, 20, 30, 60, 70, and 74 (octal)
represent various failures within the channel
synchronizer, the control unit, or the drum
itself, from which no recovery is possible.

The code 06 represents a parity error in attempting
to read the chain address and may thus be treated
as a normal reply if the chain address is not
required.

The code 07 represents a parity error on reading
in the case of a read operation or the read portion
of a search read operation.

The code 64 represents a parity error for a block
read, search, block search, block search read, or
the search portion of a search read operation.
In this case the drum status word contains the
drum address of the word which could not be
satisfactorily read.

The code 50 indicates that an incorrect signal
was received by the drum subsystem from the
computer (illegal function). It may result
from an error in the hardware, from a seriously
incorrect calling sequence, when in the packet­
mode, or from the drum package itself being
overstored.

(4) Drum I/O: ~ Packet Mode (DPKT$)

When the normal mode linkages described above are used,
the drum is treated as a single unit in that the drum I/O
package will wait until the previous operation is over
before initiating a new one. Thus the queuing abilities
of the dispatcher are lost if multiple drum files are
manipulated by normal mode linkages. To maintain
efficient I/O dispatching when multiple drum files are
employed, the packet mode may be used. Packet mode
operations will in no way interfere with concurrent
operations in the normal mode.

4 35
PAGE:

UP-4058 UNIVAC 1108 EXEC II

35

I
1

35

1
35

SECTION:

The packet is a two- or three-word area with the format

Access Word

XX
30

1

29
Status

24

1

23
Drum Address

Sentioo I

The "Access Word" is that access word required for the
operation. It is required even though the operation is a
search or block search. The second word contains a six
bit field used by the package for temporary storage. The
following six bit field will contain the status of the
operation defined by the linkage and packet. The initial
contents of these first 12 bits are of no consequence
when an operation is begun. The low-order part of the
second word contains the drum address to be used in the
operation. Tne third word is a sentinel used for search
type operatio~s. It may be omitted if no searching is
being done.

All of the drum operations are available in the packet
mode through the linkage

LMJ 11, DPKT$

+end-action, function

where "function" is the symbol representing the entry to
the subroutine which is to perfrom the desired operation
in the normal mode. The address of the packet must be
placed in A¢ before performing packet mode operations.
For example, the linkage

LMJ 11 , DPKT$

+0,. DBR$

will perform a block read operation on the packet whose
address is in A¢

This operation may also be generated by the procedure call

D$PKT end-action, function

The DCHK$ subroutine does not apply to the packet mode,
,so if the final access word and drum status word are
required, they must be recovered through end-action coding,
as described in Section 4 B.1.c. If desired, the standard
packet .. erid-action'routine DPEA$ may be used to store the
final access wOFd and drum status word into the first two
words of the pa~ket.

4 36
PAGE:

0

1

01

01

UP-4058 UNIVAC 1108 EXEC II 4
SECTION:

The verification routines described in Section 4 B.1 .c. do not
disturb the contents of register A¢ and may be used with the
packet mode.

An entry may be made to the drum I/O package from end-action
coding in the packet mode. Symbionts may also use the drum
r/o package, but only in the packet mode.

Any calling sequence to the drum I/O package may be altered
as soon as return is made to the user's program. When
using the packet mode, however, the packet itself may not
be altered until the operation is complete (that is, when
the status field is no longer one).

(5) Block Buffering Package

(a) General Description

The block buffering package is designed as an efficient
and general means of communication between core and
magnetic tape or drum. A queued buffering scheme is
employed which provides any degree of look-ahead that
the user deems appropriate and allows buffers to be
shared among several files. The buffer package works
through the tape and drum input/output packages
described earlier in this section.

Communication between the buffer package and the user
is accomplished by means of a file description table
(see Appendix D 5.). This file description table
is a short storage area provided by the user, part
of which will be used by the package for storage of
addresses, flags, and counters. It contains all the
data necessary for manipulation of the file. The
location of the file description table serves as the
file-name.

Each file is also associated with a core buffer pool
which may be shared by other files. The name of the
buffer pool for this file is included in the file
description area. The use of the buffers in the pool
is handled automatically by the package.

The block buffering package is used by the item
buffering package (see part 6 of this section).
The item buffering package superimposes item advance
routines on the package described here. For many
users, then, this description is mainly of academic
interest since references to it ,in their programs
will be made only indirectly through the higher
level item buffering packages.

37
PAGE:

UP-4058 UNIVAC 1108 EXEC II 4
SECTION:

(b) Devices

The I/O device routines connected with the file are
stipulated in the file description area. The file can
be magnetic tape, continuous drum, or random drum.

The continuous drum file is analogous to a tape file,
in that a contiguous area of drum is used. The random
drum file does its operations on blocks from a
previously defined drum area. The name of the drum
block pool for this file, which may be shared by
other files, is included in the file description area.
All blocks written from a particular file are linked
together, in order that they may be referenced at a
later time. If the user has no further need for a
particular block of information after it has been
read by the package, it may be released to the drum
block pool. Thus, using random drum files, a file
may be read from drum, processed block by block; and
the altered file written back, using no more drum
space than is required to store the file once.
Similarly, several files may be merged or a single
file broken into several (or both simultaneously)
without requiring more space than the total amount
of information will occupy.

The file treated by the block buffering package may
contain variable-length blocks for magnetic tape
operation. However, drum files always employ fixed­
length blocks. The output routine will add an
additional word to the beginning and another to the
end of the drum block. These words are not included
in the area the user is to fill when writing, nor
are they included upon indication to the user of the
location of his input.

Link to Next

Var iable Length

Information

Area

Tape Block

Fixed Length

Information

Area

Continuous Drum
Block

Drum Block

Fixed Length

Information

Area

Link to Previous
Drum Block

Random Drum
Block

38
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

(c) Sentinels

The block buffering package provides a generalized
method of utilizing sentinel blocks. To avoid
dictating to the user the form of his sentinel blocks,
he may specify them to the package. This specification
is done by supplying two words in the file description
area. The first of these is a command which is
executed DY the package. This command must load
register 12 with some quantity. The package then
compares register 12 with the second of the two
words. If equality obtains, it is assumed that a
sentinel block has been encountered and the appropriate
action is taken. The user should be cautioned that
the execution of the command occurs during interrupt
coding. If any but the simple methods described
here are to be used, all rules for interrupt coding,
as described in Section 3 B.1 .c. must be observed.
When a sentinel block is read, an abnormal return
is made from the calling sequence.

Sentinels may be dispensed with altogether, leaving
end-of-file detection to the sensing of the end of
recorded information for magnetic tape files and the
reaching of a certain drum address for continuous or
random drum files. The first attempt to obtain a
nonexistent block of input will result in an
abnormal return.

(d) Input Operations

Four operations are provided for the treatment of
input files - open input forward, open input backward,
block read, and close input. Each of the linkages
requires that register 15 (A3) be preset with the
name of the file in the high-order half of the word.
For open operations, the low-order half is also used.
Procedures associated with the file operations provide
the necessary LA command to the load register 15.

1. Open Input File Forward

2. Open Input File Backward

The calling sequences

=-'MJ 11, BOPNF$

and

~MJ 11, BOPNB$

are used to open a file for input in the forward
or backward direction, respectively. In either
case, register 15 is assumed to be loaded with

release, file name

in which "file name" is the address of the file
description table associated with the file.

4 39
PAGE:

UP-40S8 UNIVAC 1108 EXEC II

3.

SECTION:

The "release" field is meaningful for random drum
files only and, if negative, indicates that a drum
block is to be returned to the drum block pool
after the information has been brought into a core
buffer.

These operations cause the package to begin
reading ahead of a number of blocks specified
in the file description table by the look-ahead
factor. The number of blocks actually in core
at anyone time will depend on buffer availability
and the occurrence of any lockout conditions, as
well as the look-ahead factor.

A read lockout condition occurs at any time that
a sentinel, end-of~file, or data error read is
encountered. Any of these conditions will cause
suspension of the read ahead facility. The read
lockout condition remains (i.e., read ahead is not
reinstated) until all currently read blocks in
the file have been requested and some subsequent
request is made which indicates to the package
that the next block is desired.

The open block calling sequences may be generated
by the procedure calls

B$OPNF file name
and

B$OPNB file name

If the user is employing random drum storage and
the blocks to be read from the file are to be
released to the block pool, then a second para­
meter is coded as "REL". Thus procedure
calls become

B$OPNF file name, "REL"
and

B$OPNB file name, "REL"

Block Read

The calling sequence

LMJ 11, BREAD$

causes the length and starting address of the
next block from the file to be recorded in the
fourth word of the file description table. This
word is of the form

4

bitsf ... _5 ________ L_e_ng_t_h ________ l_S"'-ll_7 ______ s_ta_r_ti_ng_A_d_dr_e_ss _______ O 1

40
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

The "length" for tape files will be that of the
tape block actually read. If the block was
actually longer than the maximum expressed in
word 8 of the file description table, the
remainder of the block will be lost. The
"starting address" will always be the first

4

location of the block as it resides in a core buffer,
regardless of the direction in which the file is
being read.

A block may be read from a file by the procedure
call

B$READ file name

By adding a second parameter "abnorm", i.e.

B$READ file name, abnorm

the procedure will generate an NOP command
following the calling sequence. This mqy be used
to specify individual abnormal returns for each
call' on th~ package. To use this facility, a
suitable entry must be made in the file description
area as discussed in paragraph h of this section.

4. Close Input File

The calling sequence

LMJ' 11 , BCLSR$

causes all currently reserved buffers for this
file to be released. In addition, it sets the
file to a closed status. No rewind occurs for
tape files. The close input calling sequence
may be generated by the procedure call

B$CLSR file name

(e) Outout Operations

Three operations are provided for the treatment of
output files - open output, block write, and close
output. As for the input operations, each of the
linkages requires that register 15 be preset with the
file-name. This presetting is generated by the
corresponding procedure calls.

1. Open Output File

The calling sequence

LMJ 11, BOPNW$

conditions the package to receive blocks of
information for this file· and obtains a buffer
for the user. The location an~ length of the
available buffer are placed in the fourth word

41
PAGE:

UP-4058 UNIVAC 110B EXEC II
SECTION:

of the file description table before return is
made. The linkage is generated by the procedure
call

B$OPNW file name

2. Block Write

The calling sequence

LMJ 11 , BWRIT$

transmits a loaded buffer to the output device
specified in the file description table. A queue
of blocks waiting for the device is maintained.
Whenever the corresponding channel becomes free,
the next block waiting is written.

For magnetic tape files the length of the block
written will be taken from the left half of the
fourth word in the file description area. This
field may be altered by the user if a block of
less than the maximum size is to be written.
Magnetic drum files, whether continuous or random,
will always be written with the maximum block
size specified in the eighth word of the file
description area.

Following return from the BWRIT$ subroutine, word
4 will contain the location and length of a new
buffer. Information may be stored into the
buffer immediately.

A block may be written to a file by means of the
procedure call

B$WRIT file name

3. Close Output File

When all blocks have been written to an output
file, it must be closed. This is accomplished
by the linkage

LMJ 11, BCLSW$

or the procedure call

B$CLSW file name

The block buffering package releases the last
buffer obtained for the user, delays until all
blocks which were waiting for the device have
written out, and sets the file to closed status.
No rewind occurs for tape files.

4 42
PAGE:

UP-40S8 UNIVAC 1108 EXEC II

(f) Special Returns

The file description area contains three addresses
which serve as transfer points when certain
contingencies occur with file operations. These
addresses are "abnormal", "device error", and
"calling sequence error".

1. Abnormal

The user will obtain an abnormal return if a
sentinel or end of recorded information occurs
while reading or if output fills the medium
while writing.

On an abnormal return:

SECTION:

Register 11 is loaded with user's entry point.
Register 12 is loaded with:

1 =Sentinel
2=End of recorded

information
3=End of tape
4=End of drum area

Register 15 is loaded with the name of the
file.

If the file is open for input (forward or
backward) and an abnormal return occurs because
of a sentinel block, the fourth word of the file
description area locates the sentinel block. If
another BREAD$ linkage occurs, input will
continue past the sentinel and the look-ahead
facility will be reinstated.

If a tape or continuous drum file is being
written, an abnormal return results when space
remains on the device for two more blocks besides
those waiting in the queue to be written out.

2. Device Error

The user will obtain a device error exit any
time a block of data cannot be read or written
properly.

On a device error return:

Register 11 is loaded with user's entry point.
Register 12 is loaded with:

1=Unrecoverable read
error

2=Unrecoverable write
error

Register 15 is loaded with the name of the file.

4 43
PAGE:

UP-4058 UNIVAC 1108 EXEC II

(g)

SECTION:

3. Calling Sequence Error

There are two types of calling sequence errors.
The first occurs when one attempts an operation
on a file which is in the wrong status, e.g.,
opening a file already open, writing a file
opened for reading, incompatible buffer and
block size in the case of random drum buffer
size and drum block size, or insufficient area
to write when file is opened. The second pertains
to random drum. If a drum block is released which
does not belong to the drum block pool, a calling
sequence error will result.

On a calling sequence error return:

Register 11 is loaded with user's entry point.
Register 12 is loaded with:

1=File mode error
2=Improper drum

release
Register 15 is loaded with the name of the file.

Buffer Pools and Drum Block Pools

A buffer pool is a collection of areas of core
storage which are available to be used as input/output
areas by one or more files. When a buffer is being
used by a file, it is not currently a part of the
pool. The block buffering package removes a buffer
from the pool when an input/output area is needed
and returns it to the pool when there is no longer
any need for the information.

A single word is used to control a buffer pool.
Its address serves as the name of the pool and is
referenced from the file description ar~a. This
word has the form

Size of Buffer in
the Pool

18

Location of First
Avai lable Buffer

18

The right half of the word refe~ences the first word
of the first available buffer. The right half of the
first word of this buffer references in turn the
first word of the next available buffer, and so forth.
The last buffer in the chain has a zero for its
"pointer". Following each "pointer" word is a buffer
I/O access word and the 9uffer. Thus "buffer size"
includes two control words in addition to the I/O
block size.

4 44
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

1. BPOOL$

The subroutine BPOOL$ may be used to convert an
area of storage into a buffer pool. The linkage
to this subroutine is:

LMJ 11, BPOOL$

+buffer size, name of pool

+length, address

"name of pool" is the address of the buffer
pool content;

"buffer size" is the number of words each
buffer is to contain

"address" is the starting address of the core
area; and

"length" is the length of this core area.

The linkage is generated by the procedure call

B$POOL

2. BJOIN$'

name of pool, buffer size address,
length

A second subroutine is available to attach a
core area to an already existing buffer pool. It
has the linkage

LMJ 11 , BJOIN$

+0, name of pool

+length, address

and the corresponding procedure call

B$JOIN name of pool address, length

In either of the subroutines BPOOL$ and BJOIN$,
as many buffer areas will be treated as the
available core area can hold.

The procedure call

name of pool B$GPUL number of buffers,
buffer size

will generate a buffer pool control word and create
at assembly time a pool of "number of buffers"
areas each consisting of "buffer size" words. A
buffer pool created in this manner need not be
initialized by using BPOOL$.

4 45
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

A drum block pool is a collection of areas of
drum storage which are used to hold files written
in the "random drum" mode. Several files may
share a drum block pool. The drum block pool is
controlled by a core table which describes the
location of entry drum blocks. The address of
the first word of this table serves as the name
of the drum block pool and is referenced from
the file description area of those files using
it. The table requires 2 + n//32 words, where
"n" is the number of blocks in the block pool.
It has the form

4

bits ~3~5 ____________________ ~2~4~2~3 __ --,O

I 0 I Ini lial O<UITI Add,e" I
bits ~3~5 __________________________________ ~1~8~17~ ________________________________ ~O

a

35

Drum Block Size
Number of Cells

Con tai ni ng Usage Bits

Usage Bits for Blocks

Usage Bits for Blocks

The "Initial Drum Address" specifies the starting
address of the drum area used for this pool; the
"Drum Block Size" is the number of words in each
of the drum blocks; and the "Usage Bits" signal
(from right to left) indicates which of 32
consecutive drum blocks is in use. A one bit
denotes a free block and a zero bit a block
currently not available.

3. BLOCK$

A subroutine, BLOCK$, is provided which will
initialize a drum block pool. At the time of
initialization, no information should be contained
in the drum block or it will be lost. The
initialization is performed by the linkage

LMJ 11, BLOCK$

+drum block size, name of block pool

+initial drum address

+length of drum area

a

46
PAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

This linkage is generated by the procedure call

B$LOCK name-of-pool, drum-blk-size,
initial-drum-addrs,length-of-drum
area

As many drum blocks will be marked as free as the
"length of drum area" will allow.

4. B$GBLK

The procedure call

name-of-block-pool B$GBLK number-of-blks,
blk-size, c

will generate a drum block pool table in core
storage and will reserve sufficient drum space
using control counter "c" to hold the pool.
(Reservation is for an independent drum area
(group number 7). See Section 3 B.5., INFO
statement).

The several files which share a buffer pool or a
drum block pool need not all work with the same
block size. (When using a magnetic tape "block
size" should be construed to mean "maximum block
size"). The core area in a buffer pool must be
at least two words longer than the block size of
any magnetic tape of continuous drum file using
the pool and at least four words longer than the
block size of any random drum file. The drum
areas in a drum block pool must be at least two
words longer than the block size of random drum
files using the drum block pool. A full drum
block will be used each time a block is written
to a file regardless of any difference in sizes.

(h) The File Description Area; B$FILE

A procedure called B$FILE is available for generating
the file description area. This procedure is given
two to four lists of parameters which describe the
file to be used. The first parameter of each list
is a title word which identifies the list and is
enclosed by single quote marks. The order of the
lists is of no consequence.

1. Buffer Description

A list titled 'BUFFER' describes the buffering.
It is of the form

'BUFFER', buffer-pool-name, blk-size,
look-ahead factor

The parameter "buffer-pool-name" is the address
of the buffer pool to be used. The "blk-size"
specifies the (maximum number of words per block

4 47
PAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

and the "look-ahead factor" determines the number
of buffers to be read ahead for input files. If
the look-ahead factor is omitted, demand buffering
will be used for input. It is not used at all for
output files.

2. Device Description

The device to be used by the file is described by
one of the nine possible lists of differing titles.
For magnetic tape files this list takes one of
the forms

'TAPEI', uni t
'TAPEO', unit, length
'TAPEIO', unit, length

depending on whether the file is to be used for
input only, for output only, or for both input
and output. The parameter "unit" specifies the
logical unit designation of the servo to be used.
The "length" specifies the amount of usable tape
in feet on the reel to be used. This parameter
must always be present if the file is to be used
for output, even though the user intends to pick
a value up from a label block and store it into
the generated file description area. Note that
the field recorded in the file description area
measures the amount of usable tape in words.
The procedure performs the necessary conversion.

Continuous drum files are indicated by one of
the lists

'RDRMI', block pool name
'RDRMO', block pool name
'RDRMIO', block pool name

where "block pool name" is the name of the drum
block pool to be used by the file. If a file
is to be read without being written from that
particular file description area, the user must
store the initial and final drum addresses into
the pool himself.

3. Sentinel Description

A list entitled 'SENTL' is used to describe the
sentinels to be looked for when reading a file.
(The user must write his own sentinel blocks for
output files). The sentinel description list
has the form

'SENTL', (command), sentinel word

where "command" is the command to be executed by
the package which is to load register 12, and

4 48
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

"sentinel word" is the value to which register 12
will be compared in order to detect a sentinel.
The sentinel list may be omitted entirely. The
result is that the check for a sentinel will
always fail.

4. Special Returns

The user may optionally supply a list of the form

'RETURN', abnormal, device error, calling
5equence error

for the specification of the special returns.
The parameters are the addresses to which a jump
occurs when the contingencies discussed above
occur. By encoding the abnormal return as

(J *1, 11)

and writing the instruction

NOP address

following each call on BREAD$ or BWRIT$ which
might produce an abnormal return, the user can
effect a separate abnormal return for each call
he makes. Library routines are provided for the
treatment of device and calling sequence errors.
These routines are called BDVER$ and BCSER$,
respectively. They will produce a message
identifying the file and particular reference to
the call which produced the error, as appropriate,
and jump to MERR$. Omitted parameters will
automatically be supplied by the procedure. If
"abnormal" is omitted, it will be filled in as
(J *1, 11). Device and call ing sequence errors
are filled in as BDVER$ and BCSER$. If the
'RETURN' list is omitted entirely, all three
substitutions will occur.

Suppose it is desired to write a tape file of
400 word blocks on unit "Q" using the block
buffering package. Buffer pool POOL is to be
used and no abnormal returns will occur. The
file d~scription area may be generated by the
procedure call

B$FILE 'BUFFER', POOL, 400 'TAPEO',
, 'Q', 600

Suppose now that a random drum file of 256 word
blocks is to be used for both input and output.
The buffer pool is still POOL and the drum block
pool is called BLOCKS. When reading, three
advance blocks are to be made available. A
sentinel should consist of a word of all periods

4 49
pAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

appearing in the third word of a block. End-of-file
(abnormal) processing occurs at EOF. In this case
the file description area would be generated by the
procedure call

B$FILE 'SENTL', (L 1 2,1 ,1 2) , , •••••• '

'RDRMIO', BLOCKS 'BUFFER',
POOL,256,3 ; 'RETURN' ,EOF

(i) Format of the File Description Area

For those who prefer to create their own areas, the
precise format of the file description table and the
purpose of each of its fields is explained in
Appendix D 5. Those fields enclosed in parentheses
are filled in by the package itself and are normally
not of concern to the user.

(6) Label and Item Package

(a) General Description

The label and item handling routines provide an
efficient means of treating multireel data files as

4

well as multifile reels for tape and for drum. This
package will initiate or close input or output files,
identify or check labels, write or test for end-of-file
or end-of-reel sentinels, or specify a bypass of unneeded
data and read or write items. This routine will write
LION-compatible tapes and will read LION-produced tapes.

The labeling and item routines make use of the block
buffering package. The communication region is the
file description area plus seven additional words,
illustrated in Appendix D 6.a. Each of the
linkages requires that register 15 (A3) contain the
name of the file in the high-order half of the word.

The length of a label block, a bypass sentinel, and
the maximum length of a data block is determined by
the Block Size as found in the file description area.
A Block Size of less than 240 words produces label
and bypass sentinels of 120 words. Label blocks of
120 words may only overwrite the label block of the
first file or the end-of-file block for the last file
on tape. A block of 240 words or more will
produce label and bypass sentinels of 240 words which
may overwrite any sentinel. End-of-file and end-of-reel
sentinels are always of a fixed 50 word length for tape.

The label routine writes a label block as the first
block on each reel of tape and at the beginning of
each reel of a multireel file. In the case of
multireel files, an end-of-reel sentinel is recorded
at the end of each tape.

50
PAGE:

UP-4058 UNIVAC 1108 EXEC II

Data blocks are written or read through the item
handling routines as either variable-length or
fixed-length items as determined by the IS para-

SECTION:

meter in the file description area. The package
maintains control of output items between the time
they are received by the object program until the
time they are written on tape or drum. Input items
are held in core buffer areas until requested by the
object program. When the last item in a core buffer
has been received by the object program that buffer
is released to the buffer pool. The minimum length
data block that may be written on tape is 120 words.
There are no minimum restrictions for writing drum
files. The updating of either the amount of usable
tape or the amount of available drum area is performed
automatically by the package.

(b) There are seven operations provided for the treatment
of output files - open output, extend output, locate
item, write item, write bypass sentinel, close file
and close reel. Each of the linkages requires that
register 15 (A3) be present with the file name.

The file description area provides an end-of-reel
exit (EORW) for output tapes. This exit is taken
whenever the number of remaining words on tape is
less than the Buffer Size. If this exit is set to
zero, the following standard end-of-reel procedure
is followed:

An end-of-reel sentinel is written.
The tape is rewound with interlock.
An alternate tape is checked and a label block
is written.
Control is returned to object program.

When the end-of-reel exit is taken, it is assumed
that the object program will make a call to the close
reel routine, ICREW$. The end-of-reel exit is given
before the last item has been written. The user must
therefore return control to the package. The return
point is provided in X11.

1. Open Output File

The linkage

LMJ 11, IOWT$

opens the file whose name is contained in the right
half word of register 15 (A3) and writes a label
block. Before a label is to be written on tape,

4

the tape is checked to determine if it can be over­
written. If it cannot - a label error exit is given.
It is the responsibility of the object program to
insure that the tape is positioned properly.

51
PAGE:

UP-4058

bi ts

UNIVAC 1108 EXEC II
SECTION:

Any error detected in positioning will result
in a label exit error. The linkage is generated
by the procedure call

I$OWT file name

The image for the label block is specified by
the parameters: NL, LOCL, NO, LOCF, found in the
file description area. The user supplies the reel
number as the high-order half of the second word
in the file label image area. If the reel number
is initially zero, it will be set to one. In any
event the reel number will be incremented after
the file label image is transferred to the label
block. The date of the recording is placed in
the label image by the package. The format of a
label may be seen in Appendix D 6.b.

If the file label image location (LOCL) is equal
to zero, the package interprets this to mean no
labeling is desired and opens the file at the
item level without writing any label block.

2. Extend Output

The linkage

LMJ 11, IXWT$

allows the object program to continue writing
on a previously closed file. The block preceding
the tape position is checked for a label or an
end-of-file sentinel. If it is neither, a label
error exit will be given. If the data block to
be written is less than 240 words and the
sentinel is a label block, a label error exit
will result. The file may be extended by the
pro'cedure call

I$XWT file name

3. Locate Output Item

The linkage

LMJ 11, ILOCW$

locates a buffer area large enough to hold the
given item. If the file is expecting variable­
size items, the left half of A~ is assumed to
contain the size of the item.

Item Size Not Used

4 52
PAGE:

UP-40S8

bits

UNIVAC 1108 EXEC II
SECTION:

Upon return to the user the left half of A¢
contains the size of the item, and the right
half contains the buffer location where the item
is to be placed. The format of A¢ is:

18 17

Item Si ze
Location Where Object

Program is to Place Item

The linkage may be generated by the procedure
call

I$LOCW file name, item size

The "item size" is used only when writing
variable-length items.

4. Write Output Item

The linkage

LMJ 11, IWRIT$

locates a buffer area large enough to contain
the item to be written and then moves the item
from the user's area to that buffer area. It is
assumed that A¢ contains the size and location
of the item desired to output. The left half of
A¢ (size) is needed for the variable mode. The
right half is always assumed to contain the loca­
tion of the item.

The format of A¢ is:

4

°

bi ts 1 ... 3_5 ________ 1 t e_m_S_i z_e _______

18

.......... ll_7 ______ Lo_c_a_t_io_n _O_f _It_e_m ______ O ... 1

The linkage is generated by the procedure call

I$WRIT file name, location of item,
item size

The "item size" is used only when writing
variable-length items.

5. Write Bypass Sentinel

The bypass sentinel has meaning only in
connection with tapes and is used to denote
the beginning and ending of an area that is to
be disregarded when reading.

53
PAGE:

UP-4058 UNIVAC 110B EXEC II
SECTION:

The linkage

LMJ 11, IBYPS$

causes any unrecorded items to be written and
follows the last data block with a bypass
sentinel. It is the user's responsibility to
write the data between bypass sentinels and
update the available tape count. This may be
most easily accomplished by using either the
block buffering or the item routines, since the
updating is done automatically. After having
written the intervening information the user
can either initiate the file for more items by
the linkage

LMJ 11, IBYPS$

or he may close the file completely by the
linkage

LMJ 11, ICLW$

The file remains open at block level, however.
The format of a bypass sentinel is shown in
Appendix D. 6. c. A bypass sentinel may be
written by the procedure call

I$BYPS file name

6. Close File

The close file terminates the writing of an
output file and is meaningful for both drum and
tape files.

The linkage

LMJ 11, ICLW$

causes any unrecorded items to be written and an
end-of-file sentinel to be recorded following the
last data block. If the device is tape, the REW
option as found in the file description area is
taken. This option indicates whether the tape
should not be rewound, should be rewound, or should
be rewound with interlock. The format of the
end-of-file sentinel is shown in Appendix D. 6. d.
The file may be closed by the procedure call

I$CLW file name

7. Close Reel

The close reel terminates writing on a tape reel
and initiates action on an alternate reel. This
call is meaningful only for multireel tape files.

4 54
PAGE:

UP-4058 UNIVAC 1108 EXEC II

The close reel linkage

LMJ 11, ICREW$

does the following:

Writes any unrecorded items;
Writes an end-of-reel sentinel;
Takes the tape rewind option (REW);

SECTION:

Checks an alternate tape and writes a label
block; and
Returns control to the object program.

The format of the end-of-reel sentinel is shown
in Appendix D. 6. c. A reel may be closed by
the procedure call

I$CREW file name

(c) Six operations are provided for the treatment of
input files--open input forward, open input backward,
locate item, read item, close reel, close file.

The item handlers locate or read items until a
sentinel block is discovered. For an end-of-file
or label, an end-of-file exit is given. However,
when a bypass sentinel is encountered, all information
between it and the next sentinel is disregarded. If
the next sentinel is another bypass sentinel the routine
continues. Whenever an end-of-reel sentinel is
encountered and if the end-of-reel exit (EORR) is
zero in the file description area, the routine per­
forms the following standard reel ending procedure:

Rewind current tape without interlock;
Read and check the alternate tape; and
Obtain the next item and return control to object
program.

When the user provides an end-of-reel exit the
routine transfers control to this location. B11
contains the return point to the proper location in
the Label Package. It is the responsibility of the
user end-of-reel routine to call ICRER$ before
returning to the Label Package. After the label has
been checked, ICRER$ returns with the location and
number of free words in A¢. The close reel routine
uses the REW option as found in the file description
area. Otherwise, it is essentially the same as the
standard reel ending procedure.

4 55
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION;

1. Open File Forwards

The linkage

LMJ 11, IOPNF$

opens the file whose name is contained in the
high-order half word of register 15 (A3). It is
the responsibility of the object program to
ensure that the input tape is positioned at the
appropriate label block. The file label is
compared to the label image provided by the
object program. The location and length is
controlled by the parameters provided in the
file description area. Checking of the date may
be omitted by setting the date word in the image
to zero. All checking of labels may be omitted
by setting the file label images location (LOCL)
to zero. In this case the file is opened at the
item level expecting the first block read to be
a data block.

The following console message will be type out
when a label error is detected on an input file.

LABEL ERROR ffffff UNIT n (NO OR GO)

ffffff represents the file name.

n represents the logical unit used to
process the file.

A GO response to this message will cause the
label error to be ignored, and file processing
continues.

A NO response re-interrogates Unit n for another
label. The tape should be changed before the
NO response is given. If the newly mounted tape
also contains a label error, the above message
will again by typed out.

The input buffer must be equal to or greater than
the block length as found in the label block.
Any discrepancy in the label checking or in the
position of the tape results in a label error
exit.

2. Open File Backwards

The linkage

LMJ 11, IOPNB$

opens the file to read items backwards. The
label check procedure is omitted for backward
reading. However, the object program must
ensure that the tape is positioned at a label
block or at an end-of-file sentinel.

4 56
PAGE:

UP-4058 UNIVAC 1108 EXEC II

bits 35

SECTION:

The linkage is generated by the procedure call

I$OPNB file name

3. Locate Input Item

The linkage

LMJ 11, ILCOR$

locates the next item in the buffer area. The
location and size of the input item is presented
to the object programs in control register 12 (A¢).
The format of A¢ is:

18 17

4

o
----------------------------------~~--------------------------------~

bits 35

Number of Words in Item Location 01 Item

The item may be located by the procedure call

ISLOCR file name

4. Read Input Item

The linkage

LMJ 11, IREAD$

is used to locate the next item and then move
this item into the user's area. It is assumed
that the object program presents to the routine
in register 12 (A¢) the location where the item
is to be transferred. The format of A¢ is:

18 17 ° ~--------------------------------~---------------------------------,
(Not Used)

Location Where Item
is to be Moved

In turn the location and size of the input item
is presented to the object program in A¢. The
format of A¢ is:

bits .:,3::,.5 _____________________________ ---.,;1:.,:8-r-:1:.:.7 _____________________________ --,O

Number of Words in Item
Location Where Item

is to be Moved

The item may be read by the procedure call

I$READ file name, location

57
PAGE:

UP-40S8 UNIVAC 1108 EXEC II

5. Close File

The linkage

LMJ 11, ICLR$

terminates all reading of the file as defined
in register 15 (A3). If the device is tape,
the REW option will be used.

The file may be closed by the procedure call

I$CLR file name

6. Close Reel

This routine has meaning only for multireel
files. The linkage

LMJ 11, ICRER$

SECTION:

terminates all action on the present tape unit
as defined by register 15 and initializes an
alternate tape for subsequent action. The
standard reel ending procedure is used in
conjunction with the REW option.

The reel may be closed by the procedure call

I$CRER file name

(d) Find File

The linkage

LMJ 11, IFIND$

searches a multifile reel for the file defined in the
file description table and positions the tape past
the label block of the specified file.

If an end-of-file sentinel is encountered before the
file is found, the tape is rewound and searched again.
If the file is not found on the second pass, a label
error exit is given. A file may be found by the
procedure call

I$FIND file name

c. Direct r/o

(1) General Information

Under the EXEC II system, card and print I/O are normally
controlled by symbiont-cooperative systems rather than
by the worker program (see Section 4 B.1 .a.). For
magnetic tape and drum, special packages are provided
which permit somewhat more control by the worker program
(see Sec t ion 4 3. 1 • b.) • For pap e r tap e, the wo r k e r

4 58
PAGE:

UP-4058 UNIVAC 1108 EXEC II

program may use either the paper tape package or the
symbionts which use magnetic tape as an intermediate
storage medium (see Section 4 B.1 .e.).

SECTION:

The relatively direct communication between the worker
program and the peripheral device when an r/o package is

4

used places additional responsibility on the worker program.
An understanding of access words, end-action and verification
routines is essential to proper use of the r/o packages;
these are described in part 2 of this section.

A card r/o package called the segregated card r/o package
is provided in the standard library capable of performing
any of the functions available on a card channel. This
package provides greater flexibility that the symbiont­
cooperative system mentioned above. However, the
responsibility imposed on the user of this package is
greater than on the user of any of the other r/o packages
since the standard routines do not protect themselves
against interference from the segregated card r/o package.
The user is cautioned against using this package
simultaneously with card symbionts; it is suggested that
the operator be instructed to suspend or lockout the
card symbionts when the segregated card r/o package is
to be used. (A stop prior to execution of the job during
which this is to be done will be necessary. This may
be done by use of the MSG card described in Section 3 B.2.,
or by operator key-in). Due to the unusual nature of the
segregated cardr/O package, it is described in part 3
of this section.

As was mentioned in Section 2 A., the resident routine,
called the dispatcher, is at the heart of all communications
between the central computer and peripheral channels. All
system subroutines (I/O packages included) make the
required calls on the dispatcher; for this reason the
user will rarely, if ever, have reason to link directly
to the dispatcher. A discussion of the dispatcher for
those rare instances, and for clarification of the action
of the system routines, is included as part 4 of this
section.

(2) Package Requirements

(a) Access Words

bits 35 34 33

Those linkages with r/o packages which call for
transmission of data between core and a peripheral
device require an access word. The hardware-defined
format of an access word is:

18 17 16 15

COUNT CORE ADDRESS

59
PAGE:

o

UP-4058 UNIVAC 1108 EXEC II
SECTION:

The field "core address" contains the address of the
core location at which data transmission is to begin;
"count" is the number of words (characters for the
console channel) to be transmitted; and "D" is the
direction indicator. The direction indicator specifies
whether the "core address" field is to be incremented,
decremented, or left unchanged as successive words

4

are transmitted. The "count" field is always decremented,
and transmission stops when it becomes zero. Values for
the "D" field are (binary notation)

00 increment

10 decrement

01 or 11 leave unchanged

The I/O packages in certain cases return to the
worker program a word called the "final" access word.
It represents the original access word after data
transmission has stopped. If incrementing, the
final access word contains a "core address" one
greater than the address of the last word trans­
mitted; if decrementing, one less. Transmission may
end prior to "count" becoming zero; for example,
transmission is terminated at the end of a tape block.
The final value of "count"-may thus be used to
determine the size of the tape block read •

•
Procedures which generate calls to I/O packages
always use a separate parameter list to describe the
access word. This list has the form:

count, core address,direction

The parameter "direction" in the procedure call may
be coded as:

omitted or 0 increment

or 3 leave unchanged

2 decrement

(b) End-Action

In order to provide the flexibility and efficiency
that is inherently available in a computer equipped
with an interrupt-type r/o system, the packages
allow the worker program to capture control at
the interrupt which signifies completion of the
device operation. All of the manipulation required
for treatment of interrupts is handled by cooperative
efforts on the part of the dispatcher (see part 4 of
this section) and the particular package in use. A
subroutine called "end-action" may be included in a
worker program to be executed by the package following
a suitable interrupt. Information is available to the
end-action subroutine as to the identification and
disposition of the I/O operation under consideration.

60,
PAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

The following control register settings are available
when the end-action subroutine is entered:

X11 Return point

N;J Status Code (de scribed for spec i fic pac kage's)

A1 Final Access Word

A2 Status Word (described for specific packages)

A3 Packet Location (described for packet mode
drum operations)

In providing an end-action subroutine, the user under­
takes considerable responsibility for the integrity
of the system. In particular, the end-action routine
is executed with interrupts prevented. Thus, the
usual means for maintaining an even distribution of
information flow on the various channels and for
assuming control in case of error are temp0rarily
suspended. Program failure within end-action can
normally be recovered, and the system can proceed to
the next sequential job; situations may arise,
however, in which such recovery is not possible, and
which may result in a breakdown of symbiont operations
with obviously disastrous results.

The following counsel will aid in construction of
end-action routines:

1. Interrupts may not be enabled.

2. No condition dependent on the status of an
I/O device or the real-time clock may be
expected to occur as long as interrupts are
disabled.

3. Calls may not be made to card input, card
output or print cooperatives.

4. Calls may be made to the console subroutines
and to the Resident Editing Routines.

S. Control registers X11, Ay) through AS, and R1
through R3 (the volatile registers) are the
only registers which may be freely used. Any
other register must be saved and restored.

6. A subroutine may be referenced from both end­
action and elsewhere only if that subroutine
does not have any temporary storage other than
the volatile registers listed above.

7. References to the initiate mode routines and
the set external interrupt routines should be
avoided, although they may be made with a
detailed understanding of the workings of the
dispatcher.

4 61
PAGE:

UP-4058 UNIVAC 1108 EXEC II

8. A single reference to the request channel
subroutine for the current channel only
may be made from end-action. A release
channel entry may not be made.

(c) The Standard Verification Routines

A standard verification subroutine is provided in

SECTION:

the library which should often serve the user's
requirements. This routine can be included in a
worker program by coding the following 3 word calling
sequence immediately preceding a linkage to an r/o
package:

LMJ 11 ,MVFY1 $

LMJ 1 3,MVFY2$

+ verification point,abnormal

The "verification point" field contains the address
of the point in the worker program at which the r/o
operation must be satisfactorily completed prior to
continuing. The location specified should be left
empty since the verification routine will load it.
The "abnormal" field contains the address of the point
in the worker program to which control will be trans­
ferred in case of abnormal completion of the operation
(such as end-of-file detection).

When the above calling sequence is executed, the
"verification point" is loaded with the following
instruction:

J $

This produces a delay if executed prior to completion
of the r/o operation. The address of the second line
of the calling sequence is loaded into the "end-action"
field of the ensuing package. The second and third
lines are skipped, and control passes to the r/o
package linkage.

When the final interrupt occurs, the "verification
point" is changed to:

NOP in case of normal completion

LMJ 11, in case of abnormal completion

LMJ 11 ,MERR$ in case of unrecoverable error.

This synchronizes the running program and the
peripheral device.

4 62
PAGE:

UP-4058 UNIVAC 1108 EXEC II

(3) The

(a)

Note that the calling linkage to the verification
routine may not be altered until the I/O operation

SECTION:

has been verified; in this, it differs from linkages
to I/O packages. The calling sequence to the
verification routine may be generated by the procedure
call:

M$VRFY verification point,abnormal

Segregated Card I/O Package

The segregated card I/O package provides four sub-
routines, which may be used for standard card channels
only:

CCHK$ below

CIN$ paragraph b

COUT$ paragraph c

CFUNC$ paragraph d

The following linkage is used to check status of the
card equipment:

LMJ 11,CCHK$

+ error,in-process

The "error" field contains the address of the point
to which control will be transferred in case of
abnormal completion of the operation; the "in-process"
field contains the address of the point to which
control should be transferred if a card operation is
in process.

(b) The following linkage is used to transmit an image
from the card control unit input buffer to core:

LMJ 11 ,CIN$

+ end-action,function

+ access word

The fields "end-action" and "access word" contain the
address of an end-action routine and the access word
for the input operation respectively. The "function"
field may contain (octal notation):

41 Input an image from the control uni t; do not
feed additional cards into the control unit.

42 Input an image to core and refill the control
unit buffer. (If the buffer is empty, the
first card will be fed into it and transmitted,
after which the buffer will be refilled.)

4 63
PAGE:

UP-40S8 UNIVAC 110B EXEC II
SECTION:

(c) The following linkage is used to transmit an image
from core to the card control unit output buffer and
subsequently punch it into a card:

LMJ 11 ,COUT$

+ end-action,function

+ acce5S word

The "end-action" and "access word" fields are as
described in paragraph b for the CIN$ linkage. The
"function" field may contain (octal notation):

02 Punch and drop the card into the normal stacker

03 Punch and drop the card into the error stacker

(d) The following linkage is used to perform certain
control functions associated with the card control
unit:

LMJ 11 ,CFUNC$

+ end-action,function

The "end-action" field contains the address of an
end-action subroutine. The function field may
contain (octal notation):

04 Condition the card control unit to punch in
Fieldata code.

05 Condition the card control unit to punch in
column binary.

06 Condition the card control unit to punch in
row binary.

43 Feed one card from the reader into the control
unit input buffer.

44 Condition the card control unit to read in
Fieldata code.

45 Condition the card control unit to read in
column binary.

46 Condition the card control unit to read in
row binary.

61 Drop the last card read into stacker 1
instead of stacker o.

63 Drop the last card read into stacker 2
instead of stacker o.

23 Terminate current operations on the card
channel and clear both input and output
buffers.

4 64
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

(4) The Dispatcher Subroutines

(a) An I/O channel must complete all previously requested
operations before it can be used. Requests for a
channel which have not yet been honored are queued by
the dispatcher. The following linkage is used to
request a channel:

LMJ 11 ,MRQC$

+ initial-coding,channel

+ parameter

The "channel" field must contain a number from 0 to
14. (The console channel, number 15, is handled
differently and should not be requested through the
dispatcher.) The dispatcher will place the request
on the queue associated with the specified channel
and return control to the worker program following
the calling sequence (or to the system interrupt
return point, SIRT, if the request was made by a
symbiont). When the channel becomes available (as
discovered by the dispatcher when a channel is
released), the dispatcher transfers control to the
location whose address is specified in the "initial­
coding" field (see paragraph b). The "parameter" word
is a 36 bit quantity which is stored in A¢ when the
transfer to the "initial-coding" address occurs; the
parameter, which is not examined by the dispatcher,
may be of any desired format.

The channel request linkage may be generated by the
following procedure call:

M$RQC channel,initial-coding,parameter

The channel queue used by the dispatcher is described
in paragraph d, following.

(b) The initial-coding entered by the dispatcher is
responsible for starting the I/O operation. Four
"initiate mode" routines are available in the
dispatcher for this purpose. The calling sequences
are:

Initiate Function Mode:

LMJ 11 ,MIFM$

+ monitor-point,access word

Initiate Input Mode:

LMJ 11 ,MI IM$

+ monitor-point,access word

Initiate Output Mode:

LMJ 11 ,MIOM$

4 65
PAGE:

UP-4058 UNIVAC 110B EXEC II
SECTION:

Initiate Input and Function Modes:

LMJ 11 ,MIIFM$

+ input monitor-point,input access word

+ function monitor-point,function access word

The initiate mode linkages may be generated by the
following procedure calls, corresponding to each of
the above linkages respectively:

M$IFM

M$IIM

M$IOM

M$IIFM

access word,monitor-point

access word,monitor-point

access word,monitor-point

input access word, monitor-point
function access word,monitor-point

Omission of the "monitor-point" field will cause the
mode to be initiated without monitor.

In the above linkages and procedure calls, the field
"monitor-point" contains the address to which control
is transferred on the occurrence of an internal
interrupt (see Section 3 A.3.). If this address
is zero, the mode will be initiated without monitor.
The "access word" field contains the address of an
access word to be used for information transfer
(see Section 4 B.1 .c., part 2). When input mode
is initiated, the access word will be checked to
prevent system destruction by the input operation.

Following the initiate mode routine, control is
returned to the interrupted program. The I/O routine
regains control at the occurrence of an internal or
external interrupt.

If an external interrupt is to accompany the I/O
operation, the following linkage should precede the
initiate mode linkage in initial coding:

LMJ 11 ,MSXI$

+ address

The "address" field designates the point to which
control is to be transferred in the event of an
external interrupt. The "address" is stored in the
system, and control is returned following the calling
sequence. Note that initial coding is always
executed with interrupts prevented.

4 66
PAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

When the external interrupt occurs, it is received by
the dispatcher which saves the volatile registers
(X11 , ArjJ-A5, R1 -R3) and the carry and overf low
indicators prior to transferring control to the
monitor-point, "address".

Within interrupt coding, the volatile registers may
be used freely; others must be saved and restored.
All interrupt coding must be terminated by an
initiate mode linkage or by a release channel
linkage (paragraph c). This return linkage will
restore the registers and indicators and return
control to the interrupted program.

Under no circumstances may worker programs enable
interrupts.

The following procedure call may be used to
generate the above linkage to MSXI$:

M$SXI address

(c) Any time a requested interrupt is received by an I/O
routine the rules outlined in the preceding paragraph
hold true. The routine may initiate another mode
on the channel (and so wait for another interrupt)
or may release the channel. The channel release
linkage is:

LMJ 11,MRLC$

The following procedure call will generate the above
linkage:

M$RLC

No parameter fields are required. The dispatcher will
release the channel and transfer control to SIRT if
the linkage was made from a worker program environ­
ment. Return is made following the calling sequence
if the linkage was made from a symbiont.

It should be noted that due to the difference between
the action for worker programs and the action for
symbionts described in the preceding paragraphs, a
symbiont is inactive from the time it initiates
mode until that operation is complete. Special
provision has been made in the tape and drum packages
(see Section 4 B.1.b.) to be called by either a
worker program or a symbiont. When called by a
symbiont, linkages to tape or drum packages will
not return, unless an end-action routine is specified.

4 67
PAGE:

UP-4058 UNIVAC 1108 EXEC II

Bits 35

Words 0-15

Word 16

Word 17

Word 18

Words 19·63

SECTION:

If end-action is specified, the same rules which
apply to worker programs should be observed, except
that the end-action routine should end with the MRLC$
linkage described above. (The symbiont will regain
control in normal coding directly after the MRLC$
linkage). Note that symbiont calls to the drum
package may use packet mode only.

(d) As previously mentioned, the dispatcher maintains
four queues to hold requests for peripheral channels
(DCHN), core blocks (ZCBQUE), drum blocks (ZDBQUE),
or central processor activity (ZREADY). The ZREADY
queue is used to control symbiont activity. The
format of the queue area in the dispatcher is as
follows:

N

N

N

30 29 24 23 18 17 12 11

A L I N

L 00 COUNT

L 00 COUNT

L 00 COUNT

(varies with queue; see below)

Words 0-15 are the heads of the queues for channels
0-15 respectively. Words 16, 17 and 18 are the
heads of ZREADY, ZCBQUE, ZDBQUE respectively. These
words identify the queues. The remainder of the area
consists of common slots, the first available of
which is used to hold the next entry in a given queue.
The queue entries are linked together by means of an
index pointer. Since symbiont requests must be
queued if they are not honored, one such slot must
be reserved for each symbiont, with at least one slot
left unreserved. This sets the maximum number of
symbionts at 43. The fields "N" and "L" in each
queue contain the index pointer to the next queue
entry and to the last queue entry, respectively.
The index pointer is simply the number of the word,
relative to the top of the area, in which the entry
is stored. The "A" field in the channel queue
indicates channel activity, as follows:

o channel inactive

channel in use by worker program

2 or more channels in use by symbiont

4 68
PAGE:

o

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

When a channel is in use by a symbiont, the "A" field
contains the index to its ZPT$ table entry, relative
to the too of the ZPT$ table in CONFIG (see Section
2 A.). Due to the structure of the ZPT$ table,
this index will never be less than 2 for any
symbiont.

The "count" field of the ZREADY, ZCBQUE, and ZDBQUE
contains the number of entries in the corresponding
queue. Note: When the "count" is zero, "N" is
also zero, and "L" is normally meaningless.

The queue entry for the channel queue has the
following format (this is placed in the next
available slot when queued):

4
PAGE:

bits .. 3_5 ________________ 1_8....,.._17 ____ 1_2....,-1_1 __________,0

35

Initial Coding A N

The "A" and "N" fields are similar to the corresponding
fields in the header entry, previously described.
The "Initial-Coding" field contains the address from
the MRQC$ linkage to which control will be trans­
ferred when the request is honored.

The queue entry for the ZREADY, ZCBQUE and ZDBQUE has
the following format (this is placed in the next
available slot when queued):

30 29 25 24 18 17

N 00 A Return

The "N" and "A" fields are as previously described.
The "Return" field contains the index to the return
point in the symbiont (relative to the first core
location of the core buffer in which the symbiont
is operating).

When not used in a queue, the available slot contains
the index of the next available slot (right-justified
and zero-filled).

Items are removed from the ZREADY queue whenever
SIRT finds one thereby honoring one at a time
sequentially until the queue is exhausted. Items
are removed from the DCHN queu~ when a channel
becomes available by means of the MRLC$ linkage.
Items are removed from the ZCBQUE and ZDBQUE as
core or drum blocks (respectively) becomes avail­
able. Each time a queue is updated the header
entry for the queue is modified to reflect the
change, and if a slot becomes available, corresponding
information is stored in the dispatcher to reflect
its availability.

o

69

UP-40S8 UNIVAC 1108 EXEC II
SEC:TION:

d. Console I/O

(1) The console typewriter and keyboard are handled differently
from other input-output devices. One of the differences
lies in the fact that the subroutines dealing with the
console are character-oriented. A second difference lies
in the fact that the system uses the console for communi­
cation with the operator, and thus accepts external
interrupts from the console channel representing
"unsolicited" keyins. (If the keyin was requested by
any executive routine or worker program, it is called
a "solicited" keyin; otherwise, it is an "unsolicited"
keyin).

4

In general, all type-outs and keyins go thru the resident
routine CONSOL (see Section 2 A.1 .). System type-outs are
issued from PARCON, EDIT (see Section 2 A.), or the various
symbionts (see Section 2 B.1 .). The unsolicited keyins
(.,1,2,D,T,A,G,I,J) cause CONSOL to call on PARCON to load
GNP, a console handling routine which operates like a
symbiont. GNP, in turn, calls for the loading of other
system routines, as required (see Table in Section 4 B.1 .a.).
The unsolicited keyins (S,W,F,R,C) cause CONSOL to call on
KEYINS (see Section 2 A.). The "X2 keyin causes EXITS
(see Section 2 A.) to be entered, and the "E" keyin causes
ERRORS (see Section 2 A.) to be entered. Several other
unsolicited keyins are also accepted by CONSOLo For explana­
tion of the system keyins and type-outs, refer to the
1108 EXEC II Operator's Reference Manual.

(2) Worker programs may access the console typewriter or key­
board by means of special linkage described below. Note
that under no circumstances will an unsolicited keyin be
available to a worker program. The routines described in
this section include:

KTYPE$ paragraph 3

KEYIN$ paragraph 4

(3) The following linkage is used to type information on the
console typewriter:

LMJ
F

(in which: F

11 ,KTYP$
mode, count, address

FORM 6,1 2,1 8)

The field "mode" is used to specify or suppress carriage
return prior to typeout. It may either contain a numeric
zero or one, or be omitted (in which case zero is assumed).
The table in paragraph 5 explains the meaning of the mode
numbers. The field "count" should contain the number of
characters to be typed, to a maximum of 60. The field
"address" should contain the location of the first word of
the message to be typed. The subroutine will transfer the
number of characters specified into a buffer jn the resident
starting with the high-order character in "address" and
continuing sequentially thru succeeding storage locations
from high-order to low-order. This subroutine may be
entered from interrupt coding and by symbionts.

The alternate linkage is:

K$TYPE address, count, mode

70
PAGEl

UP-4058 UNIVAC 110B EXEC II
SECTION:

(4) The following linkage is used to request a keyin from the
console keyboard:

LMJ
F
G

(in which:
and

F
G

11 ,KEYIN$
mode, count, output address
error, end, maximum, input address

FORM 6,1 2,1 8
FORM 6,6,6,18)

The fields in the "F" line correspond to the description
of the "F" line of the linkage to KTYPE$ described in
paragraph 3 except that the "mode" field may contain any
value from 0 to 7. The field "error" may contain a
character to be used by the operator in case of an erroneous
keyin; if omitted or zero, octal 076 (0) is assumed. If
this character is keyed into the keyboard, all characters
received to that point are discarded and the keyin is
reinitiated. The field "end" may contain a character to
be used by the operator to terminate the keyin; if omitted
or zero, octal 04 is assumed (carriage return). The field
"maximum" may contain a number to specify the maximum
number of characters to be accepted before terminating the
keyin; if omitted or zero, decimal 60 is assumed. All
characters up to and including any "error" character are
not counted in determining when "maximum"is reached. The
field "input address" contains the location to which the
keyin characters will be transferred. Characters will be
packed into sequential locations, starting with "input
address", beginning in the high-order position of each word
and proceeding toward the low-order position. When the
subroutine is entered, the message described in the "F"
line is typed on the console typewriter, and the keyin
described in the "G" line is expected. The console channel
remains unavailable for any other purpose until the keyin
is completed. The subroutine retains control until the
message has been transferred to "input address" at which
time, the calling program is re-entered. The alternate
linkage is:

KEYIN$ output address, count, mode input address,
maximum

Note that the fields "error" and "end" are zero-filled if
the alternate linkage is used.

(5) The "mode" field described for linkage to KTYPE$ and KEYIN$
may have any value from 0 to 7, as indicated in paragraphs
3 and 4. These values have the following meaning:

0 No suppression of carriage return.
1 Suppress carriage return prior to type-out.
2 Suppress carriage return between type-out and key-in.
3 Combina tion of 1 and 2.
4 Suppress carriage return following key-in.
5 Combination of 1 and 4.
6 Combination of 2 and 4.
7 Combination of 1 , 2 and 4.

4 71
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

e. Paper Tape I/O

Mention was made in Section 4 B.1 .a. of paper-tape symbionts
QR1 and QP1. These transfer images between the paper tape read
or punch and a magnetic tape. The format of the magnetic tape,
as required by these symbionts, is shown in Appendix D 3. No
co-operative exists for paper-tape image input-output; creation
of magnetic tape files for output and proper interpretation of
these magnetic tape files for input is the responsibility of the
worker program. Each paper-tape image on magnetic tape occupies
a third-word (12 bits) with 1 bits in the least significant 5,
6,7 or 8 bits corresponding to punches in 5,6,7 or 8 channel
tape. Any pattern can be punched using the symbiont, however
two bit patterns are restricted in paper-tape reading via the
symbiont. The first restriction is that blank characters (no
punch) are ignored on input. The second restriction involves

4

the use of a stop code, which is a bit pattern used to identify
end-file to QR1. The system recognizes the code octal 43 (punches
in channels 1, 2, and 6 of paper tape) as a stop code. This may
be modified by the console operator when the read symbiont is
initiated to use any other given configuration as a stop code
or to use the first non-blank character encountered by the read
symbiont as a stop code. The stop code will never be transferred
to magnetic tape.

In addition to the paper-tape symbionts, the library includes an
input-output package for paper-tape. This package permits the
worker program to interface directly with paper tape equipment.
The only restriction on the use of this package is that the
paper-tape symbionts be inactive while the package is in use.
This will normally present no problems to the user, since the
system does not make use of paper-tape equipment as it does
with the card reader, card punch Gr printer.

Four operations are included in the paper-tape I/O package.
These are described in the following paragraphs.

QfUNC$
QIN$
QOUT$
QCHK$

paragraph 1
paragraph 2
paragraph 3
paragraph 4

Note that access words and end-action subroutines (referred to
in t hi sse c t ion) are dis c us sed inS e c t ion 4 B. 1 • c • A 1 son 0 t e
that when this package is called from the library, the symbol
YPT$ must be equated to the channel number for the paper-tape
equipment.

(1) The following linkage is used to transmit a function signal
to the paper-tape equipment:

LMJ 11 ,QFUNC$
+ end-action,function

The alternative linkage is:

QfUNC$ function, end-action

When this linkage is executed, a nine bit function (con­
tained in the "function" field) is transmitted. Each bit
in the function has a particular operation associated with it.

72
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

Any meaningful combination of these bits may be transmitted
at one time. Th~ following table establishes the meaning
of these bits:

Octal Function
040
001
002
004
010
020
100
200
400

Description
Reader On
Read Forward
Read Backward
Fault on Read
Master Clear
Punch On
*Not used
Punch Off
Reader Off

To read functions 040 and 001 or 002 must be transmitted.
The reader continues to operate until function 400 or
function 010 is transmitted. To punch, code 020 must be
transmitted. The punch continues to operate until func­
tion 200 or function 010 is transmitted. Notice that
function 010 is equivalent to a combination of functions
200 and 408 (function 600). Function 004 serves to illu­
minate a read light on the paper tape cabinet titled
"FAULT". This light may have any meaning the programmer
desires; it may be turned off manually by depressing it
once. Note that if the "function" field contains zero,
no function is transmitted.

(2) The following linkage is used to transmit a function signal
to the paper-tape equipment and perform an input operation.

LMJ
+
+

11 ,QIN$
end-action, function
access-word

The alternate linkage is:

Q$IN function, end-action count,
address, direction

The fields "count", "address", and "direction" are used
to build an access word (see Section 4 B.1 .c.), the
address of which is stored in the "access-word" field of
the calling sequence. The fields "function", "end-action"
are identical to the corresponding fields described for
Q$FUNC in paragraph D.

When this linkage is executed, paper-tape is read with
each frame being placed in the low-order part of sub-
sequent core locations according to the access word. No
error signals, parity checking, or testing for leader,
trailer, or end-message are built into the paper-tape input
hardware; these are the responsibility of the worker program.
Note also that the number of bits per frame transmitted to
core is dependent on a manual setting on the reader.

4 73
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

(3) The following linkage transmits a function to the paper­
tape equipment and performs an output operation.

LMJ
+
+

11 ,QOUT$
end-action, function
access-word

The alternate linkage is:

Q$OUT function, end-action count,
address, direction

The description of these fields is identical to the
description of corresponding fields in QIN$ linkages,
as outlined in paragraph 2.

When this linkage is executed, paper-tape is punched
taking each frame from the low-order portion of successive
core locations, according to the access word. Note that
the number of holes actually punched per frame depends on
the manual setting on the punch.

Should the supply of blank tape become exhausted, an
error signal is returned (status=2) and the operator is
notified of the condition via the console typewriter.
The final access word indicates the number of frames
actually punched. No further punching is possible until
a new supply of blank paper tape has been mounted (requir­
ing about 3 minutes).

(4) The following linkage is used to check the status of paper
tape equipment:

LMJ 11,QCHK$
+ error,in-process

The alternate linkage is:

Q$CHK in-process,error

The "in-process" field contains the address to which
return is made when a status 0 (in-process) is returned
by the paper-tape equipment. The "error" field contains
the address to which return is made when a status 2
(abnormal completion; usually out-of-tape on punch unit)
is returned by the paper tape equipment. Normal completion
(status 1) causes the subroutine to return to the next
instruction in sequence.

2. System Subroutines Other Than I/O

a. Editing Routines

This section is divided into four parts. The first part deals
with the Resident Editing Routines, a set of three simple sub­
routines which reside in core at all times:

EBO$ EBD$ EBF$

4 74
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

Part 2 of this section describes two specialized editing rou­
tines included in the system library to edit the time and data:

ETOD$ EDATE$

Part 3 of this section describes the library package called
the Generalized Output Editing Routine:

EOUT$

4

Part 4 of this section is a discussion of FORTRAN FORMAT speci­
fications. This discussion, taken from the FORTRAN IV Programmer's
Guide, is included in this manual to clarify references to FORTRAN
formats. The EOUT$ routine, described in this section, and the
X$FRMT routine described in Section 4 B.3.d., require a knowledge
of FORTRAN format specifications for most efficient use.

(1) Resident Editing Routines

The Resident Editing Routines are used by the EXEC II system
for construction of typewriter and printer messages pro­
duced by the system. They may be freely called by worker
programs without interferring with the system. They may
be used in end-action routines and symbionts as well as
in normal coding.

(a) The following linkage is used to form (in a specified
part of core) the fieldata representation of n octal
digits in the low-order part of register A¢:

LMJ
FF

11 ,EBC$
n,m,address

(in which: FF FORM 6,12,18)

The "n" field indicates the number of fieldata char­
acters to be formed. The "m" field indicates which
character in the core location "address" is to con­
tain the least significant character formed (each
character is 6 bits; "m" takes values of 0-5 to
indicate character positions from left to right in
the word). Characters are loaded sequentially from
the least significant (in position "m" of "address")
to the most significant (using sequentially lower
core locations, if necessary.). Leading zeros are
not suppressed.

The above linkage may be generated by the procedure
call:

E$BO col,image,count

This procedure will generate proper value of "m"
and "address" to form "count" characters ("count"="n")
with the least significant character in column "col"
of the core area beginning at location "image". The
leftmost character of "image" is considered column 1 •
Column numbers may be as large as desired.

75
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

(b) The following linkage is used to form the fieldata
representation of the decimal value of the contents
of register A0:

LMJ
FF

11 ,EBD$
n,m,address

Refer to the explanations given for the EBO$ linkage
for interpretation of the "FF" line. Leading zeros
will be suppressed, and the resulting field will be
prefixed by a "-" if A0 is negative.

A procedure call similar to that described for EBO$
is included in the system library:

E$BO col,image,count

The explanations given for the procedure call E$BO
are true for E$BD.

(c) The following linkage is used to store the "n"
fieldata characters in the low order part of A0:

LMJ
FF

11 ,EBF$
n,m,count

The fields "n", "m" and "count" are identical to
corresponding fields in the linkage to EBO$, ex~ept

that in this case "n" may contain any value up to
63. If "n" is greater than 6, the characters will
be repeated cyclically a sufficient number of times
to satisfy "n". Note that character transfer begins
with the least significant character.

The following procedure call may be used to generate
the above linkage:

E$BF col,image,count

Refer to the explanation given for the procedure
E$BO for interpretation of the above proGedure.

(2) Clock Editing Routine

One of the interrupt features controlled by EXEC II (see
Section 3 A.3.) is the real-time clock, register Rp.
This register decrements by 1 every millisecond with an
interrupt generated whenever it attempts to decrement
through zero. The real-time clock is used by EXEC II to
maintain a cell called MTOD$'which is updated once per
second: the format of MTOD$]s:

4

bits 35 29 28 24 23 18 17 0

MTOO$I r-------y-e-a-r---~~I~---M-on-th------~------O-ay-----~I~----------------T-im-e--------------~I

76
PAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

The "year" field contains the binary representation of. the
last two digits of the current calendar year; the "month"
field contain the binary representation of the current
month, from 1 to 12; the "day" field contains the binary
representation of the current date from 1 to 31; the
"time" field contains the binary representation of the
current time, in seconds from midnight.

(a) Two library subroutines are provided to edit MTOD$.
The first is used to edit the "time" field and is
called by the linkage:

LMJ
FF

11 ,ETOD$
¢,m,address

The fields "m" and "address" have the same meaning
as the linkage to EBO$ (see part 1 of this section).
Eight Fieldata characters are formed by ETOD$ repre­
senting the hours (hh), minutes (mm) and seconds (ss)
of the current time on a 24 hour clock:

hh:mm:ss

A procedure call is available to generate the above
linkage:

E$TOD col,image

The fields "col" and "image" have the same meaning
as for the E$BO procedure (see part 1 of this section).

(b) The second subroutine associated with MTOD$ is used
to edit the "year", "month" and "day" fields. It is
called by the following linkage:

LMJ
FF

11,EDATE$
,0,m,address

The fields "m" and "address" have the same meanings
as the linkage to EBO$ (see part 1 of this section).
Nine Fieldata characters are formed (the third and
seventh are blank):

dd xxx yy'

The fields "dd" and "yy" represent the day of the
month (1 to 31) and the last two digits of the year,
respectively. The field "xxx" contains a 3 letter
alphabetic abbreviation of the month.,

A procedure call is available to generate the above
linkage:

E$DATE col,image

The fields "col" and "image" have the same meaning
as for the E$BO procedure (see part 1 of this section).

4 77
PAGE:

UP-40S8

F

UNIVAC 1108 EXEC II
SECTION:

(3) Generalized Output Editing Routine: EOUT$

(a) Specifications and Function Listing

T

The generalized output editing routine is an interpre­
tive routine in the standard library which will per­
form editing functions for output produced on the line
printer, the card punch, and the typewriter. The
interpretive instructions performed by the routine
are constructed along with much the same lines as
are machine language instructions:

18 17 16 15

o M

(F) - Function Code

(T) - Type Wheel, etc.

(D) - Decimal Point Location, etc.

(x) - Specifies indirect address and use of the
simulated index register

(M) - Address (storage location of data, etc.)

o

The available functions are listed below with their
function codes in octal and the name of the corre­
sponding procedure call. Each procedure call generates
a single function code in interpretive instruction
format (see above).

The following is a listing of all functions included
in this routine. Function codes are given in octal
notation.

Editing Functions (Paragraph b)

E$D 01 - Decimal
E$O 02 - Octal
E$B 03 - Binary
E$C 04 - Alphanumeric Characters
E$A 05 - Alphanumeric Words
E$E 06 - Floating-Point (FORTRAN E)
E$F 07 - Floating To Fixed (FORTRAN F)

Output Functions (Paragraph c)

E$WT 10 - Write and Terminate
E$W 11 - Write
E$WS 12 - Write and Save

4 78
PAGE:

UP-40S8 UNIVAC 1108 EXEC II

Modal Functions (Paragraph d)

E$SCL 13 - Set Scale
E$PNT 14 - Set Point
E$FLD 15 - Set Field
E$INDX 16 - Set Index
E$OVRP 17 - Overpunch

Control Functions (Paragraph

E$TERM 20 - Terminate
E$LINK 21 - Link
E$JUMP 22 - Jump
E$RPT 23 - Repeat
E$CLR 24 - Clear

SECTION:

e)

The routine is called by the following instructions:

LMJ 11,EOUT$

There are two entry points to this subroutine. The
normal entry point is EOUT$. The other, EOUTR$, is
the point for re-entry after E$TERM (Terminate)
function and is discussed under Terminate.

The addressed word in the M designator may be either
in control register or core storage. Any word, even a
volatile register, is permissible; but if register 11
is addressed, the location of the interpretive word
which references 11 will be put out. All registers,
including volatile ones, are saved and restored.
The X designator is used to specify indirect
addressing and the use of the single simulated index
register. Its permissible values are

o No action

Use address indirectly

2 Apply simulated index register

3 Apply simulated index register then use
address indirectly

Indirect addressing is permitted to one level only,
and the b,h, and i designators of the indirectly
addressed word are ignored. However, it is possible
to indirectly address film storage. All modes may be
used with indirect addressing.

The various functions are described in detail below.
They are all callable as procedures. Each of the
procedure calls will generate one word in the proper
format. The parameters of these procedures are
interpreted differently depending on the number
written. A single parameter is taken as M; two
parameters as M and X; three parameters as T, D, and
M; and four as T, D, M, and X. Any missing parameters
will be assumed to be zero.

4 79
PAGE:

UP-4058 UNIVAC 110B EXEC II
SECTION:

Entry to the generalized editor may be obtained by
the procedures E$OUT or E$OUTR, depending on the
entry point desired. No parameters are required.

(b) Editing Functions

These functions actually convert the information to
be put out. In all cases except E$A, Alphanumeric
Words (see E$A below) the T field specifies the
type wheel at which the right-most digit, bit, or
character is to print.

E$D - Decimal: The address word is treated as if it
were a signed decimal integer and is edited without
a decimal point unless a Set Point (14) is in effect.
Leading zeros to the left are suppressed and a minus
sign, if any, is printed immediately to the left of
the number (also see Overpunch (17)). If the value
is zero, a single zero will print. If a Set Point is
in effect, the decimal number is assumed to have the
stated point specified by the Set Point, and the D
field specifies the number of decimal digits to be
printed to the right of the decimal point. If a Set
Field (15) with D=O is in effect, the specified
field is treated as an unsigned decimal integer.

E$O - Octal: The D low-order bits of the addressed
word are edited and printed as (D+2)/3 octal digits,
unsigned. For a full octal, binary, or alphanu~eric
character word, D must always be given as 36.

E$B - Binary: The D low-order bits of the addressed
word are edited as D binary digits unsigned.

E$C - Alphanumeric Characters: The D low-order bits
of the addressed word are edited and printed as
(D+5)/6 alphanumeric characters in Fieldata code.

E$A - Alphanumeric Words: The D words beginning with
the addressed word are edited as 6*D characters in
Fieldata code. For this editing function only, the
T field specifies the print position at which the
left-most character is printed.

E$E - Floating-Point (FORTRAN E): The addressed word
is edited as a floating-point number with D signif­
icant digits. Normally these will all print to the
right of the decimal point (also see Set Scale). A
decimal exponent consisting of a sign and two digits
will be inserted immediately to the right of the
significant portion. If the floating-point number
is negative, a minus sign will be inserted immediately
to the left of the number (also see Overpunch). If
the addressed word is minus zero, no effect will occur,
and the field will be left blank.

E$F - Floating to Fixed (FORTRAN F): The addressed
word is assumed to be a floating-point number and is
edited to fixed-point with D places following the
decimal point. Negative numbers, including minus
zero, are treated as above.

4 80
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

(c) Output Functions

The output functions serve to transmit. the edited line
to an output device; the printer, the card punch, or
the typewriter. The device to be used is determined
by the D field:

Printer D=O

Card Punch D=1

Typewriter D=2

The word or character count is given in the T field.
This count must be given. (It is not assumed maximum
if it is given as zero.) For the printer, the word
count is normally 22; for the card punch, normally 14.
For the typewriter, T is a character count and cannot
be more than 60. For the printer, the M designator
serves to specify the number of lines to be spaced.
A value greater than the lengeth of a logical page
will result in printing on the first line of the
next page. For the punch and typewriter, the M
designator is ignored.

E$WT - Write and Terminate: The edited image is
transmitted to the specified device, and the routine
returns to the next instruction in machine language
mode. The image is reset to blanks.

E$W - Write: The edited image is transmitted to the
specified device, and the routine continues in the
interpretive mode. The image is reset to blanks.

E$WS - Write and Save: The edited image is transmitted
to the specified device, and the routine continues to
the next instruction in the interpretive mode. The
image is left available for use by further output
functions or further editing.

(d) Modal Functions

The modal functions serve to enter information which
affects the interpretation of one or more of the
instructions which follow. Five modal instructions
are available.

E$SCL - Set Scale: The contents of the address field
are treated as a signed power of 10 to be applied to
any Floating-Point or Floating to Fixed function
which follows the Set Scale. For Floating-Point, the
scale is the number of digits to be printed to the
left of the decimal point. The exponent field is
reduced accordingly, so that the resulting value is
the same as if no Set Scale modal were in effect.
Negative values of the address (the 16 bit ones'
complement) will introduce leading zeros after the
decimal point and increase the exponent field
accordingly.

4 81
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

For Floating To Fixed conversion, the actual value
of the resulting number is altered by multiplying it
by the power of 10 indicated by the address. The Set
Scale modal remains in effect until it is countermanded
by a new Set Scale. Upon initial entry to EOUT$, the
scale is assumed to be O.

E$PNT - Set Point: The Set Point modal specifies the
position of the binary point for the next editing
function to be encountered (presumably a Decimal
editing function). It remains in effect only for the
single edit. The address of the set point gives the
number of bits following the binary point. Negative
values are permitted (See Set Field).

E$FLD - Set Field: The Set Field modal is used to
specify a subfield of the next word to occur
(presumably a Decimal, Octal, Binary, or Alpha­
numeric Characters function). The T field specifies
the left-hand margin and the M field the right-hand
margin. The bits of the machine word are numbered,
for the purposes of this function, from left (00)
to right (35). The D field specifies extension of
sign; if it is non-zero, the field is treated as
signed. A Set Field with D=O and T=O may be used to
treat fields, including the sign bit, as unsigned
unless M=35 (i.e., a whole word must always be signed
in the event a sign is applied).

The Set Field modal remains in effect only for the
next function encountered. If both a Set Field modal
and a Set Point modal are in effect when editing
occurs, the Set Field modal will be applied first.
In this case, the Set Point specifies the binary
point counting from the right-hand end of the specified
field.

E$NDX - Set Index: The Set Index is used to address a
quantity in storage which is to be loaded into the
single simulated index register. For any function
which addresses storage (including this one), the
presence of a 1 bit in the increment (H) portion of
the address will cause the simulated index to be
added to the specified address before access is made.
The left half of the index-register word is ignored.
If the D field is nonzero, the contents of the M
field (with sign extension) are loaded into the
simulated index register. The Set Index modal
remains in effect until it is countermanded by
another Set Index.

E$OVRP - Overpunch: The Overpunch modal specifies
that any minus signs produced by the editing functions
are to be removed from their positions in front of the
edited numbers and placed as 11-punches over the low­
order digits. In the case of Floating Point editing,
the sign of the mantissa is placed over the low-order
digit of the mantissa and the sign of the exponent
over its low-order digit. The space that would
normally contain the sign of the exponent is omitted.

4 82
PAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

The Overpunch mode is initiated by its occurrence
with address 1. It is countermanded by its
occurrence with address o. Upon initial entry to
EOUT$, the Overpunch mode is assumed to be off.

(e) Control Functions

The control functions serve to introduce into the
interpretive language some of the control operations
available in machine language.

E$TERM - Terminate: The Terminate control causes the
routine to return to the next instruction in machine
language. Upon re-entry to the routine at the point
EOTR$, all counters, modes in effect, interpretive
subroutines, and any partial image are left undis­
turbed. If re-entry is made at EOUT$, these are all
cleared. Entry at EOUTR$ is made by the instruction

LMJ 11 ,EOUTR$

E$LINK - Link: The Link control is used to form sub­
routines in the editing language. Its effective
address specifies the location of the entry to a
subroutine. Subroutines may be nested to a depth
of 10.

E$JUMP - lump: The Jump control with a nonzero
effective address causes an interpretive transfer of
control to the designated location. If the address
is zero, the Jump control serves as a subroutine
exit. Transfer is to the interpretive instruction
following that link control most recently executed
for which no exit has been performed.

E$RPT - Repeat: The Repeat control causes the next
single interpretive instruction to be repeated the
number of times specified in the D field of the
Repeat word. A Repeat control preceding a link will
be meaningless; for multiple execution of a link,
the routine EOUT$ itself should be called within a
machine language loop. The T and M fields contain
increments to the T and M fields of the instruction
to be repeated for each execution. Any modes set
by the modal instructions which would be in effect
for the first execution of a repeated instruction
remain in effect for all executions.

E$CLR - Clear: The Clear control sets the image to
blanks.

4 83
PAGE:

UP-40S8 UNIVAC 1108 EXEC II

(f) Examples*

Several examples of typical calling sequences to
EOUT$ follow:

Example 1. The FORTRAN instruction

PR INT 1 00, A, I, N, B, C

100 FORMAT (6X, E20 .7, I2¢, 02¢, 1P2F2¢.6)

is equivalent to the interpretive sequence

E$OUT

E$E 26,7,A

E$D 46,¢,I

E$O 66,¢,N

E$CL

E$F 86,6,B

E$F 1¢6,6,C

E$WT 22,0,1

Next machine language instruction

SECTION:

Example 2. If this line were to be put out also on
the card punch, whose output code is 1 ,
then the last interpretive instruction
would be replaced by

E$NS 14,1 , °
E$WT 22,0,1

Only the first 80 columns of the image would be
punched.

4

* The use of FORTRAN formats here is merely to indicate
the format desired. The I/O functions in FORTRAN employ
an editing scheme peculiar to themselves.

84
PAGE:

UP-40S8 UNIVAC 1108 EXEC II 4

(4)

SECTION:

Example 3. The FORTRAN instruction

PRINT 100 (J (I), K (I), L (I), M (1),1=1,4)

100 FORMAT (2,016)

is equivalent to the following interpretive sequences:

E$RPT 30,4,1

E$D 6,,0,J ,2

E$RPT 30,4,1

E$D 12,0,K,2

E$RPT 30,4,1

E$D 13,,0,L,2

E$RPT 30,4,1

E$D 24,,0,M,2

E$WR 22,0

Format Specification

The following discussion will assume that the record being
described is that of a print line, but simply by substi­
tuting the word "card" for the word "line" or the word
"card-column" for the word "print-position", etc., the
description applies equally well to the reading or
punching of cards.

A field is a string of adjacent print-positions. The
width of a field is the number of print-positions in the
string. A line is an ordered set of fields. A field will
contain the character representation of the value of a
list item, or annotation, or it may be skipped (filled
with the character "blank").

For any field, the format specification must define its
width and the type of conversion from internal form to
external form desired, or the actual annotation characters
desired, or it must indicate that the field is to be skipped.

(a) Editing Codes

The quantity which specifies the width of the field,
and the type of conversion.

1. Iw indicates that the field is to occupy w
print positions, that the mode of the list item
is integer, and that the value of the list item
is to appear as an integer constant right­
adjusted in the field. If the field width
specified is not large enough to contain the

85
PAGE:

UP-40S8 UNIVAC 110B EXEC II
SECTION:

entire integer, only the least significant
portion of the integer will appear in the field.
In this case, the sign is the first character
to be lost. If the field width specified is
larger than that required for the constant it
will be filled out to the left with blanks.

2. Fw.d indicates that the field is to occupy w
print positions, that the mode of the list item
is real, and that the value of the list item is
to appear as a floating-point constant (without
exponent) right-adjusted in the field with a
decimal-point character occupying the d+1 st
print position from the right-hand end of the field.
D digits of the Fractional part of the number are
printed to the right of the decimal point. As
much of the integer part of the number as there is,
or as much as the field width permits, whichever
is the smaller, prints to the left of the decimal
point. If the number is negative, and the field
width permits, then a minus sign is printed
immediately to the left of the most significant
digit of the number. If the field width specified
is larger than that necessary to contain the
number, it is filled out to the left with blanks.

3. Ew.d indicates that the field is to occupy w
print positions, that the mode of the list item
is real, and that the value of the list item is
to appear as a decimal number right-adjusted in the
field in the form

±¢.xxx ••• E±ee

in which xxx ••• x are the d most significant
digits of the mantissa, and ee is the corresponding
two digit exponent. If the exponent is positive,
a blank will follow the E. If it is negative, a
minus sign will follow E.

The minimum field width necessary to contain a
number of this type, including the sign of the
fraction is 7+d. If the width specified is
less than 7+d, then characters are successively
lost from the left. If the field width specified
is larger than that necessary to contain the
number, it is filled out to the left with blanks.

4. Ow indicates that field is to occupy w print
positions, that the value of the list item is to
be interpreted as a 12 digit octal number, and
that the quantity is to be printed as an octal
number, right-adjusted in the field. If the field
width is less than or equal to 12, then the w
least significant digits will appear. If the
field width is larger than 12, then it will be
filled out to the left with blanks. Leading
zeros will be printed if the field width allows.

4 86
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

5. Aw indicates that the field is to occupy w
print positions. It assumes that the list item
is to be interpreted as a variable containing
six alphanumeric characters. If w is less than
or equal to 6, the left-most w characters of list
item are placed in the field. If w is greater
than 6, then the six characters of the list
item are placed in the field, right-adjusted, and
the field is filled out with blanks.

6. wX indicates that a field, w in length, is to be
filled with blanks (on output) or ignored (on
input). This field designation is independent
of the list items.

7. wH indicates that the field is to occupy w
print positions. The field is interpreted as
annotation, and is to be filled with the w
characters (including blanks) which follow the
H. This field designation is independent of the
list items.

(b) Specifications of a Line Format

The specifications of a line format are simply a
string of editing codes separated by commas. (The
comma following specifications of the form wH or wX
is optional.). The line format specification positions
the fields, in the order of their appearance in the
string, in the following manner:

Sl occupies Print Positions 1 through Wi'
inclusive.

S2 occupies Print Positions Wi + 1 through
Wi + w2 ' inclusive.

Sn occupies Print Positions T through T + Wn,
inclusive, in which Si is the itn editing
code in the string of n editing codes; Wi
is the field width of Si; and

n-1
T= 1 + L wk

k=1

(c) Editing Code Repetition

Whenever, in the specification of a line format,
two or more successive editing codes (except for
wH and wX) are identical in every respect, a short­
hand notation may be used. This is accomplished
by writing the editing code only once and prefixing
it with an unsigned integer constant n indicating
the desired number of repetitions of the field.

4 87
PAGE:

UP-4058 UNIVAC 1108 EXEC II

(d) Repetition of Groups of Editing Codes

If two or more successive groups of editing codes
occur and are such that each element of anyone

SECTION:

group is identical and the corresponding element of
all the other groups, then a further shorthand
notation may be used. This is accomplished by
specifying the group only once, enclosing it with
parentheses and prefixing the resulting parenthesized
group with an integer constant n indic€ting the
desired number of repetitions of the group. Nesting
of such parentheses is not permitted.

(e) Scale Factors

Editing codes of the forms nEw.d and nFw.d may also
be written in the forms pPnEw.d and pPnFw.d,
respectively. n, w, and d are as above, and p is
the scale factor, a signed integer constant.

In general, the appearance of a scale factor
establishes the relationship

External Representation=Internal Representation x 1¢P

whether the transmission is input or output.

In printing, the appearance of a scale factor p has
the following effect:

1. List values associated with field of the form
nFw.d are multiplied by 1¢P before printing.

2. A list value associated with a field of the
form nEw.d is printed with its mantissa multiplied
by 1¢P, and its exponent is decreased by p. In
other words, the field is changed in form, but not
in value on printed output.

Example:

Assume that Variable A has the value -12764.31613.
If A were printed according to the specification
E13.6, then the field printed would be
-¢.127643E ¢5. If A were printed according to
the specification 2PE14.6, then the field
printed would be -12.764316E 03. If A Were
printed according to the specification -3PF7.2,
then the field printed would be -12.76.

(f) Multiple-Line Formats

If a group of editing codes is followed by a slash
(/), then the line which was being specified, at
the point of occurrence of the slash, is filled
out with blanks, and the editing codes (if any)
which follow the slash describe the format of the
next, line. The occurrence of n consecutive slashes
causes the printing of n-1 blank lines. All
editing codes which appear without an intervening
slash are interpreted as describing one and the same
line. (See, however, the following paragraph).

4 88
PAGE:

UP-40S8 UNIVAC 110B EXEC II
SECTION:

(g) Relationship of a Format and an Input/Output List

During the execution of an I/O Statement, the format
specification is scanned from left to right. Editing
codes of the form sH and sX are interpreted and the
corresponding fields generated without reference to
the I/O List. When an editing code of any other
form occurs, one of two situations will arise:
either there is at least one list element remaining
to be transmitted, or there is not. In the former
case, the next list element is converted according
to the specification and transmitted. The format
scan then continues. In the latter case, the
transmission is terminated.

If, during the course of the format scan, the end
of the format is reached while there are list elements
remaining to be transmitted, the scan is resumed with
the character following the preceding open parentheses,
or, if there is none, from the beginning of the format.

b. Control Routines Other Than Input/Output

Among the subroutines included in the EXEC II system are
several which control the action of the executive. These
resident routines permit worker programs a good deal of
flexibility, since they modify the environment within which
the program operates, or direct executive routines to perform
actions specified by worker programs.

Two sets of control routines are described in the following
paragraphs. The first set controls the action of the system
when error interrupts occur. (The error interrupts are
described in paragraph 1, below). This set includes the
resident routines:

MSEA$ paragraph 2

MREA$ paragraph 3

The second set of control routines directs the LOAD routine
(see Section 2 A.), which brings programs into core from drum.
This set includes the resident routines:

MLOAD$ paragraph 4

MCHN$ paragraph 5

(1) Error Interrupts

EXEC II utilizes the hardware error interrupts generated
by the 1108 to signal certain error conditions. Some
modification of the interpretation by the software of the
hardware interrupt has been necessary to maintain com­
patibility with the 1107. The following conditions are
considered to be "error interrupts" under the EXEC II
system (hardware interrupts not included in the
following list are ignored):

(a) Illegal Function: occurs when a function code is
executed which is not in the 1108 repertoire.

4 89
PAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

(b) Trace Mode~ this interrupt, wnich signals execution
of a jump instruction under Trace mode in the 1107
is not available in the 1108.

(c) Storage Loskout: this interrupt is a specia:ized
application of the Guard Mode interrupt feature on
the 1108. It signals an attempt to store into a
core area unavailable to worker programs.

(d) Characteristic Underflow: a floating point
instruction wh::h results in a negative charac­
teristic greater than the permissible bias causes
this interrupt. When this occurs, the address of
the instruction which causes the interrupt is
stored in control register 124 (references as
MCUF$). The registers containing the result
to zero, as long as the floating point
instruction was not reached by an EX instruc­
tion.

(e) Characteristic Overflow: a floating point
instruction which results in a positive charac­
teristic greater than the maximum permissible
bias causes this interrupt. The address of
the instruction which causes the interrupt is
stored in control register 125 (referenced as
MCOF$). The arithmetic registers are not
altered.

(f) Divide Overflow: a divide com~and which produces a
quotient greater in magnitude than the maximum
permissible quotient causes this interrupt. The
call MDOF$ (control register 126) is set to the
address of the instruction which causes the
interrupt. The arithmetic register normally
containing the quotient is reset to zero; the
remainder register is not altered.

(g) Transfer to MERR$: this is a pseudo-interrupt
generated by EXEC II when a jump to MERR$ occurs
(see Section 4 C.). The contents of the B, A, and

(2) MSEA$

R registers and a diagnostic message are placed into
the print file prior to honoring the "interrupt".

The worker program is given the capability of specifying
the action to be taken when an error interrupt occurs by
means of the following linkage:

LMJ 11,MSEA$

+ y),ident

+ (instruction)

This linkage causes the "instruction" whose address is
specified in the linkage to be executed in the event

4 90
PAGE:

UP-4058 UNIVAC 1108 EXEC II

of the error interrupt specified by "ident". "Ident"
may have any of the following values:

MIFCT$ Illegal function

SECTION:

MITRC$ Trace Mode (not available in 1108)

MTLOK$ Storage Lockout

MICUF$ Characteristic Underflow

MICOF$ Characteristic Overflow

MIDOF$ Divide Overflow

MIERR$ J '-..lmp to MERR$

The above linkage may be generated by the procedure call:

M$SEA ident, (instruction)

Prior to executing the worker-program-specified instruction
when a jump to MERR$ occurs, EXEC II resets to execute the
standard system routine for all error interrupts when they
next occur. Standard routines are described in the
following paragraph. Note: Norker program use of the
MERR$ "interrupt" is generally not recommended.

(3) MREA$

The worker program may reset to execute the standard
error interrupt routine by the following linkage:

LMJ 11 ,MREA$

+ ¢, ident

The "ident" field is identical to the corresponding
field for the MSEA$ linkage, described in paragraph 2,
except that an additional value for "ident" is possible:

MIALL$ all error interrupts

The linkage to MREA$ may be generated by the procedure call:

M$REA ident

Standard action for the error interrupts available on the
1108 is as described under MSEA$, except that Illegal
Function, Storage Lockout or Jump to MERR$ cause termination
of the run via MERR$. Standard Handling of the MERR$
"interrupt" is described in Section 4 C ••

(4) MLOAD$

The LOAD routine (see Section 2 A.) may be called on in
several ways. When a program is executed (by means of an
XQT card; see Section 3 B.S.b.) a certain portion of
core is committed to the worker program, and this is
loaded with the segment to be executed first. Within
this segment may be an area of core to be overlaid by

4 91
PAGE:

UP-40S8 UNIVAC 110B EXEC II
SECTION:

another segment (the Allocator provides space for the
largest such overlay when the program is allocated).
Refer to Section 3 8.4.a. and 3 B.5.b. for a discussion
of program structure.

When an overlay segment is to be given control, two
meth8ds are available to do so. The first is called
"automatic loading" since it involves no special linkages.
When a jump is specified (except SLJ) in execution to an
externally defined symbol (See Section 2 B.S.) of a
seg~ent which uses an overlay area, the loader determines
whether the segment is currently in core; if not, the
required segment is loaded from drum. Once the segment
is in core the required jump is completed. Note that the
jump instruction performed by the worker program actually
references LOAD; this is provided for by the Allocator.
Registers, etc. are preserved by the loader during this
action. Automatic loading is described under the SEG card
of MAP (Section 38.5.a.).

The second method of specifying an overlay is called "manual
loading", since it involves a special linkage. This
differs from automatic loading 8nly in the fact that the
segment called for will be loaded from drum whether or not
it is already in core. The linkage used for manual
loading is:

LMJ 11 ,MLOAD$

+ symbol ,segment

This loads the seg~ent whose name is in the "segment"
field of the linkage, and ju~ps to the location specified
by "symbol", where "symbol" is an externally defined
symbol in the segment being loaded.

(5) MCHN$

Chained programs differ from overlays in the core
commitment made. The Allocator allows core space for
the largest overlay included in a segment, while it
allocates only sufficient core for each individual link
included in a chained program (except for "blank common").
Chained programs are discussed under the CHN card of MAP
(see Section 38.5.a.).

Each link of a chained program must be individually
called in by an explicit reference to the loader; any
link may call any other link by using the following
calling sequence, with the link number in A¢:

LMJ 11 ,MCHN$

Each link must be uniquely numbered on a CHN :ard in a
MAP for thi s I inkage to 'Nork properl y, and the current
link must release all r/o chan~els before the next link
can be loaded.

4 92
PAGE:

UP-4058 UNIVAC 1108 EXEC II 4
SECTION:

3. Diagnostic Subroutines

a. General Information and Function Listing

b.

The EXEC II system provides a set of diagnostic subroutines
designed to be incorporated into a worker program. These
subroutines permit dynamic dumping to occur, and are therefore
collectively called the "snap-shot" system. (See Section 3 B.9.
for a description of non-dynamic diagnostic routines.) ~hen any
of these subroutines is called, it performs some part of the
dump routine required, while saving and restoring all control
registers and the carry and overflow indicators. The general
technique used in dumping is to write information on the
Execution area on the drum, (see Section 2 B.4.) consisting of
core, drum, control register or magnetic tape storage contents,
using tables generated by the processors (see Section 3 B.4.)
and the Allocator (see Section 3 B.5.).

The diagnostic subroutines are called by means of 14, 1108 Assembler
Procedures, which are divided into 4 groupings, as follows:

(1)

(2)

(3)

(4)

Conditionals:
(4 B.3.b.)

X$AND
X$IF
X$OR
X$TALY

Dump Procedures:
(4 B.3.c.)

X$CORE
X$DRUM
X$DUMP
X$FILM
X$MESG
X$TAPE

Specification Procedures:
(4 B.3.d.)

Marking Procedures:
(4 B.3.e.)

X$BACK
X$MARK

X$BUFR
X$FRMT

In addition to the "snap-shot" system, ICS (see Section 3 B.9.)
may be called by a worker program by means of linkages to the
following routines:

MILDR$

MIDMP$

These linkages are described in Section 4 B.3.f •• Note that
these linkages are not dependent on the diagnostic information
generated by the processors or the Allocator; also the drum is
not used by ICS to store dumps as is done by "snapshot" system
subroutines.

Conditional Procedures

X$AND paragraph 2

X$IF paragraph 1

X$OF paragraph 3

X$TALY paragraph 4

93
PAGE:

UP-40S8 UNfVAC 1108 EXEC II
SECTION:

These procedures are used to specify whether a dump procedure
is to be effective. They may precede or be interspersed with
other snap-shot dump procedures, and their effeot, which is
cumulative, is based on the setting of a system switch indicating
a value of 'true' or 'false' for the current logical expression.
This switch is set 'true' in the absence of conditional pro­
cedures and is dependent on conditionals when they are present.
Dumping occurs only when the switch is set 'true'. Each
conditional procedure described in the following paragraphs
generates a three word calling sequence to a library subroutine.

(1) X$IF is the first conditional of a conditional string, and
serves to execute a test which sets the condition switch
to 'true' or 'false' accordingly. It is called by:

X$IF U1 ,X1 ,J1 'rel' U2 ,X2 ,J2

The fields are defined as follows:

U1,U2 core or control register addresses or literals

X1 ,X2 index regi ster designators

J1 ,J2 j-designators as used in the 1108 Assembler

'reI' a logical operator from the set:

'GT' Greater than

'LT' Less than

'EQ' Equal to

'NE' Not equal to

'LE' Less than or equal to

'GE' Greater than or equal to

Omitted fields are treated as zero. Indirect addressing
(specified by an asterisk preceding or following either
U-field) is permitted; index register incrementation,
however is not provided for.

(2) X$AND procedure has the same format and function as the
X$IF procedure, except that the condition switch is set
'true' if and only if it is already set 'true' and the
current test is true. It is analogous to a logical "and"
operator.

(3) X$OR procedure has the same format and function as the
X$IF procedure, except that the condition switch is set
'false' if and only if it was already set 'false' and the
current test is false. It is analogous to a logical
"inclusive-or" operator.

(4) X$TALY procedure is used to set the conditional switch by
testing a counter. The counter is set to zero the first
time this procedure is executed and is incremented by 1

4 94
PAGE:

UP-4058 UNIVAC 110B EXEC II
SECTION:

following all tests by the procedure, each time the
procedure is entered in execution (except as noted below*).
The call is as follows:

X$TALY start,until,every

The three fields contain numbers to be used in testing the
counter; if omitted 'start' is assumed to be zero, 'until'
is assumed to be 218 _1, and 'every' is assumed to be 1 •
The tests performed on the counter (the symbol "Z" repre­
sents the counter) are as follows:

1) If 'start' .:;: Z < 'until' ,

and 2) If Z-'start'
'every'

has a zero remainder,

and 3) If the conditional switch is already set
'true' ,

then, the conditional switch will be set 'true' by
the procedure; if any of the tests fail, the con­
ditional switch is set 'false'.

(5) An example of the use of conditional procedures will
indicate how the conditional switch is set. Note that if
other procedures (described in the following sections)
are interspersed with conditionals, they will be effective
if and only if the conditional switch is set to 'true'
~1 the time they are entered and they will have no effect
on the setting of the switch.

Assume that a program contains the variables X, Y, and Z,
and the parameters (constants) A, Band C. Also assume
that the following procedures are executed sequentially
(with or without other procedures or instructions inter­
spersed) and that they are part of a loop which will be
executed 4000 times. We count the number of executions
starting with 0 and ending with 3999.

1) X$IF X 'EQ'A

2) X$OR X 'LT'Z

3) X$AND Y 'GT'B

4) X$OR y 'NE'Z

5) X$OR A 'EQ' 90

6) X$OR A 'EQ' 'A'

7) X$TALY 0,4000,100

If X, Y, and Z have values of 78, 80 and 88 respectively,
and A, B, and C have values of 'A' (Fieldata character),
180 and octal 040 respectively, then the conditional
switch will have the following values on the indicated
execution (after execution of the indicated procedure).

*Note: If the conditional switch is set to 'false' when
the procedure is entered, the counter is not incremented.

4 95
PAGE:

UP-4058

c.

UNIVAC 110B EXEC II
SECTION:

Execution Count: 0 99 100

Procedure 1) False False False False

2) True True True True

3) False False False False

4) True True True True

5) True True True True

6) True True True True

7) True False False True

These values are determined by the conditional procedures
as described in preceding paragraphs.

Dump Procedures

X$CORE paragraph

X$DRUM paragraph 2

X$DUMP paragraph 3

X$FILM paragraph 4

X$MESG paragraph 6

X$TAPE paragraph 5

These procedures generate linkages to the subroutines which
output the information comprising the required dumps. The
subroutines called use the Execution area on drum to store the
information dumped; upon program termination through MERR$ or
MEXITS (see Section 4C.) this information is read back, edited
and printed. Program termination by a transfer to MXXX$ (see
Section 4 C.) will by-pass the editing of all dumps.

All dump procedures except X$MESG expand into a 3 word
calling sequence. X$MESG expands into a 2 word calling
sequence.

(1) X$CORE procedure calls for dumping of an area of core
storage (provided that the conditional switch is set to
'true'). It is called by:

X$CORE start,length,format

The 'start' field indicates the address of the first core
location to be dumped, and the 'length' field specifies
the number of core locations to be dumped. The 'format'
field indicates how the information dumped is to be
edited; it normally contains a single letter, such as
A, E, F, I, 0, enclosed in quotation marks. For a
description of format specifications, see Section 4 B.3.d.,
the X$FRMT procedure.

4 96
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

(2) X$DRUM procedure calls for dumping of an area of drum
storage (provided that the conditional switch is set to
'true'). It is called by:

X$DRUM access,length,format

The 'access' field contains the address of a core location
in which is stored the drum address of the first drum
location to be dumped. The length field specifies the
number of drum location to be dumped. The format field
indicates how the information dumped is to be edited.
For a description of format specifications see Section
4 B.3.d., the X$FRMT procedure,

The X$DRUM procedure requires that an area of core be
available into which the drum block may be read. This
area of core is provided by means of the X$BUFR procedure
(see Section 4 B.3.d.). While a block of drum larger
than the core area provided may be dumped, greater
efficiency results from specifying a core area large
enough to accommodate the entire block at one time. In
the absence of this core area, no dumping will occur.

(3) X$DUMP procedure calls for dumping information which
specifies the current state of the machine (provided the
conditions switch is set to 'true'). Included in this
information are the settings of the console selective
jump switches. This procedure also permits dumping core
and control registers. It is called by:

X$DUMP start,length,format,registers

The fields 'start', 'length' and 'format' are used
identically to the corresponding fields in the X$CORE
procedure (paragraph 1). The field 'registers' specifies
which control registers are to be dumped; it contains any
combination of the letters B, A, R enclosed in quotation
marks (or may be omitted if no registers are desired).
Any illegal combination of characters in the 'registers'
field results in dumping all 3 sets of registers. The
edited listing produced as a result of this procedure will
contain the special information on carry and overflow
first, followed by register dumps (all of which are octal
format), followed by the specified core dump.

(4) X$FILM calls for a dump of control registers (provided
that the condition switch is set to 'true'.). It is
called by:

X$FILM start,length,format

The field 'start' contains the address of the first
control register to be dumped; 'length' indicates the
number of registers to be dumped; and the 'format' field
indicates how the dumped information is to be edited.
For a description of format specifications, see
Section 4 B.3.d., the X$FRMT procedure.

4 97
PAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

(5) X$TAPE procedure calls for a dump of a block of magnetic
tape (provided that the condition switch is set to 'true').
The block to be dumped is that block just prior to the
position of the tape unit when the procedure is entered.
The call to this procedure is:

X$TAPE unit, format

The field 'unit' should contain a single alphabetic enclosed
in quotation marks, corresponding to the logical label
designation on an ASG card (see Section 3 B.1 .b.).
The ~ormat' field indicates how the dumped information is
TO be edited. For a description of format specifications,
see Section 4 B.3.d., the X$FRMT procedure.

lhe X$TAPE procedure requires that an area of core be
available into which the tape block may be read. This
area of core is provided by means of the X$BUF~ procedure
(see Section 4 B.3.d.). Should the tape block be
longer than the core area provided, only that information
which fits into the core area will be dumped. In the
absence of a core area, no dumping will occur.

(6) X$MESG procedure calls for inclusion of a diagnostic
message with the dump information (provided that the
condi tional swi tch is set to 'true'). The message is
provided by the user in the calling sequence and will
appear in the edited listing after all dumps taken before
it and preceding all dumps taken after it. The calling
sequence is:

X$MESG length

'diagnostic message'

The field 'length' specifies the number of words in the
message which follows; the field 'diagnostic message'
consists of any alphanumeric string enclosed in
quotation marks, and will be printed exactly as it is
assembled. This procedure permits a programmer to
identify the conditions which caused a given dump by a
suitable diagnostic.

d. Specification Procedures

X$BUFR paragraph

X$FRIvlT paragraph 2

These procedures are used to provide specifications for dump
procedures (see Section 3 B.3.c.). They cause definitions
to be made available to the "snap-shot" system which are used
by dump procedures. They generate 2 word calling sequences,
and they are independent of the setting of the conditional
switch.

(1) X$BUFR procedure defines an area of core as a buffer for
use by the X$TAPE procedure or the X$DRUM procedure. The
same buffer may be used for any number of tape and drum
dumps; it must be provided, however, prior to executing

4 98
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

any X$TAPE or X$DRUM call for which it is to be effective.
This procedure is called by:

X$BUFR start,length

The field 'start' designates the address of the first
core location in the buffer, and the field 'length'
specifies the length of the buffer.

(2) X$FRMT procedure defines an editing format to be used for
editing dumps. It must be executed prior to executing
any dump for which it is to be effective. It is called
by:

X$FRMT number ,name

editing string

The field 'number' specifies the number of words in the
editing string which follows. The field 'name' contains
a letter to become the name of the format, as it is named
in dump procedure calls; it must be enclosed in quotation
marks. The 'editing string' field consists of a format
definition exactly like the FORTRAN Format statement. It
must be enclosed in parentheses. Any format defined by
X$FRMT is limited to 116 characters per line. Any format
(including the standard formats described below) may be
dynamically redefined, with the most recent definition
being effective. A complete discussion of FORTRAN Format
specifications is included in Section 4 B.2.. The
standard formats which follow are known to the system
without use of the X$FRMT procedure.

Format name Editing string

'F' (8 F 14.8) Fixed decimal

'E' (8 E 14.8) Floating decimal

, I ' (8 I 14) Integer

'A' (16A6) Alphanumeric

'0' (8014) Octal

e. Marking Procedures

X$MARK

X$BACK

These procedures are used to mark points in program execution
between which dumps are saved, and subsequent to which they are
deleted. This permits the programmer to include dump procedures
in a program under checkout which he will only want to see in
case a routine does not terminate normally. These marking
procedures generate 1 word calling sequences and are independent
of the conditional switch.

X$MARK is used to denote the point beyond which dumps will be
deleted if a given later point in the program is reached.

4 99
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

X$BACK is used to denote the point at which the set of dumps
following the last X$MARK call may be detected. X$BACK must
be preceded in execution by a call to X$MARK.

Thus, X$MARK and X$BACK behave much as a pair of parentheses
surrounding portions of a program in which dumps are to be
saved for editing only if termination occurs between them.

X$MARK and X$BACK pairs may be nested to a depth of five. The
total number of occurances of X$MARK and X$BACK is unrestricted.
The calling sequence for these procedures is:

X$MARK

X$BACK

f. Calls to lCS

rcs (described in Section 3 B.9.a.) may be used by a worker
program by means of the calling sequences described in this
section.

(1) To put res into operation, the following instruction
should be executed:

J MlLDR$

This is equivalent to turning lCS on by means of an "lCS"
or "XOT rcs" control card (see Section 3 B.9.a.). Note
that return to the worker program is not automatic; if a
return is desired, an rcs "JUMP" operation must be
executed. rf provision is not made to return to the
worker program by means of the "JUMP" operation, rcs
will turn control over to the system routine Cel (see
Section 2 B.1.) when it terminates.

(2) To utilize the "octal dump" routine in rcs, the following
calling sequence should be executed:

SLJ MIDMP$

F registers,length,address

(in which: F 3,5,18).

The field 'registers' contains a number from 0-7
corresponding to the "R" field of the rcs "snapshot"
card (see table in Section 3 B.9.a.).

The field 'address' specifies the address of the first
core location to be dumped; the field 'length' indicates
the number of core locations to be dumped.

When this calling sequence is executed, the required
areas of control and core storage are immediately printed.
The execution area on drum is not needed, nor are any of
the diagnostic tables produced by the processors or the
Allocator.

4 100
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

C. INITIALIZATION AND TERMINATION

A worker program is initialized by the user through the use of the XQT
control card (see Section 3 B.S.b. and Appendix C). This results

4

in the construction and loading of the worker program and associated
tables followed by a jump to the starting addfess of the worker program.

Control can be returned to the executive system by a jump to the
system location MEXIT$, indicating normal completion of the worker
program. The executive will continue executing the run as directed
by the remaining control cards. A PMD control card with an 'E' option
(refer to Section 3 B.9.b. and Appendixes C 1. and C 2.) will be
bypassed. If non-control card or EOF control cards are encountered
before reaching the next control card, these cards will be bypassed with
a notation on the print output to the effect that such cards were
encountered. Any dynamic dumps will be recalled from drum, edited and
output into the print file (see Section 3 B.9.). ~hen using a
processor, the user should refer to the processor manual to determine
the method of indicating the return of control in the source language.

Return of control via a jump to the system location MERR$ indicates to
the executive that the worker program is terminating in the error mode.
The system responds by acting in the same manner as if control were
returned via MEXIT$, except that; a) the contents of the B, A, and R
registers are edited and entered into the print file, b) all non­
control cards and EOF cards are ignored until a PMD, RUN, or FIN
control card is encountered, and c) a PMD control card with or without
the 'E' option will be honored. The remainder of the card deck
following the PMD control will be processed as if the worker program
terminated via MEXIT$.

When a return is made to MERR$, the reason for error termination is
indicated by a message in the print file preceding the dump of the
B, A and R registers. These diagnostic messages are explained in
Section 6.

A jump to the executive return point MXXX$ will immediately terminate
the run. All control cards and data cards will be ignored until a RUN
or a FIN control card is encountered. Dynamic dumps will not be edited,
and post-mortem dumps will not be honored. The message "RUN ABORTED"
in the print file indicates termination via MXXX$.

The operator has the ability to cause a program to exit to either
MERR$ or MXXX$. For the procedure of operator intervention refer to
the 1108 EXEC II Operator's Reference Manual.

101
PAGE:

UP-4058 UNIVAC 1108 EXEC II 5
SECTION:

5. JOB SET-UP

A. RUN DECKS (Examples)

1. COBOL Compilation

The following run deck accomplishes the compilation and execution
of a COBOL program which requires no magnetic tape drives.

V COB NAME 11

V RUN ABCDEF 1234
56, la, 15 2

1. RUN card introduces run.
ABCDEF is Program ID.
123456 is Account no.
10 is estimation of time for run.

4

15 is estimation of pages of print output.

2. COBOL Processor Control Card calls COBOL processor to produce
the relocatable element NAME11/CODE. No source language
element is entered in the peF.

3. The deck of source language which the COBOL compiler is to compile.

1
PAGE:

UP-4058 UNIVAC 1108 EXEC II 5
SECTION:

4. The XQT card calls the Allocator to produce an absolute element
from the relocatable element NAME11/CODE, and then calls the
loader to load and execute the program. Printing of diagnostic
information produced by the Allocator is suppressed.

5. The FIN card terminates the run deck.

2. Reassembly from Magnetic Tape

Reassembly of a source language element which resides on magnetic
tape can be accomplished by the following run deck.

\l FIN

TRW A, B

14
TEF B

13

12
TEF B

au T B, 1

9

6

vR ASG 05/01, B=B
5

4

\7RUN ABCDEF, 123456
3

2

1. Run Card - Time and page limits taken as 5 min, 50 pages
respectively.

2. Assign operation label 'LABEL' to logical unit A.

3. Assign tape drive on physical channel 05 and unit 01 to
logical unit B; rewind tape.

4. Callout complex utility routine.

5. Read one file from Tape A into PCF.

6. CalIon assembler to assemble the source language element
N1 from the PCF, while inserting the source language corrections;
enter into PCF updated source language element N1 which deletes
the original element N1, and enter relocatable element N1/CODE.

2
PAGE:

UP-4058 UNIVAC 1108 EXEC II 5
SECTION:

7. Source language corrections.

8. Callout complex utility routine.

9. Write all relocatable elements in peF to magnetic tape on logical
unit B.

10. Write End-of-File on tape on logical unit B.

11 • Write all elements in PCF to magnetic tape on logical unit B.

12. Write End-of-File on tape on logical units B.

13. Rewind tapes on logical units A and B.

14. FIN card terminates Run deck.

3. Compilation from Tape

Run deck to compile a program from tape and then execute the program
twice using different data. Print output files are written onto
tape.

V ASG A= INPUT

VTPR TAPE01

VC RUN ABC, 123,10,10

3
PAGE:

UP-4058 UNIVAC 110B EXEC II 5

SECTION:

1. Run card-priority of 'ct.

2. TPR card directs print output to tape.

3. Assign logical unit 'A' to operational label 'Input'.

4. Call upon complex utility routine.

5. Position tape 'A' to beginning of the element 'ELEMNT'.

6. Call upon the FORTRAN Compiler to compile the element 'ELEMNT'
from tape 'A'. The relocatable element 'ELEMNT/CODE' is produced.

7. Call the Allocator to allocate the relocatable element
'ELEMNT/CODE', and then call the loader to load the program
for execution.

8. Deck of data for use by the program 'ELEMNT/CODE'.

9. Same as 7. By selection rules, 'XQT ELEMNT' in this case.

1 o. Same as 8.

11. FIN card terminates deck.

4. CUR Run To List Table of Contents For PCF Stored on Magnetic Tape

11

8

6

VRUN AB, 12, 10,20,7,8 3

2

4
PAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

1. Run card-lAB' is the ID, 12 is the account no. estimated
time 10 min, estimates pages 20 pages, print output to
channel 7, punch output to channel 8.

2. Assign operational label 'NAME' to logical unit 'X'.

3. Callout the complex utility routine.

4. Read 1 file from tape X into PCF.

5. Print listing of table of contents of rCF.

6. Position tape X to beginning of third file.

7. Era se PCF.

8. Read 3rd file from tape X into PCF.

9. Print listing of elements in peF.

10. Rewind tape X with interlock.

11. FIN card terminates run deck.

5 5
PAGE:

UP-40S8 UNIVAC 1108 EXEC II

5. Execution of Programs Stored on Magnetic Tape

The first file of tape 'A' contains the absolute elements
Prog 1 and Prog 2.

VH MSG INSERT TWO
PART PAPER

V RUN 1234, SNRAHC,
5, 100

1. Run Card.

DATA DECK FOR
PROGI

7

6

2

VFIN

TOC

15

13

12

SECTION:

17

2. Message to operator: Operator will type in'S' when ready
to continue.

3. Assign operational label 'FILE' to logical unit 'A'.

4. Call in complex utility routine.

5. Read in one file from tape 'A' to PCF.

6. Write heading on and consecutively number all following pages.

5 6
PAGE:

UP-4058 UNIVAC 110B EXEC II
SECTION:

7. CalIon loader to load and execute the absolute element
'PROG1' •

8. Data for PROG1.

5

9. Write new heading on all following pages. Reset page count to 1.

10. CalIon loader to load and execute PROG2.

11. Data for PROG2.

12. Turn off Heading.

13. Call in complex utility routine.

14. Erase PCF.

15. Read second file of tape IAI into PCF.

16. Print listing of table of contents.

17. FIN terminates run deck.

6. Incorrect Decks

The following are examples of run deds which are in error. In the
first example PROG2 has external references to PROG1 which is not
in the complex.

VRUN AS, 12,111',111'

2

7
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SEC TION:

1. Run card.

2. Improper assign card-ignored.

3. Calion complex utility routine.

4. No operation performed because 'A' is not defined.

5. List (empty) table of contents.

6. Assembly not possible because source language PROG1 is not
in complex.

7. Calion assembler to assemble source language element PROG2.

8. Source language for assembler.

9. Program execution not possible since PROG1 not in complex.

10. FIN card terminates run deck.

In this example an incorrect RUN card invalidates the deck.

V RUN $12,iA

1. Incorrect form of RUN card.

2. These cards ignored.

3. FIN card terminates deck.

B. REMOTE OPERATION

5

The remote user essentially has full use of EXEC II.
characterisitics of remote operation are noted here.
can be found in the 1108 Operator's Reference Manual.

However, certain
Further information

8
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

1. Operating Instructions

Voice communications are established between the 1108 operator and
the remote site before beginning data transfer. Before switching
to data, the 1004 Remote operator must clear all alteration switches
and depress START, CLEAR, FEED and RUN buttons. The Remote operator
will use the alteration switches in the following manner for complete
control over all 1004 operations.

Alteration switch 1 will act as the EXECUTE switch of all combina­
tions of switches 1, 2, and 3. The EXECUTE switch must be reset
each time a new command is to be executed. Switch 1 must be set
after the command has been set.

Switches

#1

#2

#3

#1 ,#2

Alteration Switch Commands

Command

READY

READ

HALT

HALT
GO VOICE

Action

Initial "READY" - Notifies the 1108 EXEC
II System that the Remote 1004 is "READY"
for operation and that a new user is
taking control of the channel. The
Executive assumes that the 1004 site is
ready to receive print files and punch
files at this time.

"READY" After Halt (See Action of "HALT"
Commands) - Notifies the EXEC II System
that communications are to be resumed
and that the input/output operations
which were in progress at the time of
the "HALT" are to be continued.

Notifies EXEC II to read one or more
RUN files and submit them for execution.
The last file to be read on this command
must be terminated by a Remote Stop Card
(plus 1 additional card for the wait
station.) The additional card could be
the RUN Control Card of the first file
of the next group. A RUN file is not
submitted for execution until the entire
file has been read.

Notifies EXEC II to halt all communications
on the 1004 channel. When the "READY"
command is executed, all operations will
resume.

Same as #3 (HALT), except the 1108
operator is notified to place the data
line in the "talk" mode for voice
communications with 1004 operator. After
both operators switch back to the "Data"
mode, the "READY" Command is used to resume
operations.

5 9
PAGE:

UP-40S8 UNIVAC 1108 EXEC II

Switches

#1 ,#3

#2,#3

#1 ,#2,#3

Command

ABORT
PRINT

ABORT
PUNCH

OFF­
LINE

Action

Notifies EXEC II that the remainder of
the file currently being printed on the
1004 is to be ignored and that printing
is to begin with the next print file, if
present. A print file is defined as that
output caused by one RUN file.

Notifies EXEC II that the remainder of
the file currently being punched on the
1004 is to be ignored and that punching
is to begin with the next punch file,
if present. A pu~ch file is defined as
that punch output generated during the
execution of one RUN file.

SECTION:

This command must be used when the 1004
operator is ready to relinquish the
channel. When the command is used in this
manner, it will cause the Executive to:

1. stop all communications on the 1004
channel,

2. and condition to accept an initial
"READY" command from the next user.

If the transmission of one or more files
is in progress, this com~anj will cause
the Executive to:

1. output the remainder of the current
print file,

2. output the remainder of the current
punch file,

3. continue reading cards until a remote
stop card (plus a "wait station"
card) is encountered,

4. and then, stop all communications with
the 1004 and condition to accept an
initial "READY" command.

NOTE; Caution must be used in
executing the "OFF-LINE" Command if
there are output files destined for
the remote site-but not yet in pro­
gress. The 1004 operator must make
arrangements with the 1108 operator
to dispose of those files yet on drum.
Output files which are not wanted
should be aborted when they appear
on the remote printer rather than
executing the "OFF-LINE" Command.

5 10

PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

2. Stop Cards

The Remote Stop Card is not passed to the System by the 1004. The
format of the card is as follows:

column 1 - master-space (7-8 punch)

column 2 - master-space (7-8 punch)

column 3 - not looked at by the 1004 and can contain any comments
thru 80 desired by the user (possibly to further identify it

as a stop card).

FIN Control Card are ignored on card input from a remote 1004.
Existing decks do not have to be changed because of the presence of
FIN cards.

If no priority option is given on the RUN card of a job entered from
a remote site, the priority of C (rather than D) is assigned by the
EXEC. The full priority range (A through Z) remains available to
all users.

For on-line operations at the remote site, the user may print, read
cards in the eighty column mode, and punch cards in the eighty
column mode. The user of ninety column cards is restricted to on-site
1004-1108 communications and off-line 1004 operations only. Magnetic
tape and paper tape are available to the remote user at the 1108 site
only; the 1108 cannot reference this equipment at the remote site.

Unless otherwise specified on the RUN card, print and punch output
is directed to the remote site from which the run is entered. The
remote user may specify that his output be directed to devices at
the 1108 site, or he may have his print output placed on magnetic
tape for transmission at a later time. For runs during which there
is to be little output for a long period of time, it is good operating
procedure to stop communications between the 1108 and the 1004 until
the run has been completed, at which time communications can be re­
established and transmission of output can continue.

In order to prevent unnecessary "time-outs" at the 1108, the 1004
stop button should never be depressed except upon initial card
loading or during the HALT period.

If reading is to occur, the operator must always provide a card for
the wait station.

If the card jam occurs, remove the unread cards (including the card
in the wait station), repair the deck, place the cards again in the
hopper, and depress FEED and RUN.

A delay at the 1004 for longer than 5 minutes will cause the 1108
to "time-out" and give the 1108 operator the opportunity to re­
initiate the function. Thus, the 1004 operator is given at least
5 minutes to make repair. (fix card jams, put in paper, etc.).

MSG cards provide another means of communicating with the 1108 op­
erator. If a large message is to be printed, the series of message
cards with 'N' options can be included in a run with print output
directed to a printer at the 1108 site. The slow rate of console
printing is thereby avoided.

5 11

PAGE:

UP-40S8 UNIVAC 1108 EXEC II 6
SECTION:

6. DIAGNOSTIC MESSAGES
PRODUCED BY SYSTEM

A. RESIDENT (EXEC) CONSOLE PRINTOUTS

ABORT

Indicates worker program termination via MXXX$. (See Section 4 C.)

ASG CARD MISSING

Indicates that an ASG card (see Section 3 B.1.b) was encountered containing an
absolute assignment without any assignment equation. The next sequential card
is expected to be an ASG card with the required equation. This message indicates
that the expected ASG card was not found. The job is terminated via MXXX$ (see
Section 4.C.).

CANT POSITION UNIT

Indicates unrecoverable or abnormal error status returned for any tape operation
performed by THP (the console tape handler). THP is terminated via ZTERM$, and
tap e i s d e ass i g n ed • (See Sec t ion 4 B. 1 • a •)

CARD FAULT CC

Indicates that an error occurred on the card reader which was answered by an
F keyin. Reading is terminated. CC represents the card reader channel in
decimal. Note that this message may appear on the print output also.

CARD INTLK CC

Indicates no more cards in the reader, and no FIN card has been encountered.
Reading may be terminated by using a FIN card or by operator keyin. (See
Section 3 B.3.a.). CC represents the card reader channel in decimal.

CC/UU BAD

Indicates that LOD symbiont has detected an unrecoverable error while attempting
to read the tape on CC/UU. The tape is deassigned and the symbiont terminated.
No recovery is possible.

CC/UU BAD TAPe:

The DLT symbiont (which writes a print tape in DLT-5 format) has detected an
unrecoverable error in attempting to write. The tape is rewound and the symbiont
suspended via ZSPND$. (See Section 4 B.1 .a.). CC/UU represents the tape
channel and unit. To recover, reinitialize symbiont after mounting new tape.

1
PAGE:

UP-40S8 UNIVAC 1108 EXEC II 6
SECTION:

CC/UU BAD TAPE, RELEASED

The paper tape read symbiont has detected an unrecoverable tape error while
attempting to write on magnetic tape. CC/UU represents the tape channel and
unit. The tape is rewound and the symbiont suspended via ZSPND$ (see
Section 4 B.1 .a.). To recover, reinitialize symbiont after mounting new tape.

CC/UU DEASSIGNED BY DMP

The DMP symbiont has inadvertently taken a file directory entry via ZNEXT$
(see Section 4 B.1.a.) for a file which is on tape. Since the entry which DMP
deleted should have been available to another routine (e.g. PRINT$), the console
operator must reinitialize the tape operation. Tape unit CC/UU is deassigned
to permit this action.

CC/UU EMPTY

Indicates that the worker program has deassigned tape unit CC/UU, which was
previously assigned to it. This may be done by the worker program calling
THRU$. The unit is available for reassignment.

CC/UU EXHAUSTED

Indicates that the LOD symbiont has detected End-Reel on the file it was
reading. The tape is rewound with interlock, and the symbiont is suspended via
ZSPND$. The operator is expected to mount the next reel and reinitialize LOD.

CC/UU EXHAUSTED. MOUNT NEXT TAPE. INITIATE QPN

End-Reel sentinel was detected by the paper tape symbiont named QPN. The paper
tape punch is turned off, the tape is rewound, interlocked, and QPN is suspended
via ZSPND$. CC/UU represents the tape channel and unit. Operator action is
obvious.

CC/UU FULL. MOUNT NEW TAPE AND INITIATE DLT

The DLT symbiont (which writes a print tape in DLT-5 format) has encountered the
end of tape, and has no unit to swap to. The tape is rewound, interlocked, and
the symbiont suspended via ZSPND$. Operator action is obvious. CC/UU represents
the tape channel and unit.

CC/UU FULL. MOUNT NEW TAPE AND INITIATE QRN

Indicates End-of-File detected on the magnetic tape being read by the paper tape
read symbiont named QRN. The tape has been rewound, interlocked, the paper tape
reader has been turned off, and QRN is suspended. Operator action is obvious.
CC/UU represents the tape channel and unit.

CC/UU FULL

Indicates that the DMP symbiont has encountered End-Reel on tape unit CC/UU.
The tape is rewound with interlock, DMP is suspended via ZSPND$. The operator
is expected to mount a new tape and reinitialize DMP.

CC/UU HAS NN FILES OF XXXXX

Indicates that the DMP symbiont has satisfied the operator keyin by du~ping
(decimal number) NN files on tape unit CC/UU. XXXXX will be PRINT, PUNCH, INPUT
corresponding to the type of file written.

2
pAC;E:

UP-40S8 UNIVAC 1108 EXEC II 6
SECTION:

cc/uu INPUT DONE, RELEASED

The paper tape read symbiont has transferred the number of files indicated by
previous keyin to magnetic tape. The tape is rewound with interlock, and the
symbiont is terminated via ZTERM$. CC/UU represents the tape channel and unit.

cc/uu IS .DL

Indicates that the DLT symbiont (which writes a print tape in DLT-5 format)
has swapped to an alternate unit. The message refers to the completed tape,
which is rewound. CC/UU represents the tape channel and unit.

cc/uu IS .NN

Indicates that system file tape .NN has been deassigned.
deassigned unit. This may occur by operator keyin, e.g.
the file on CC/UU has meaningful information.

CC/UU MOUNT REEL NN OF XXXXXX

CC/UU represents that
G SW .PR. Note that

Indicates worker program calIon TSWAP$. NN represents the required reel number
of the input file named XXXXXX. No action is necessary if the proper tape is
mounted and not interlocked.

CC/uu PRINTED RELEASED

Indicates that the print symbiont has finished printing information on the tape
it was reading. The tape is rewound with interlock, and the symbiont is
terminated via ZTERM$. CC/UU represents the channel and unit of the tape.

CC/UU PUNCH TAPE BAD, RELEASED

Indicates that an unrecoverable error has been detected on the tape being read
by the paper tape punch symbiont. CC/UU represents the tape channel and unit.

CC/UU PUNCHED RELEASED

PAGE:

Indicates that the paper tape punch symbiont has finished punching the information
on the tape it has been reading, and has rewound the tape, interlocked, and
terminated. CC/UU represents the tape channel and unit. This probably indicates
a hardware malfunction. The operator may attempt to recover by reinitializing
the operation which LaD was performing. If this fails, call field engineer.

CC/UU RELEASED, DRUM ERR

Indicates that the LaD symbiont has encountered an unrecoverable error return
from the drum r/o package. The tape which is in use by LaD is deassigned
(CC/UU) and LaD is terminated via ZTERM$.

CC/UU TAPE BAD

Indicates that the print symbiont has encountered either an unrecoverable error
or invalid format on the tape it has been printing. The message PRINTED RELEASED
will follow.

CC/UU .NN DIDNT REWIND

Indicates error return from tape I/O package attempting to rewind system file
.NN on unit CC/UU. Normally this will type out when the tape is being deassigned.
No action is required.

3

UP-4058 UNIVAC 1108 EXEC II 6
SECTION: PAGE:

ee/uu .NN REMOVE

Indicates that the completed system file .NN on tape unit CC/IUU is being deassigned.
The tape should be removed, unless it is to be used at this time. Note that this
message normally occurs when tape swap of system file takes place.

CI CCC

This typeout follows termination of a remote run. It contains the number of
cards ir. the input deck (cec), corresponding to the CARDS IN field of the
accounting line in the print output listing.

co eee PG PPP

After termination of a remote run, this line indicates the card and print output
of the run. eec represents the number of cards punched, and PPP represents the
number of pages printed. Note that this information also appears on the accounting
line in the print output listing.

CODE ERROR CC

Indicates a nonvalid punch on the first of three cards in the error stacker of
the card reader. These cards have not yet been passeo into the system. CC
represents the card reader channel in decimal. The operator must respond with
either F ee to terminate reading, or e ce (after any corrective action) to
proceed.

DRUM ERROR IN CLEAR

Indicates that the drum I/O package has not returned a normal status during
attempt to clear the dru~ to zero after a manual tape bootstrap. The system
enters a loop (REBOOT).

DRUM FAULT CC/UU

Drum I/O package has encountered unrecoverable error on the drum on CC/UU. The
unrecove~able error return is taken to the worker program. The status word in
octal format follows the message. Note that this message may appear on the print
output listing.

DRUM FULL

Indicates that no drum buffers are available for print output. This means that
the worker program will not regain control until a routine such as the print
symbiont releases a drum buffer. This typeout is not provided in some systems.

END RUN HH: fv1Jvl: SS

Typed at termination of a run. HH:fv1f'v1:SS represents the termination time in
hours, minutes, and seconds.

ERR

Indicates unrecoverable tape or drum error during bootstrap. ~o portion of the
system has been dependably loaded. Proper action is to reboot (if several
attempts fail, call the field engineer).

ERROR

Indicates worker program termination via IIIERR$. (See Section 4.C.).

4

UP-40S8 UNIVAC 1108 EXEC II 6
SECTION:

ET HH:1VU\J1:SS

This typeout follows a remote run to indicate total central computer time used
by the run (HH:MM:SS) in hours, minutes, and seconds, corresponding to the
ELAPSED TIME field on the accounting line of the print output listing.

EXEC II

Indicates successful completion of that part of the bootstrap routine which loads
the system into core and drum. Note that the processors have not yet been
written to drum. The operator may now turn on the Real-Time Clock and type in
time (T HH/MM) and data (D MM/DD/YY).

FILE NOT CUR FORr~T

Bootstrap operation has encountered a malformed file while attempting to load
the processors. No processors are loaded. System tape must be corrected.

F I LE-TABLE- FULL

Indicates that the console tape handler (THP) has attempted to place an entry
in the file directory via ZFILE$ (see Section 4 B.1.a.), and found it full. The
routine is terminated without completing the tape operation. The operator
should reinitialize the tape operation later.

IDLE

Indicates that no worker program is currently operating, and no run deck is
available on the drum. (Replaces old typeouts BEGIN IDLE and END IDLE.)

I/O DELAY CC

Indicates that a single input or output operation on channel CC has not been
completed within a preset arbitrary time. The dispatcher routine checks for
channel activity on all channels and continues looping until all channels are
clear. Note that this may occur if operator fails to respond to certain I/O
error typeouts (e.g. TAPE ERROR).

KEY ER

Indicates that an unsolicited keyin was made incorrectly. The keyin causing
this typeout is ignored.

LABEL ERROR LLLLLL UNIT X(NO OR GO)

Indicates failure of the file label check routine in the label and item
package (see Section 4 B.1 .b., part 6). LLLLLL is the file name actually read
in from tape. X specifies the logical unit (as on an ASG card. (See
Section 3 B.1 .b.) The operator is expected either to mount a new tape and
type in NO, or to type in GO to proceed with the file as though the label check
had passed.

LABEL IN USE

Indicates that the operator has attempted to assign a tape with an operational
label which is already in use. The new assignment is ignored.

5
PAGE:

UP-40S8 UNIVAC 1108 EXEC II 6
SECTION:

LATER

Indicates an unsolicited keyin has been made which cannot be handled because a
previous keyin is still being worked on. The keyin causing this typeout is
ignored.

MAX PAGES

Indicates that the current job has produced more print output than specified
on RUN card (see Section 3.B.1.a.). The job is permitted to proceed normally.

MAX TIME

Indicates that the estimate of running time for the current job, as specified
on RUN card (see Section 3.B.1 .a.) has been exceeded. The job is permitted to
proceed normally.

MOUNT *

Calls for operator assignment of a scratch tape, as specified on an ASG card.
(See Section 3.B.1 .b.)

MOUNT NNNNNN

Calls for operator assignment of a tape with operational label NNNNNN, as
specified on an ASG card (see Section 3.B.1 .b.).

l'vlOUNT .DL

Calls for operator assignment of a tape to be used for print output in DLT-5
format, as specified on a TPR card (see Section 3.B.3.b.).

MOUNT .PR

Calls for operator assignment of a tape to be used for print output in standard
format, as specified on a TPR card (see Section 3.B.3.b.) or as specified by a
previous keyin.

MSG

Indicates a MSG card in the RUN deck (see Section 3.B.2.). The information on
the card is typed next. No action is required, unless a WAIT message follows.

NNN LOAD ERROR

Indicates other than normal status was returned by the drum I/O package following

PAGE:

an attempt to read the symbiont named NNN from drum via ZLOAD (see Section 4.B.1 .a.).
No further action is taken by EXEC.

NN PROCESSORS

Indicates number of processors loaded by bootstrap routine is NN. (NN will not
be greater than 10.) This typeout occurs only if console jump switch 1 is set
prior to the bootstrap.

6

UP-4058 UNIVAC 110B EXEC II 6

SECTION:

NO NNN

Indicates that the symbiont named NNN, which has been called for (e.g. by keyin)
does not exist in the system. No further action is taken by EXEC II.

NO .NN ASSIGNED

Indicates deassignment of the system file tape .NN on unit CC/UU. This may occur
due to tape swapping. No action is necessary.

NOISE BLOCK CC/UU

Indicates that a tape block smaller than the noise constant was encountered by
the tape I/O package. No action necessary.

NOISE IS ON CC/UU

Indicates a status of 44 returned while attempting to skip while erasing on
IVC, VIC, VIIIC drives. Return to the worker program is made via the abnormal
return point. However no further action is taken by EXEC II.

NSI SS ON CH NN

Indicates occurrence of an interrupt for which the system was not prepared.
SS contains the top 4 bits of the status word in octal notation. NN specifies
the channel in decimal notation. EXEC takes no further action.

PARITY ERROR CC

Indicates hardware parity failure in remote transmission on channel CC. Operator
may respond with either R CC to try again, or F CC to fault the channel and
terminate the remote operation.

PRINT INTLK CC

Indicates hardware interlock on printer on channel CC (normally due to no more
paper). Operator should correct the interlock condition, and type in either
C CC to continue printing with the next line, or R CC to restart printing at
top of last printed page.

PROCESSOR AREA TOO SMALL

Bootstrap routine has run out of drum space while attempting to load processors.
System tape must be corrected.

PROCESSOR NOT ABSOLUTE TYPE

Bootstrap routine has encountered a non-absolute element while attempting to
load processors. System tape must be corrected.

PROCESSORS

Indicates successful completion of the drum operations required to write the
processors to the drum following a manual tape bootstrap. Operator should type
in date and time and turn on the Real-Time Clock, if he has not yet done so.

7

PAGE:

UP-40S8 UNIVAC 1108 EXEC II 6
SECTION:

PUNCH FAULT CC

Keyin of F CC by the operator. The punch file is aborted and the associated
punch symbiont is terminated. Note that this message may also appear on the
print output. CC represents the punch channel.

PUNCH INTLK CC

Indicates a hardware interlock on the card punch unit. CC represents the punch
channel. The operator is expected to respond by typing in either R CC (after
refilling the hopper of the punch with blank cards) to continue, or F CC to
terminate punching.

P.T. PUNCH EMPTY

Indicates no paper in the paper tape punch unit when the worker program attempted
to punch via the paper tape I/O package. Abnormal status is returned to the
worker program. Operator action after reloading the punch depends on program
specifications (normally run request instructions).

REAL-TIME CLOCK INTERROGATED AT HH:MM:SS

Indicates the current time (HH:MM:SS) in hours, minutes, and seconds. Occurs
due to the call LMJ 11, CLOCK by the worker program. No action is required.

RESTART DMP LATER

Indicates that the Dj~P symbiont has caught up with the Card Read symbiont while
dumping card input to tape. DMP suspends itself via ZSPND$, and should be
reinitialized after the Card Read operation is complete.

RESTORE PAP~R TO STANDARD FORMS

Indicates that a call was made in the preceding run to PAPER$. This called for
special forms to be mounted in the printer. The special forms in the printer
may now be removed and standard paper used. Note that no indication will be
given if the paper is not changed when printing occurs.

RUN

Indicates that a user job is beginning. The information on the RUN card of the
input deck is typed on the following line. The start time for the run also
appears in the form HH:NM:SS, meaning hours, minutes, and seconds.

SCAT DRUM ERROR

During attempt to read EXEC from drum to create system tape via XQT RSDNT (see
Section 3 B.8.), an abnormal completion or unrecoverable error status was
returned from the drum I/O package. The routine terminates via IVlfRR$.

SERVO IN USE

Indicates operator attempted to assign a tape servo which has already been
assigned. The new assignment is ignored.

8
PAGE:

UP-4058 UNIVAC 110B EXEC II 6
SECTION:

TAPE ERROR CC/UU

Indicates a non-normal completion of a tape operation. This is followed by the
status word in octal format. The operator is expected to type in R CC, C CC, or
F CC to attempt recovery, continue with the next tape block, or declare a fault
condition respectively. No return is made to the worker program until operator
action resolves the error. CC/UU specifies the tape unit.

TAPE FAILED TO WRITE MONITOR

During attempt to write system tape via XQT RSDNT (see Section 3 B.8.); an
abnormal completion or unrecoverable error status was returned from the tape I/O
package. The routine terminates via MERR$.

TAPE FAULT CC/UU

Indicates that an unrecoverable error condition exists on tape unit CC/UU. This
may occur by operator keyin (F CC). The unrecoverable error return is made to
the worker program. This typeout is followed by the status word in octal format.
Note that this may also occur on the print output listing.

TAPE INTLK CC/UU

Indicates either that the tape is physically interlocked, or that a write was
attempted on a unit which was protected against write operations. The operator
has the same options as for a tape error condition. CC/UU represents the tape
channel and unit.

TAS-CONFUSED

Indicates that an operational tape label given to the tape assignment routine,
TAS, begins with , but is not known to the system (e.g •• PR). This may
occur by erroneous keyin or by incorrect specification on an ASG card (see
Section 3 B.1.b.). The tape assignment routine terminates itself without making
any assignment.

TOO MANY PROCESSORS

Indicates attempt to load more than 10 processors (1108 Assembler, etc.) during
bootstrap operation. Bootstrap is not completed. System tape must be corrected.

UPCERR

Indicates UNPRINTED CONTROL-CARD ERROR. The RUN, TPR, DPR, and HDG control
cards at the beginning of a run deck are not placed immediately into the output
print file, since later control cards may affect them. This error indicates
too many such cards, or such a card out of place in the deck. The job is
terminated via MXXX$.

VERIFY ERROR CC

Indicates a hardware card-read error. The three cards in the error stacker have
not been passed to the system, and the first of these is the card which caused
the typeout. CC represents the card reader in decimal. Operator may terminate
card reading (F CC), or may continue reading, after any corrective action (C CC).

9

PAGE:

UP-4058 UNIVAC 110B EXEC II 6
SECTION:

WAIT

Indicates that the system is in the wait mode. Worker program activity is
stalled until the operator types in S to permit it to proceed. The wait mode
may occur by worker program specification (H option on MSG card, see Section
3 B.2.), or by operator keyin (S ON prior to run).

XXXXXX NOT A PROCESSOR

Bootstrap routine has encountered an absolute element which is not a processor
while attempting to load the processors. System tape must be corrected. .

-NNN A

Indicates that the remote symbiont named NNN has been activated. No action is
required.

-NNN ACTIVE

Indicates that the console operator has attempted to initialize the symbiont
named NNN when it was already active. No further action is taken by EXEC II.

-NNN B

PAGE:

Indicates that the remote card read symbiont named NNN has detected some mal­
formation in the buffer transmitted from the remote unit. This probably indicates
either transmission problems or a plugboard error. The symbiont is terminated
via ZTERM$ (see Section 4 B.1.a.).

-NNN NOT ACTIVE

Indicates that the console operator has referenced the symbiont named NNN without
initializing it. A symbiont must be initialized before it may be otherwise
referenced.

-NNN S

Indicates that the symbiont named NNN has been suspended via ZSPND$. (See
Section 4 B.1.a.). This may be accomplished by operatoi keyin. (.NNN S).

-NNN T

Indicates that the symbiont named NNN has terminated via ZTERM$. (See
Section 4 B.1.a.). Any tape used by the symbiont has been deassigned.

+RMN A

Indicates that the remote control routine RMN is active. RMN corresponds to a
channel containing a CTS unit. The identification for the remote site is printed
after this message when the routine is first activated. No action is required.

+RMN A

Indicates that the remote 1004 operator has temporarily halted transmission.
RMN represents the remote control routine associated with a specific channel.
The remote operator is responsible for further action.

10

UP-4058 UNIVAC 1108 EXEC II 6
SECTION:

~RMN H, GO VOICE

Indicates that the remote 1004 operator has temporarily halted transmission.
RMN represents the remote control routine associated with a specific channel.
The console operator is expected to switch the data phone for the indicated
CTS unit to talk.

Indicates that the remote 1004 operator has terminated transmission to the CTS
unit with which remote control routine named RMN is associated. No action is
required.

*FTO CC

Indicates that the remote control routine associated with channel CC has detected
no activity on the channel for a period of 5 minutes, although the channel was
then active. The operator may respond with R CC to permit another five minutes,
or F CC to terminate the remote operation, or make no response (leaving
responsibility with 1004 operator to take corrective action).

1 004 ERROR CC

Indicates more than 30 seconds elapsed since last function on active on-site
1004 channel CC. Operator may respond with R CC to resume with the next func­
tion, or F CC to declare a fault condition and suspend the corresponding
symbiont. Note that interlock of hardware may cause this.

11
PAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

6.B. RESIDENT (EXEC) PRINTER MESSAGES

ABOVE CARD IN ERROR

Indicates that ICS has encountered a card with improper format (see Section
3.B.9.A). The worker program is terminated via MXXX$.

ABOVE CONTROL CARD IN ERROR - IG~ORED

Indicates that a card containing a MASTER-SPACE in column one (7/8 punch, octal
00) was encountered, but it does nQt have the correct format for any known
control card. The card is bypassed, and the run continues normally.

ACCOUNT

Printed on the accounting line following each run. Followed by the information
found in the 'ACCOUNT NAME' field of the RUN card (see Section 3. B.1.A).

ASG CARD MISS ING

Indicates that an ASG card (see Section 3. B.1.B) was encountered containing an
absolute assignment without any assignment equation. The next sequential card

6

is expected to be an ASG card with the required equation. This message indicates
that the expected ASG card was not found. The job is terminated via MXXX$
(see Section 4. C.).

CALL FOR LOAD OF SUBSEGl\1ENT IN LINK WITH NO SUBSEGl'vlENTS

Indicates that the worker program has referenced MLOAD$ (see Section 4. B.2.B)
to load a subsegment. But MLOAD$ found no subsegment in the current link. An
erroneous map may produ:e this error (see Section 3. B.5.A). The worker program
is terminated via MERR$.

CALLING SEQUENCE ERROR FROM LLLLLL

"First line of a 3-line printout supplied by BCSER$ (see Section 4. B.1.b.(5)(h)4.)
from which the Block Buffering package was called erroneously. Followed by
printout "The location of file description table is ""

CARD FAULT CC

Indicates that an error occurred on the card reader which was answered by an
'F' keyin. Reading is terminated. ICC' represents the card reader channel in
decimal. This message will be printed in case of MERR$ termination if it was the
last 'FAULT' message in the run.

CARDS IN

Printed on the accounting line following each run. Followed by a count in decimal
of the number of cards in the input run deck.

CARDS OUT

Printed on the accounting line following each run. Followed by a count in decimal
of the number of cards punched during the run.

12
PAGE:

UP-40S8 UNIVAC 1108 EXEC II
SECTION:

COMPLEX OVERFLOW

Indicates that an attempt has been made to call a processor when no space exits
in the user PCF. The processor call is ignored by EXEC II, and the job proceeds
normally.

DATA CARDS ENCOUNTERED BY SYSTEM - IGNORED

Indicates that CCI (see Section 3. B.), which expects to read a control card,
has encountered one or more cards which are not control cards. This may occur
as a result of errors associated with control cards (such as missing or
mispunched control cards) or may be due to program termination prior to end
of the data deck it is reading.

DATE

Appears on the heading of each print page when called for by use of HDG card
(see Section 3. B.3.C.). It is followed by the current date in the form
'DDMMYY' (day, month, year).

DEVICE ERROR FROM LLLLLL

6

"First line of a 3-line printout supplied by BDVER$ (see Section 4. B.1.b.(5)(h)4.);
specifies the absolute location of the call to the Block Buffering package in
which the error originated. Followed by printout "The location of file descrip­
tion is."

DRUM FAULT CC/UU

Drum I/O package has encountered unrecoverable error on the drum on 'CC/UU'.
The unrecoverable error return is taken to the worker program. The status word
in octal format follows the message. Note that this message appears only if it
is the last fault message in the run at MERR$ termination.

DUMP I/O ERROR

Indicates unrecoverable error return from drum I/O package when the system is
attempting to write dump information to the drum. The worker program is
terminated via MXXX$. (See Section 4. C).

ELAPSED TIME HH MM SS

Printed on the accounting line following each run. 'HH MM SS' represents the
total central processor time used by the run in hours, minutes and seconds.

ELEMENT TABLE OVERFLOW

Indicates overflow of element table in user PCF (see Section 2. 8.5).
of this table is determined by constants in CONFIG (see Section 2. A).
worker program is terminated via MXXX$ (see Section 4. C).

ERROR DURING LOAD IN MLOAD$

The size
The

Indicates other than normal status returned to load (see Section 2. A) while
attempting to read program subsegment from drum to core. This may occur when
either manual or auto loading is being used (see Sections 3. b.5.A, 4.8.2.8).
The worker program is terminated via MERR$.

13
PAGE:

UP-4058 UNIVAC 1108 EXEC II 6
SECTION:

ERRS IN ELEMENT PRODUCED

Whenever a processor produces an element containing errors, in the absence of cer­
tain option letters (see Appendix C), the element is marked as an error, with the
message printed following the processor output listing. The job proceeds normally.

FILE MODE ERROR

Third line of a 3-line printout supplied by BCSER$ (see Section 4 B.1.b.(5)(h)4.);
specifies the type of error which occurred (see Section 4. B.1.b.(5)(f)3.) followed
by worker program termination via MERR$.

IDENT

Printed on accounting line following each run. Followed by the contents of the
'IDENTIFICATION NAME' field of the RUN card (see Section 3. B.1.B).

ILLEGAL OPERATION LLLLLL

Indicates that an illegal-operation interrupt occured. The location containing
the illegal instruction is printed as 'LLLLLL', and the illegal operation is
printed as 'WWWWWWWWWWWW'.

IMPROPER DRUM RELEASE

Third line of a 3-line printout supplied by BCSER$ (see Section 4. B.1.b.(5)(h)4.);
specifies the type of error which occurred (see Section 4. B.1.b.(5)(f)3.) followed
by worker program termination via MERR$.

INPUT SOURCE ELEMENT MALFORMED

Indicates that the source element (to be input from drum) 3pecified in the source
name field of a processor call control card (see Sections 3. B.4, 3. B.5) is of the
proper type to be input to the processor, but does not contain a symbolic 'PIECE'
(see Section 2. B.5). This may arise from destruction of the table of contents
in the user PCF, or by hardware malfunction, or (rarely) by a shuffled source
deck input via an ELT card (see Section 3. B.6). The processor call is ignored
and the run proceeds normally.

INPUT SOURCE LANGUAGE ELEMENT AMBIGUOUSLY SPECIFIED

Indicates that more than one element in the user PCF (or none in the user PCR,
and more than one in the library PCF) matches the specifications in the source
name field of a processor call control card (see Sections 3. B.4, 3. B.5). The
processor call is ignored and the run proceeds normally.

INPUT SOURCE LANGUAGE ELEMENT NOT AVAILABLE

Indicates that no element in the user PCF or the library PCF matches the
specifications in the source name field of a processor call control card (see
Sections 3. B.4, 3. B.5). The processor call is ignored and the run proceeds
normally.

14
PAGE:

UP-4058 UNIVAC 1108 EXEC II 6
SECTION:

IRRECOVERABLE READ ERROR

Third line of a 3-line printout supplied by BDVER$ (see Section 4. B.1.b.(5)(h)4.);
specifies the type of error which occurred. (See Section 4. B.1.b.(5)(f)2.)
followed by worker program termination via MERR$.

IRRECOVERABLE WRITE ERROR

Third line of a 3-line printout supplied by BDVER$ (See Section 4. B.1.b.(5)(h)4.);
specifies the type of error which occurred. (See Section 4. B.1.b.(5)(f)2.)
followed by worker program termination via MERR$.

I/O ERR IN SYSTEM

Indicates other than normal return from the drum I/O package when a worker
program or nonresident portion of EXEC II is being loaded from drum. This does
not apply to symbionts. The current job is terminated via MXXX$.

LINES OF WWWWWW WWWWWW OMITTED

Indicates that ICS is not printing duplicates of the word with octal format
'WWWWWW WWWWWW'. (See Section 3. B.9.A). The dump operation proceeds normally.

MERR$ TERMINATION

Indicates worker program terminated via MERR$ (see Section 4. C.).

MLOAD$ FOUND NO ACTIVE LINK IN LINK TABLE

Indicates MLOAD$ (see Section 4. B.2.B) has been referenced with no active
worker program link. May be caused by map errors (see Section 3. B.5.A), or by
failure of EXEC II or one of the processors. The worker program is terminated
via MERR$.

MLOAD$ TABLE EXCEEDED-DIAGNOSTICS TERMINATED

Indicates that more than 50 subsegments have been activated via MLOAD$ (see
Section 4. B.2.B) in the current link in a worker program. Diagnostics are
terminated for the remainder of the link. However the worker program proceeds
normally.

NNNNNN- CALL ERR FROM LLLLLL

Indicates an incorrect calling sequence to routine 'NNNNNN'. Register 11 which
normally contains the return point from the subroutine is printed as 'LLLLLL'.

NO ICS

A call was made to ICS in a system which does not have ICS. (See Section 3. B.9.A).
The worker program is terminated via MXXX$.

NO PROGRAM EXECUTED - NO DUMP TAKEN

Indicates that a PMD card was encountered which did not follow worker execution
of a worker program. The PMD card is ignored and the run continues normally.

15
PAGE:

UP-40S8 UNIVAC 1108 EXEC II 6
SECTION:

NOT IN ERROR MODE - NO DUMP TAKEN

Indicates that a PMD card (see Section 3. B.9) with an 'E' option letter was
encountered following program termination via MEXIT$. No dump is taken and the
run continues normally.

OPERATOR KILLED RUN AT LLLLLL

Indicates that the console operator forced MERR$ termination by typing in 'E'.
The current location in the worker program at the time of termination is
printed as 'LLLLLL'.

PAGE

Appears on the heading of each print page when called for by use of HDG card
(see Section 3. B.3.C). It is followed by the page number in decimal format.

PAGES

Printed on the accounting line following each run. Followed by a count in
decimal of the number of pages of print output by the run.

PREVIOUS ASSIGNMENT FOR X IGNORED

Indicates that an ASG card (see Section 3. B.1.B) was encountered with a
reference to logical unit 'X', which was previously assigned. The old
assignment is ignored and the new one is honored, and the job proceeds normally.

PUNCH FAULT CC

Indicates either a failure in the punch unit, or a previous keyin of 'NNN F'
by the operator. The punch symbiont is terminated. Appears if worker program
terminates at MERR$ and this was the last 'FAULT' message in the run.

REMAINING CONTROL CARDS IGNORED

Indicates worker program termination via MERR$ followed by a control card
which was not a PMD card with 'E' option. The remainder of the run deck is
ignored.

RUN ABORTED

Indicates worker program termination via MXXX$. (See Section 4. C.).

RUN CONTROL CARD MISSING -- DECK NOT ACCEPTED

Indicates that the first card of an input file was not a RUN card. The job
is terminated via MXXX$ (see Section 4.C.). All cards are ignored until a
RUN card is encountered.

SNAP SHOT

Precedes print output of an ICS snap-shot operation. (See Section 3. B.9.A).

16
PAGE:

UP-4058 UNIVAC 1108 EXEC II
SECTION:

STORE ERROR AT AAAAAA OR BBBBBB

Indicates that a storage lockout interrupt has occurred. The instruction which
caused the interrupt is at either location 'AAAAAA' or 'BBBBBB'.

SYSTEM IN INTERRUPT CODING FOR CHANNEL CC

Indicates that at the time of MERR$ termination, channel ICC' was in control,
and interrupts were prevented. This implies that routine was in interrupt
coding.

TAPE FAULT CC/UU

Indicates that an unrecoverable error condition exists on tape unit ICC/UU'.
This may occur by operator keyin ('F CCI). The unrecoverable error return is
made to the worker program. This message appears only if it was the last fault
condition prior to a MERR$ termination.

THE LOCATION OF FILE DESCRIPTION TABLE IS

Second line of a 3-line printout supplied by BDVER$ or BCSER$ (see Section
4. B.1.b.(5)(h)4.); specifies the absolute location of the file description
table associated with the error. Followed by one of the following:

FILE MODE ERROR
IMPROPER DRUM RELEASE
IRRECOVERABLE READ ERROR
IRRECOVERABLE WRITE ERROR

UNEXPECTED RETURN TO SYSTEM

Indicates that a worker program returned control to EXEC II other than through
MEXIT$, MERR$, or MXXX$. The worker program is considered to have terminated
via MXXX$ (see Section 4. C).

6 17
PAGE:

UP-4058 UNIVAC 1108 EXEC II

6.C. C.U.R. PRINTER MESSAGES

ABSOLUTE

6
SECTION:

Identifies a type 2 element on a table of contents listing. May also be pro­
duced by TOC operation in describing entry points for block data.

AN ABSOLUTE ELEMENT CANNOT BE LISTED

A LIST card told CUR to list an element found to be a type 2 (absolute) element.
CUR has no facility for this operation. Error may be due to improper tape
positioning. CUR continues in normal mode.

A PROCESSED MAP ELEMENT CANNOT BE LISTED

A LIST card told CUR to list an element found to be a type 4 (processed MAP)
element. CUR has no facility to do this. Error may be due to improper tape
positioning: CUR continues in normal mode.

BANK 1 DEPENDENT

Caused by TOC card describing entry points for block data.

BANK 1 INDEPENDENT

Caused by TOC card describing entry points for block data.

BANK 2 DEPENDENT

Caused by TOC card describing entry points for block data.

BANK 2 INDEPENDENT

Caused by TOC card describing entry points for block data.

BLANK COMMON

Caused by TOC card describing entry points for block data.

BLOCK TABLE

Heading for TOC block table listing.

BLOCK TABLE EMPTY

A TOC card told CUR to list the block table in the PCF. It is empty due to an
ERS card or reboot. CUR continues in normal mode.

18
PAGE:

UP-40S8 UNIVAC 1108 EXEC II 6
SECTION: PAGE:

BLOCK TABLE OVERFLOW

Indicates that the number of block data programs entered in the PCF exceeds the
amount of space allotted (in CONFIG) for the block table, which describes these
elements. CUR enters the error mode causing the job to be terminated via l~XX$
after all CUR directive cards have been logged. The number of block data programs
in the PCF must be reduced.

COBOL LI BRARY

Identifies a type 6 element on a table of contents listing.

COBOL LIBRARY TABLE

Heading for TOC COBOL library table listing.

COBOL LIBRARY TABLE EMPTY

A TOC card told CUR to list the COBOL library table. CUR found the table empty
(due to ERS card, etc.). CUR continues in normal mode.

COBOL LIBRARY TABLE OVERFLOW

Indicates that the number of COBOL library elements in the PCF exceeds the
amount of space allotted in CONFIG for the COBOL library table which describes
the elements. CUR enters the error mode causing the job to be terminated via
J~XX$ after all CUR directive cards have been logged. Number of such elements
in the PCF must be reduced.

COMPLEX TOO LARGE

Abnormal return from block buffer. Due to writing to end of drum. After typeout
routine exits to MERR$ and an ABORT message follows.

COMPR. SY MBOLIC

Identifies a type 5 element on a table of contents listing.

CUR OPERATION PERFORMED

CUR is in error mode, logging directives. This message follows TOC, TRW, TRI
directives to indicate that CUR has performed them, even though in error mode.

DRUM DEPENDENT

Caused by TOC card describing entry points for block data.

DRUM INDEPENDENT

Caused by TOC card describing entry points for block data.

ELEMENT TABLE

Heading for TOC listing of element names.

19

UP-40S8 UNIVAC 1108 EXEC II 6
SECTION:

ELEMENT TABLE EMPTY

A TOC card told CUR to list the element table. CUR found the table empty (due to
ERS card, etc.). CUR continues in normal mode.

ELEMENT TABLE OVERFLOW

Indicates that the number of elements in the PCF exceeds the amount of space
allotted in CONFIG for the element table which describes the elements. CUR
enters the error mode causing the job to be terminated via MXXX$ after all CUR
directive cards have been logged. The total number of elements in the PCF must
be reduced.

END CUR

Due to a control card following a set of CUR cards routine exits to JW=XIT$ -
normal completion - TOC tables are written on drum.

END OF CARD INPUT

Impossible.

END OF FILE UNIT X

Indicates that hardware end of file has been detected on logical unit X due to
any normal CUR tape operation. CUR continues in normal mode.

END OF TAPE X -- ASSIGN NEW REEL

PAGE:

Abnormal return from block buffer package due to physical EOT. Routine continues
in normal mode.

ENTRY POINT TABLE

A TOC card told CUR to list the entry point table. CUR found the table empty
due to ERS card, etc. CUR continues in normal mode.

ENTRY POINT TABLE EMPTY

A TOC card told CUR to list the entry point table. CUR found the table empty due
to ERS card, etc •• CUR continues in normal mode.

ENTRY POINT TABL= OVERFLOW

Indicates that the number of externally defined symbols in the PCF exceeds the
amount of space allotted in CONFIG for the entry pOint table which describes
external references. CUR enters the error mode causing the job to be terminated
via MXXX$ after all CUR directive cards have been logged. The number of external
references in the PCF must be reduced. This may be simplified by use of an
SCD control card.

EOF CARD MISSING

Indicates that required EOF card following an ELT card (for other than symbolic
elements, types 1 or 5) is missing. CUR ignores the remainder of the element,
makes no entry into the peF, and continues in the normal mode.

20

UP-40S8 UNIVAC 110B EXEC II 6
SECTION:

ILLEGAL CHARACTER-DATE FIELD

Indicates malformation of the date field on an ELT card. The field is ignored,
and CUR gets the required information from the resident, and proceeds normally.

ILLEGAL CHARACTER-TIME FIELD

Indicates malformation of the time field on an ELT card. The field is ignored,
and CUR gets the required information from the resident, and proceeds normally.

ILLEGAL CONTROL CARD IN ELEMENT

PAGE:

A control card other than an EOF card was found within an element. The offending
element is ignored, and CUR proceeds normally.

ILLEGAL TYPE DESIGNATION

Type field on ELT card is not 1, 2, 3, 4, 5, 6, or 7. The element is taken to
be type 1 (symbolic). CUR enters the error mode, and proceeds.

IMPROPER FILE DESCRIPTION TABLE

Error return from block buffer - due to a previous CUR card routine goes to
error and attempts to continue. However one more error causes CUR to terminate
via MXXX$ after logging all directive cards.

NAME/VERSION HAS BEEN DELETED

Indicates that the element NAME/VERSION called for in a CUR directive is not in
the PCR. CUR proceeds in normal mode. The directive which caused the diagnostic
is ignored.

NAME/VERSION HAS NO PREAMBLE

Indicates that the element NAME/VERSION called for in a CUR directive requiring
an element with a preamble (such as a relocatable element, type 3) is not in the
PCF in proper form, CUR proceeds in normal mode, ignoring the directive.

NAME/VERSION NOT IN COMPLEX

Indicates that the element NAME/VERSION called for in a CUR directive is not
in the PCF. CUR proceeds in normal mode. The directive which caused the
diagnostic is ignored.

NAME/VERSION NOT ON TAPE X

Indicates that the element NAME/VERSION called for in a CUR tape directive is
not in the logical unit X. This may be due to mispositioned tape. CUR proceeds
normally. The directive which caused the diagnostic is ignored.

PROCEDURE

Identifies a type 7 element on a table of contents listing.

PROCEDURE NAME TABLE

Heading for TOC listing of procedure names.

21

UP-40S8 UNIVAC 1108 EXEC II 6
SECTION:

PROCEDURE NAME TABLE EMPTY

A TOC card told CUR to list the procedure name table. CUR found the table empty
due to ERS card, etc •• CUR continues in normal mode.

PROCEDURE NAME TABLE OVERFLOW

Indicates that the number of Assembler procedures in the OCF exceeds the amount
of space allotted in CONFIG for the procedure name table which describes proce­
dures. CUR enters the error mode causing the job to be terminated via MXXX$,
after all CUR directive cards have been logged. The number of procedures in the
PCF must be reduced.

PROCESSED MAP

Identifies a type 4 element on a table of contents listing.

RELOCATABLE

Identifies a type 3 element on a table of contents listing.

SPECIAL INFORMATION TABLE OVERFLOW

Indicates an internal error is listing a type 3 (relocatable type) element. A
maximum of 200 lines per 8 words listed may be printed to indicate special
relocation information. When the maximum is exceeded, this message results.

SYMBOLIC

Identifies a type 1 element on a table of contents listing.

TABLE OF CONTENTS CANNOT BE READ FROM DRUM

CUR is trying to read the TOC but encounters an unrecoverable drum error. CUR
proceeds normally, but one more error will cause termination via MXXX$, after all
directive cards have been logged.

TABLE OF CONTENTS CANNOT BE WRITTEN TO DRUM

PAGE:

Indicates unrecoverable drum error trying to write TOC. CUR terminates immediately
via MXXX$.

UNRECOVERABLE READ ERROR DRUM ADDRESS XXXX

Unrecoverable drum read error trying to perform tape write operation. The tape
file is closed; the drum file description table is closed; and CUR proceeds
normally.

UNRECOVERABLE TAPE ERROR

Probably caused by tape parity. Recovery may be attempted by operator depressing
R 5. Probably necessary to replace tape.

UNRECOVERABLE WRITE ERROR DRUM ADDRESS XXXX

Unrecoverable drum write error trying to perform tape read operation. The tape
file is closed; the drum file description table is closed; and CUR proceeds
normally.

22

UP-40S8 UNIVAC 1108 EXEC II 6
SECTION:

*****DUPLICATE DESCRIPTION-IGNORED

Impossible

*****ERROR OCCURRED IN MOVING TEXT

In reading the text from drum CUR encountered difficulty due to hardware - or
improper system. CUR closes tape and drum files and proceeds. One more error
will cause termination via MXXX$ after all directives have been logged.

*****ERRORS IN CUR -- STARRED OPERATIONS NOT PERFORMED

A control card was read by CUR while CUR is in an error mode, or a tape or hard­
ware malfunction occurred. CUR exits to MXXX$ and aborts run. Note that CUR
will terminate in this manner whenever it enters the error mode.

*****ILLEGAL CUR OPERATION

An illegal directive was encountered. CUR proceeds normally ignoring the
offending directive. The card format should be checked.

*****ILLEGAL FLAG ON ELT CARD

Improper parentheses on ELT card. No flag is set. CUR continues in normal mode.

*****ILLEGAL FLAG SPECIFICATIONS

A comma is not terminating separator, or field non blank, or flag not single
character. No flag is set. After printing, CUR reads next card and continues.

*****ILLEGAL NAME--BLOCK XXXXXX

Caused by CUR attempt to search for name XXXXXX in block table. May be caused
by mishandling of tape, or hardware failure. CUR enters error mode. Note that
a panic dump is printed when this error occurs.

*****ILLEGAL NAME--COBOL LIBRARY -- XXXXXX

Caused by CUR attempt to search for name XXXXXX in COBOL library table. May be
caused by mishandling of tape, or hardware failure. CUR enters error mode.
Note that a panic dump is printed when this error occurs.

*****ILLEGAL NAME--ENTRY POINT XXXXXX

Caused by CUR attempt to search for name XXXXXX in entry point table. May be
caused by mishandling of tape, or hardware failure, CUR enters error mode. Note
that a panic dump is printed when this error occurs.

*****ILLEGAL NAME--PROCEDURE XXXXXX

Caused by CUR attempt to search for name XXXXXX in procedure name table. May be
caused by mishandling of tape, or hardware failure. CUR enters error mode.
Note that a panic dump is printed when this error occurs.

23
PAGE:

UP-40S8 UNIVAC 1108 EXEC II 6
SECTION:

*****ILLEGAL NAME--UNDEFINED SYMBOL - XXXXXX

Caused by CUR attempt to search for name XXXXXX in entry point table. May be
caused by mishandling of tape, or hardware failure. CUR enters error mode. Note
that a panic dump is printed when this error occurs.

*****ILLEGAL NAME XXXXXX

Too many characters in element name (first 6 are XXXXXX). Element is ignored,
and CUR proceeds normally.

*****ILLEGAL TOC SPECIFICATION

Invalid separator or malformation of TOC directive. The TOC directive is
ignored, and CUR proceeds normally.

*****ILLEGAL UNIT DESIGNATION--X

The logical unit specified on a CUR directive card (X) is not in the set
A, B, ••• ,Y, Z. CUR enters the error mode. One more error causes CUR to exit
via MXXX$ after logging all directives.

*****ILLEGAL VERSION--XXXXXX

Too many characters in element version (first 6 are XXXXXX). Element is ignored,
and CUR proceeds in normal mode.

*****IMPROPER COBOL LIBRARY ELEMENT

Length of entry in name table greater than 10 characters. CUR continues in
normal mode.

*****NONSENSE IN TYPE FIELD ON ELI CARD

A comma or blank does not separate type field on ELT card. The element
associated with the ELT card is ignored. Routine exits to clear routine to clear
file description tables for tape and drum and continues.

*****REQUESTED FILE IS NOT AN ELEMENT

Abnormal return from CREAD$, card not an ELT card. Also may be caused by attempt
to read improperly formatted tape file. CUR ignores the file called for, and
enters the error mode.

*****VOID ELEMENT - NOT INSERTED

Indicates that first card encountered by CUR following an ELT card is a control
card other than EOF. CUR enters error mode.

(DELETED)

PAGE:

Printed to the right of the line for a deleted element. Note that deletion may
occur by the DEL directive as well as by the automatic deletion rule (delete element
with same name and version as one being entered into PCF).

(ERROR)

Printed to the right of the line to indicate that an element has been marked as
in error by a processor. This means that the processor flagged errors when the
element was produced.

24

UP-4058 UNIVAC 1108 EXEC II 6
SECTION: PAGE:

6.D. ALLOCATOR PRINTER MESSAGES

AMBIGUITY FOR ENTRY POINT NNNNNN

The undefined symbol NNNNNN in the element whose name precedes this message matches
more than one entry point in the user PCF, or it matches none in the user PCF and
more than one in the library PCF. The symbol is given the value zero (no reloca­
tion), and the output of the allocator fs marked as an e-rror element.

AMBIGUITY IN COMPLEX ELEMENTS

The element whose name precedes this message has more than one definition as
in either the user PCF or the library PCF. One of these is selected arbitrarily,
and the allocator output is marked as an error element.

ABS NAME NOT FOUND

No element in either the user or library PCF has the name designated on the ABS
control card. The allocator exits immediately via MEXIT$.

ALLOCATION TABLE OVERFLOW

This 8700 word table contains information regarding elements included in the
allocation. Approximate number of words required of this table for each element
is:

2 x (highest location counter used) + 7
+ 9 x (number of common blocks defined by element).

The allocator exits immediately via MEXIT$.

BLANK COMMON

Normal part of allocator listing for program containing blank common area. The
limits of the area are also printed.

BLOCK DEFINITIONS

Normal part of allocator listing when L option is used on control card. This
message acts as a header for information on common blocks, including block names,
control counters used, and length of block.

BLOCK TABLE OVERFLOW

This table contains 3 words of information per named common block. The maximum
allowed is 92 blocks (276 words). The allocator exits immediately via MEXIT$.

BLOCK XXX DEFINED INDEPENDENT-MAP DEPENDENCY DEFINITION USED

Indicates that the block is defined as independent (common) on an INFO card, but
defined as dependent by MAP. One possible cause of this is a missing BLK direc­
tive. The MAP definition is used, i.e., the block is not defined as common.

25

UP-4058 UNIVAC 1108 EXEC II 6
SECTION: PAGE:

CORE LIMITS

Normal part of allocator listing, indicating bank 1 and bank 2 storage requirements
of the program. This message is followed by octal value of absolute upper and
lower limits of the program in each storage bank.

CORE STORAGE TOO SMALL FOR DESIRED ALLOCATION

Indicates that the allocation has exceeded the limits of worker storage. The
allocator exits immediately via MEXIT$. The program must be reduced in size to
resolve this.

DATA BLOCK XXXXXX - NO PREAMBLE . IGNORED

Block data element XXXXXX has no preamble. Note that the preamble contains all
relocation information pertinent to an element. Thus the element must be ignored.
This message may indicate a malfunction of one of the language processors.

DEF TABLE OVERFLOW

The DEF table is used in SCD operations to contain the list of entry points to
retain their externalization in the relocatable output element of the SCD opera­
tion. This message indicates that too many such symbols exist. The allocator
exits immediately via MEXIT$.

DRUM LENGTH NNNNNNNN

Normal part of allocator listing when K option is used on ABS card. Indicates
size of absolute element on drum.

DRUM LIMITS

Normal part of allocator listing when drum is reserved by the program. This
message is followed by octal value of absolute upper and lower limits of drum
area reserved.

DRUM STORAGE TOO SMALL FOR DESIRED ALLOCATION

Indicates that the program being allocated has reserved more drum space than
exists in the worker portion of drum. The allocation exits immediately via
MEXIT$. The problem may be resolved by reducing the drum requirement or by
buying another drum.

DRUM UNRECOVERABLE ERROR

Indicates error return from'drum handler (or block buffering package) during
allocation. May also be caused by exceeding the processor scratch area on drum,
which may be corrected by reducing the size of the program or by use of options
on the control card calling the allocator. The allocator immediately exits via
MEXIT$ due to this ERR.

DUPLICATE ELEMENT NAMES-UNDEFINED SYMBOL XXXXXX DELETED

Indicates that the element whose name precedes this message contains the undefined
symbol XXXXXX. This symbol corresponds to an entry point in an element with the
same name as the element containing the undefined symbol (but with a different
version. Since the allocator cannot include two elements in the allocation with
the same name, the one which defines the symbol cannot be included. The symbol
is given a value of zer.o (relocated by zero) and the allocator proceeds.

26

UP-4058 UNIVAC 1108 EXEC II 6
SECTION:

ELEMENT ABSOLUTE - DELETED FROM ALLOCATION

Indicates that the element whose name/version precedes this message exists in the
PCF only in absolute form (type 2). The allocator proceeds, deleting the element
and all references to it. This error can be corrected by placing a relocatable
element with the correct name/version into the user PCF, or by making all refer­
ences to the element call for a relocatable element.

ELEMENT NOT IN COMPLEX - DELETED FROM ALLOCATION

An element named thru MAP is not in the user or library PCF and is therefore
deleted. If version is used, version must appear in the PCF. Allocator proceeds
after deletion.

END OF ALLOCATION

Normal part of allocator listing indicating completion.

ENTRY POINT XXXXXX NOT FOUND FOR AUTO LOAD-IGNORED

An entry point in an element d¥signated for auto-loading was not found. Impossi­
ble if allocator is functioning normally.

EQUIVOCAL ELEMENTS IN COMPLEX-DELETED FROM ALLOCATION

PAGE:

Two or more elements in the user PCF have the name/version preceding this message.
The allocator deletes the element and all references to it, and proceeds.

EXECUTION AREA EXCEEDED

The completed program is too large to fit in the execution area on drum. Allocator
exits immediately via MEXIT$. Note that use of E option on the control card
calling the allocator suppresses this message and subsequent action. However the
PCF is destroyed in this case.

EXTERNAL DEFINITION NAMED IN DEF OPERATION NOT FOUND-IGNORED

The symbol preceding this message was found on a DEF card (under MAP), but
was not among the entry points found in the elements included in this SCD opera­
tion.

EXTERNAL DEFINITIONS

Normal part of allocator listing when L option is used on control card. This
message acts as header for information on entry points, including the label and
absolute location of each entry point in the element.

EXTERNAL REFERENCES

Normal part of allocator listing when L option is used on control card. This
message acts as header for information on undefined symbols in each original
relocatable element in the allocation, including label and the name of the element
containing the entry point corresponding to the reference.

ILLEGAL STRUCTURE FOR AN SCD ALLOCATION

Indicates that a call was made during allocation to include MAUTO$, thereby
indicating segmentation. This is illegal for an SCD operation. The allocator
exits immediately via MEXIT$.

27

UP-40S8 UNIVAC 1108 EXEC II 6
SECTION:

LABELED COMMON AND ELEMENT OF SAME NAME

Most probable cause of this message is that the label on an INFO line duplicates
the name of the element including the common block as specified on the INFO
line. Since a labeled common block is treated as a separate element in the
allocation, the allocator reaches the same impasse it would on finding two
elements with the same name called for in the allocation.

LINK N

Produced as a normal part of allocator listing for linked programs. N represents
the link number.

NO PREAMBLE - ELEMENT DELETED FROM ALLOCATION

PAGE:

Element selected for allocation has no preamble, which is required for relocation.
The element is deleted from the allocation, and the allocator proceeds. The
element called for should be checked to ascertain that it is a relocatable element.
If it is, and is not malformed due to improper use of CUR,etc., the allocator
or the processor which produced the element is malfunctioning.

NO STARTING ADDRESS INDICATED

Self-explanatory. Starting address may be indicated on a MAP ENT card, or an
Assembler END card. The allocator sets the starting address at the beginning
of worker storage in this case, and proceeds with the allocation.

PREAMBLE TABLE OVERFLOW

The preamble table, which contains preambles for all elements included in the
allocation, has a length of 8700 words. If this is exceeded, this message
appears, and the allocator exits via MEXIT$. Some method of reducing the
preamble table is required to correct this error (e.g., remove some elements).

PREAMBLE TOO LARGE

The preamble generated in this SCD operation exceeded 2000 words. The allocator
exits via MEXIT$. To correct this error, remove some elements from allocation.

STARTING ADDRESS ALREADY DESIGNATED -THIS ONE IGNORED

More than 1 starting address indicated, by means of the Assembler END cards, or
MAP ENT cards (or both). The allocator uses the first it encounters, and ignores
all others.

STARTING ADDRESS NNNNNN

Normal part of allocator listing indicating the absolute location of the symbol
designated as starting address in the program (either by eNT card in MAP, or on
Assember END card). NNNNNN represents the absolute location.

SCD NAME NOT FOUND

No element in either the user or library PCF has the name designated on the SCD
control card. The allocator exits immediately via MEXIT$.

UNDEFINED SYMBOL TABLE OVERFLOW

The allocator has already found definitions for more than 100 undefined symbols.
Exit via MEXIT$. This error may be corrected by reducing the number of undefined
symbols to 100 or less.

28

UP-40S8 UNIVAC 1108 EXEC II 6
SECTION:

UNDEFINED SYMBOL XXXXXX NOT FOUND-SYMBOL DELETED

The element whose NAME/VERSION precedes this message has an undefined symbol
XXXXXX which does not match any entry point in the user PCF or the library PCF,
and is not the name of any segment. The symbol is given a value of zero
(relocated by zero) and the allocator proceeds.

VACUOUS ELEMENT PRODUCED-SCD ABORTED

The SCD operation has produced a relocatable element with no preamble. This
may be caused by lack of legal input to the allocator (relocatable elements).
Ex i t v i a MEX I T$ •

XQT NAME NOT FOUND

No element in either the user or library PCF has the name designated on the
XQT control card. The allocator exits immediately via MEXIT$.

XXXXXX ENT NAME NOT FOUND - NO STARTING ADDRESS USED

The symbol XXXXXX, called for on a MAP ENT card does not match any entry point
in the elements included in the allocation. Allocator is the same as for the
message NO STARTING ADDRESS INDICATEJ.

XXX XXX IS 'MARKED AS ERROR ELEMENT

The processor which produced the element XXXXXX marked it as an error element.
This causes the allocator output to be marked as an error element. Allocation
proceeds.

XXXXXX-ILLEGAL CC NUMBER FOR PATCH SEQUENCE - SEQUENCE IGNORED

The control counter number on the corresponding patch card is either too large,
or contains non-numeric characters. The associated patch cards are ignored, and
allocation proceeds as though the patch cards were absent.

XXXXXX-NO ELEMENT THIS NAME FOR PATCHING - SEQUENCE IGNORED

The element name given in the control counter field on a patch card does not
match the name of any element included in the allocation. All associated patch
cards are ignored. Allocation proceeds as though the patch cards were absent.

29
PAGE:

UP-40S8 UNIVAC 110B EXEC II 6
SECTION:

6.E. MAP PRINTER MESSAGES

A COMMA FOLLOWS A C

The character C (slash, paren, etc.) is followed by a comma thus creating illegal
segment construction. The card is scanned for further errors and then deleted.
The output element is marked as an error element. MAP proceeds normally.

A RIGHT PAREN FOLLOWS A C

PAGE:

The character C (slash, comma, etc.) is followed by a right paren thus creating
illegal segment construction. The card is scanned for further errors and then
deleted. The output element is marked as an error element, MAP proceeds normally.

ALPHABETIC SYMBOL DETECTED - DRUM FIX OMITTED

The drum address on a FIX card begins with an alphabetic. The card is scanned
for further errors and then deleted. The output element is marked as an error
element. MAP proceeds normally.

BLANK FOLLOWS NAME - UNBALANCED PARENTHESES

The card was terminated with a blank with unbalanced parens. MAP continues
to scan the card to try to rectify the error. The card is used if parens balance
at end-of-card. The output element is unaffected by this war0ing. MAP proceeds
normally.

CHN CARD HAS NO LINK NUMBER

The link introduced by this CHN card has no number to distinguish it from other
links. The card is scanned for further errors and then deleted. The output
element is marked as an error element. MAP proceeds normally.

COMMA AT FIRST LEVEL

A comma was detected by the card scan routine without first encountering a
parenthesis. The card is scanned for further errors and then deleted. The
output element is marked as an error element. MAP proceeds normally.

CORRECTION CARD IN ERROR

An erroneous correction card was encountered. No output element is produced
and MAP exits via MEXIT$.

DEF TABLE EXCEEDED

Too many DEF entries. The output element is marked as an error element. MAP
proceeds normally.

30

UP-4058 UNIVAC 110B EXEC II 6
SECTION:

DUPLICATE LINK NUMBER

Two CHN cards have the same number. The output element is marked as an error
element. MAP proceeds normally.

END OF BLK TABLE - TOO MANY BLKS

More than 30 blocks are defined. No output element is produced and MAP exits via
MEX IT$.

END OF FIX TABLE - TOO MANY REFS

More than 166 FIX cards were processed. No output element is produced and MAP
exits via MEXIT$.

END OF SEG NAME TABLE - TOO MANY SEGS

More than 100 segments named on SEG cards call for separate loads. No output
element is produced and MAP exits via MEXIT$.

END OF SET TABLE - TOO MANY REFS TO SET

More than 20 SET cards for one bank of storage or for drum have been processed.
No output element is produced and MAP exits via MEXIT$.

ERROR IN SECOND DRUM ADDRESS

The second drum address on a SET card begins with a non-numeric character. The
card is scanned for further errors and then deleted. The output element is
marked as an error element. MAP proceeds normally.

EXTRANEOUS PARENTHESES

More parentheses than necessary were used on a SEG card. The card is used by
MAP in any event. The output element is unaffected by this warning. MAP
proceeds normally.

FIRST ENT NAME REPLACED

Two ENT cards were processed in the current link.
The output element is unaffected by this warning.

MAP CARD FOLLOWED BY CONTROL CARD

The second of these is used.
MAP proceeds normally.

Another control card followed the MAP card. No output element is produced and
MAP exits via MEXIT$.

MORE THAN ONE 'ELEMENT HAS THE NAME XXXXXX

The name XXXXXX appears on two BLK cards in the link. The output element is
unaffected by this warning. MAP proceeds normally.

NAME AND VERSION NOT SEPARATED BY A /

Incorrect specification on a USE card (illegal character). The card is scanned
for further errors and then deleted. The output element is marked as an error
element. MAP proceeds normally.

31
PAGE:

UP-4058 UNIVAC 110B EXEC II 6

SECTION:

NAME NOT FOLLOWED BY ANYTHING

Nothing follows the name on a FIX card (nothing to fix). The card is scanned
for further errors and then detected. The output element is marked as an error
element. MAP proceeds normally.

NAME NOT FOLLOWED BY A COMMA

Name on a D=F card followed by a non-blank character other than a comma or equal
sign. Last DEF is omitted. The output element is marked as an error element.
MAP proceeds normally.

NO SEGMENTS IN THIS LINK - LINK OMITTED

If this error was caused by two consecutive CHN cards the output element is
marked as an error element. MAP proceeds normally. If the error was caused
by encountering a control card following a CHN card (with no SEG cards in
between) no output element is produced and MAP exits via MEXIT$.

PARENTHESES UNBALANCED

Card terminated with parentheses unbalanced. Card is deleted from processing.
The output element is marked as an error element. MAP proceeds normally.

SECOND SET ADDRESS SMALLER THAN FIRST

"Indicates that the ending address on "set" card is smaller than starting
address on the "set" card. Implies negative set. This is an error and output
marked as such. Card ignored and MAP proceeds."

SEG DELETED

Follows a message which describes an error on a SEG card whenever the error
causes deletion of the segment. The output element is marked as an error
element. MPA proceeds normally.

SEGMENT HAS SAME NAME AS NON-LEADING ELEMENT

The segment name is the same as a non-leading element in it. The card is
scanned for further errors and then deleted. The output element is marked as
an error element. MAP proceeds normally.

SET ADDRESS TOO LARGE

A bank 2 address greater than 177777 appears on a SET card. The card is scanned
for further errors and then deleted. The output element is marked as an error
element. MAP proceeds normally.

SET VALUES NOT SEPARATED BY A /

An illegal character followed the first value of a set pair. The card is
scanned for further errors and then deleted. The output element is marked as an
error element. MAP proceeds normally.

THE ELEMENT XXXXXX CANNOT BE FIXED

The name XXXXXX is not the name of a level 0 segment. The allocator cannot
fix it for this reason. The output element is marked as an error element.
MAP proceeds normally.

32

PAGE:

UP-40S8 UNIVAC 110B EXEC II 6
SECTION:

THE MAP CANNOT BE WRITTEN TO DRUM

In attempting to write the MAP to drum a status of 1 or 2 was received
from the drum handler (drum fault or error). No output element is produced
and MAP exits via MEXIT$.

THE MAP INPUT EXCEEuS MAP TABLES - MAP QUITS

Input to the MAP processor has caused construction of more segment
description entries than can be held by the table which describes the
program Storage layout. No output element is produced and MAP exits
via MEXIT$.

THE SEG HAS AN * AT FIRST LEVEL

Warning message for extraneous * on elements of automatic load conditions
when the element is part of a larger load. The card is used by MAP in any
event. The output element is unaffected by this warning. MAP proceeds
normally.

THE SEGMENT IS NAMED TWICE - SECOND SEG DELETED

Two segments have the same name. Only the first is used. The output
element is marked as an error element. MAP proceeds normally.

THIS CARD DOES NOT BELONG UNDER MAP - CARD DELETED

The card does not fit the specifications of any MAP card. The card is
deleted from processing. The output element is marked as an error element.
MAP proceeds normally.

TOO MANY ELEMENTS - MAP QUITS

More than 858 elements included in processing. No output element is
produced and MAP exits via MEXIT$.

TOO MANY RIGHT PARENTHESES

Indicates an illegal segment construction. The card is scanned for
further errors and then deleted. MAP proceeds normally.

TWO ELEMENTS HAVE THE SAME NAME OF XXXXXX

The MAP contains two elements with the same name. The second of these
elements is deleted. The output element is marked as an error element.
MAP proceeds normally.

VERSION NOT FOLLOWED BY A COMMA

An illegal character follows the name/version of a USE card. The card is
scanned for further errors and then deleted. The output element is marked
as an error element. MAP proceeds normally.

XXXXXX -BLK NAME NOT DEFINED IN A SEG

The name XXXXXX on a BLK card is not named as an element. The card is
scanned for further errors and then deleted. The output element is marked
as an error element. MAP proceeds normally.

33
PAGE:

UP-4058 UNIVAC 1108 EXEC II 6
SECTION:

6.F. PMD PRINTER MESSAGES

BLANK COMMON

Printed as a heading if a blank common area exists. Routine continues in normal
mode - no operator intervention.

CHANGED WORDS

PMD option specified print words that changed. Routine continues - no operator
intervention.

DRUM READ ERROR-NO DUMP POSSIBLE

Drum error. Routine exits from PMD via MEXIT$.

ELEMENT NOT ACTIVE

If element is not marked as active in ATAB, (i.e., MAP said--segment A-B,C
and tried to dump A), routine exits to check for B option and will finally
exit from PMD.

INFO NOT AVAILABLE

The limits of the dumped area on drum do not include the info requested. PMD
continues and sets length to dump to O. May result from dumping a FIXed
element.

NO CONTINUATION CARD FOUND

. PAGE:

CREAD$ read a control card. It expected a continuation of previous card. Routine
continues without operator intervention. It stays in PMD to work card.

OPTION LETTER-A-ASSUMED--DUMP OF SEGXXXXXX

If ELT name not in ATAB, but is in the segment name table, routine processes
segment; no operator intervention.

SPEC NAME NOT FOUND

ELT or ELT name not in ATAB or SEG name table. Routine continues and requires
no intervention.

34

UP-4058 UNIVAC 1108 EXEC II 6
SECTION: PAGE:

E.7. LIBRY (LIBRARY CREATE ROUTINE) PRINT MESSAGES

INPUT-OUTPUT ERROR DEC TED

Probably caused by unrecoverable drum error. Followed by message LIBRARY
PROBABLY DESTROYED.

LIBRARY BLOCK TABLE SIZE EXCEEDED

Indicates that user PCF block table will not fit into area in library PCF
assigned for block table. Size of tables is determined by a constant in CONFIG
which is installation-variable. Always followed by message NEW LIBRARY NOT
WRITTEN.

LIBRARY COBOL COpy TABLE EXCEEDED

Indicates that user PCF COBOL library table will not fit into corresponding
area in library PCF. Size of tables is determined by ~ constant in CONFIG
which is installation-variable. Always followed by message NEW LIBRARY
NOT WRITTEN.

LIBRARY ELEMENT TABLE SIZE EXCEEDED

Indicates that user PCF element table will not fit into corresponding area in
library PCF. Size of tables is determined by a constant in CONFIG which is
installation-variable. Always followed by message NEW LIBRARY NOT WRITTEN.

LIBRARY ENTRY POINT TABLE SIZE EXCEEDED

Indicates that entry point table in user PCF will not fit into corresponding
area in library PCF. Size of tables is determined by a constant in CONFIG
which is installation-variable. Always followed by message NEW LIBRARY NOT
WRITTEN.

LIBRARY PROBABLY DESTROYED.

Indicates I/O difficulty occurred. Routine exits via MXXX$.

LIBRARY PROCEDURE NAME TABLE EXCEEDED

Indicates that user procedure name table will not fit into corresponding area
in library PCF. Size of tables is determined by a constant in CONFIG which is
installation-variable. Always followed by message NEW LIBRARY NOT WRITTEN.

LIBRARY PROGRAM FILE AREA EXCEEDED

Indicates that text in user PCF will not fit into text area in library PCF.
Size of text areas are determined by an installation-variable constant in CONFIG.
Always followed by message NEW LIBRARY NOT WRITTEN.

LIBRARY SUCCESSFULLY CONSTRUCTED

Indicates normal termination after new library is complete.

NEW LIBRARY NOT WRITTEN

Indicates that an overflow of some library area occurrad. The routine exits
via MXXX$ without writing a library.

35

UP-40S8 UNIVAC 1108 EXEC II Appendix A
SECTION:

APPENDIX A. MAIN STORAGE LAYOUT

The main storage layout is partially dependent on the amount of storage space
available. The layouts pictured indicate the forms supplied with an executive
system by UNIVAC Systems Programming.

8K EXEC/65K STORAGE

EXEC

WORKER

PROGRAM

(BANK 1)

WORKER

PROGRAM

(BANK 2)

CCI + ACCING
(Between
jobs only)

EXEC

BUFFERS

o

007777

010000

077777

100000

161777

162000

167777

170000 - 171777

172000

177777

12K EXEC/65K STORAGE

EXEC

BUFFERS

WORKER

PROGRAM

(BANK 1)

WORKER

PROGRAM

(BANK 2)

CCI + ACCING
(Between NG

jobs onl~)

EXEC

BUFFERS

o

007777

010000

013777

014000

077777

100000

155777

156000

162777

164000 - 165777

166000

NOTE: In Systems with remote capability the elements PRB and RDP occupy the
first buffers in upper storage at all times. UNIVAC Systems Programming
recommends 12K EXEC (65K MAIN STORAGE) for all systems with remote
capability.

1
PAGE:

UP-4058 UNIVAC 1108 EXEC II Appendix B
SECTION:

APPENDIX B. SYSTEM DRUM LAYOUT

The system drum layout is dependent upon the number of drums available. The
layouts pictured in this appendix are of the form supplied with an executive
system by UNIVAC Systems Programming.

PAGE:

Notice that the drum layout which is referred to as "1 DRUM EXTENDED" is physically
a two drum system.

1. SINGLE-CHANNEL DRUM LAYOUT

1 DRUM 1 DRUM EXTENDED 2 DRUM

0 0 0
i I I

EXEC EXEC EXEC

I I J
035000 035000 035000

I I i
Processors Processors Processors

I I I
0420000 0420000 0420000

I I i
Library PCF Library PCF Library PCF

I I I
06000000 0600000 07000000

I I I
Execution Area Execution Area Execution Area

I I I
01000000 01000000 01300000

I
User PCF User PCF User PC F

I I I
02000000 02000000 03000000

I i i
Processor Scratch Processor Scratch Processor Scratch

Area Area Area

1 1 1
02400000 05400000 05000000

I I i

Symboint Drum Symboint Drum Symboint Drum
Buffers Buffers Buffers

1 l t
03000000 06000000 06000000

Drum layouts for up to 8 drums on a single channel are possible; such
layouts will be similar to the above.

1

UP-4058 UNIVAC 1108 EXEC II Appendix B
SECTION:

An expanded description of the processor area shows the position of the
processors on drum.

035000

PMD

Allocator

CUR

MAP

1108 ASSEMBLER

PDP

ClP

FORTRAN

LIBRARIAN

COBOL

0420000

2. MULTI-CHANNEL DRUM LAYOUT

(To be provided at a Later Date)

2
PAGE:

UP-40S8 UNIVAC 1108 EXEC II Appendix C
SECTION:

APPENDIX C. CONTROL CARDS

1. LISTING AND FUNCTION OF CONTROL CARDS

ABS

ASG

ASM

CLP

COB

COL

DPR

ELI

EOF

FIN

FOR

HDG

ICS

LBR

LFT

MAP

MSG

REFERENCE
FUNCTION SECTIONS

Used to produce an absolute program. 3. B.5.b.

Used to cause assignment of magnetic tapes. 3. B.1.a.

Used to callout the assembler. 3. B.4.a.

Used to callout the COBOL Library Processor. 3. B.4.b.

Used to callout the COBOL compiler. 3. B.4.b.

Used to indicate whether 80 or 90 column cards
are to follow. Used with 1004 card readers only. 3. B.3.a.

Used to cause printer output to return to normal
mode; output is buffered on drum. 3. B.3.b.

Used to introduce an element from cards into the
program complex file. 3. B.6.a.

Used to punctuate a data deck. 3. B.3.a.

Used to mark the end of a card stream. 3. B.3.a.

Used to callout the FORTRAN compiler. 3. B.4.c.

Used to print a heading and sequentially
number pages of printer output. 3. B.3.c.

Used to call the Initial Checkout System.
Equivalent to "XQT lCS". 3. B.9.a.

Used to place a new system library in the library
region. Equivalent to "XQT LIBRY". 3. B.7.

Used to callout the LIFT Program. Similar to
"XQT LIFT". "XQT LIFT" produces a punched
symbolic output, where as "LFT" places the
symbolic output in the PCF. 3. B.4.c.

Used to callout the Memory Allocation Processor. 3. B.5.a.

Used to communicate with operator. 3. B.2.a.

1
PAGE:

UP-4058 UNIVAC 1108 EXEC II

CARD FUNCTION

PDP Used to call out the Procedure Definition
Processor.

PMD Used to cause memory printout after execution
of a program.

RUN Used to initiate each computer run.

SCD Used to define a subcomplex.

TPR Used to direct printer output to tape.

XQT Used to execute a program.

Appendix C
SECTION:

REFERENCE
SECTIONS

3. B.4.a.

3. B.9.b.

3. B.1.b.

3. B.5.b.

3. B.3.b.

3. B.5.b.

2
PAGE:

2. CONTROL CARD OPTIONS

This table indicates relevance of options on the various control cards. To find the meaning of an option on a particular control card,
refer to the paragraphs on the following pages whose numbers appear in the box in the row of the contr01 card and the column of the option
letter. An empty box indicates that the option is not applicable to the particular card in question.

OPTION LETTERS

CARD A B C D E F G H K L M N o P Q R T U v w x Y z
ABS 2,60 4 10 66,71 21,55 61 25,55 62 67,71 41 42,60 68,71 44

ASG 5,52 9,53 12,52 13,54 17,52 19,54 28,53 32 43,54

ASM 2,60 6 74,15 68,71 74,20,55 24 74,25,55 30 65 35 40 42,60 45

CLP 2 60 15 68 71 22 35 40 4260

COB 2,60 3 77 8 11 76 68,71 18 20,78 23 72 29 30 33 35 38 39 40 42,60 45

COL NO OPTIONS AVAILABLE

DPR NO OPTIONS AVAILABLE

ELT NO OPTIONS AVAILABLE

EOF NO OPTIONS AVAILABLE

FIN NO OPTIONS AVAILABLE

FOR 2,60 63 64 75,15 68,71 75,20,55 75,25,55 30 35 37 40 42,60 70,71 45

HDG 26 31

ICS NO OPTIONS AVAILABLE

LBR NO OPTIONS AVAILABLE

LFT 68,71 25 30 36

MAP 2,60 73,15 68,71 73,20 73,25,55 30 35 40 42,60

MSG 14 27

PDP 2,60 6 15 68,71 22 40 42,60

PMD 57,56 50 58 46,56 49 47,56 59 68,71 48,56

RUN PRIORITY OPTIONS ONLY - USING LETTERS A THROUGH Z

seD 1,51 4 25 30 41 42,51 68,71

TPR 7 34

XQT 1,51 4 10 21,55 61 25,55 62 41 42,51 68,71 44

..

c:
"0
I

"J::o.
o
(J1
00

c
z
~
()

~
~

o
m
m
)(
m
n --

~ >
~"O
-"0 o I'D
Z ::s
•• 0..

'11 • Q
III

~.

(')

UP-40S8 UNIVAC 1108 EXEC II Appendix C
SECTION:

1. Accept Allocator output even if errors are detected. The option is not
effective if the errors detected are of such a nature as to prevent the
production of an absolute program.

2. Accept the output of the processor even if errors are detected.

3. Ignore check of sequence number (columns 1 through 6).

4. Insert patch cards.

5. Causes automatic Fieldata to BCD software conversion on output and auto­
matic BCD to Fieldata software conversion on input. (For UNISERVO IIIC
units only.

PAGE:

6. Corrections noted on source language listing. In the absence of this
option, line inserts and deletions are starred to the right of the line(s)
corrected.

7. Prepare tape in DLT-5 format. Reference Appendix D. 1. C ••

8. Print defining cluster in alphabetic order.

9. Parity set even.

10. Allow execution area to overflow into user FCF without diagnostics.
Reference Sections 2 B.4. and 2 B.5. for implications of using this
option. Responsibility rests with the user to insure that the program
on the drum is not destroyed by use of this option.

11. Print detailed error diagnostics.

12. Causes automatic Fieldata to BCD hardware conversion to cease.

13. Density set high.

14. Turn on wait. Reference Section 3 B.2 ••

15. Single space listing. If this option is not specified, listing is
double spaced.

17. Causes automatic Fieldata to BCD hardware conversion on output and auto­
matic BCD to Fieldata hardware conversion on input. On 1107 this option
applies only to IIIC units and automatically sets even parity (odd
parity cannot be used). On 1108 this option applies to IVC, VIC and
VIIIC units and odd parity is assumed unless the E option is used
(either will be effective).

18. List all parts incorporated by the COpy and INCLUDE verbs.

19. Density set low.

20. Produce detailed listing. The function of this option is dependent on
the processor.

21. Produce a complete listing containing a summary of memory space used by
each element in the program. The absolute location of each symbol in
those elements equipped with symbol tables will also be listed.

22. Produce a listing of source input with line numbers and error flags.
If this option letter is not present, no listing will be produced.

4

UP-40S8 UNIVAC 1108 EXEC II Appendix C
SECTION:

23. Print the five characters of procedure names which are identical through
the first five characters.

24. Normally a set of system definitions are provided to the assembler prior
to accepting any source code. When this option letter is set, system
symbol definition is suppressed.

25. Produce no listing.

26. Turn off page heading on print output.

27. Suppress printing of message on console printer.

28. Parity set odd.

29. Print octal output of final phase.

30. Punch output element.

31. Reset page count to 1.

32. Rewind tape(s) at time of assignment.

33. Print cross reference list.

34. Switch printer tape units at end of present file.

35. Punch output element of updated source language.

36. Elapsed time used by processor.

37. Gives timing of each phase and of total processing.

38. Ignore contents of source cards beyond column 72.

39. Indicates sub-program rather than a main program. (Prevents generation
of starting address.)

40. List correction deck prior to processor listing. This option is effec­
tive even when using in combination with an "N" option.

41. Scratch area starts with next available address in user PCF, instead of
with first address in processor scratch area. Reference Sections 2 B.2.
and 2 B.5. for implications of using this option.

42. Abort run if error is detected.

43. Density set extra high. For UNISERVO IIIe units only.

44. Produce no diagnostic table.

45. Suppress formation of information to be given to the diagnostic system.
Reference Section 3 9 •.

46. Produce a dump of the Bank 2 portion of each element or segment named in
the specifications list. Reference Section 3 9.b ••

47. Produce a dump of the Bank 1 portion of each element or segment named
in the specifications list. Reference Section 3 9.b ••

5
PAGE:

UP-4058 UNIVAC 1108 EXEC II Appendix C
SECTION:

48. When used in conjunction with the 'A', 'I', or 'D' options, the 'X'
option has an "except" effect. All active elements will be dumped
except those named in the specifications list, or those belonging to

PAGE:

the segments named in the specifications list. Reference Section 3 9.b .•

49. The PMD card will be processed only when the previous routine terminat­
ed at systems error exit MERR$. Reference Sections 3 9.b. and 4 C.3 ••

50. After processing the rest of the PMD card, dump all the "blank common"
area in octal format. Reference Section 3 9.b ••

51. If neither an 'A' nor an 'X' option is indicated, the event of an error
will inhibit execution of the program, but will allow completion of the
remainder of the run.

52. In the event a combination of 'C', 'K', or 'F' option letters occur,
the 'K' option will have the highest priority, and the 'C' option will
have next highest priority. If none of these option letters is set, no
conversion will occur.

53. If no parity option is indicated, parity is assumed to be odd.

54. If neither 'H', 'L', nor 'X' is indicated on the 'ASG' card, density
setting is assumed to be high.

55. If neither an 'N', an 'I', nor an 'L' is indicated, summary information,
including source language for processors, will be printed.

56. Only one of the options 'A', 'D', 'I' may be used on a single PMD card.

If none of the options 'A', 'D', 'I', or 'X' are specified, the
specifications field of the PMD card must take on the form "name,
start, length, format". If name is left blank, scanning of the PMD
card will be discontinued and all of user core area will be dumped. If
it is a segment name, the segment will be dumped under the rules of the
'A' option (par. 57).

57. Produce a dump of all memory specified in each element or segment named
in the specifications list. Reference Section 3. 9.b ••

58. Causes a dump of the words that were changed during the execution of the
allocated program for the area of core prescribed by the PMD card.
See Section 3 B.9.b ••

59. Used for absolute dumps of arbitrary areas of core. See Section 3 B.9.b ••

60. If neither an 'A' nor an 'X' option is indicated the event of an error
will cause the output element to be flagged as in error, and the run to
be continued as normal.

61. Causes the Allocator to allocate all elements starting at core addresses
which are multiples of 0100.

62. Indicates that a magnetic tape is available to the Allocator for scratch
purposes. The use of the tape increases to fifty, the number of links
which can be allocated. It is the responsibility of the programmer to
assign a tape to logical unit 'T' before using the 'T' option.

63. Causes generation of in-line double precision coding.

6

UP-40S8 UNIVAC 110B EXEC II Appendix C
SECTION:

64. Causes labeled common to be compiled into group 2 instead of group 6 so
that it will be attached only to those segments which use it.

65. Has effect only when used with a 'PI option, in which case, the cards
punched will be in multiple word octal format acceptable to ICS. If the
'END' card of the assembly deck contains an expression, a jump card
is also produced. Refer to Section 3 B.9.a ••

66. When used on an ABS card of the form shown below, this option causes the
absolute element produced to be placed in the processor region on drum
for the processor 'xxx', and not in the user PCF.

K ABS ABC,xxx

67. Causes the alternate drum region to be used for the processor. This
option is effective only when used with the 'K' option described in
paragraph 66.

68. Causes processor from the alternate drum region to be used in place of
the standard processor.

69. Indicates that patch cards are to be used to alter the Allocator.

70. Indicates that patch cards are to be used to alter the processor.

71. This option is designed for~use by systems programmers. The user is
cautioned against using this option, since it allows the alteration of
the system. UNIVAC will not maintain software which has been altered
in the field in this manner.

72. List only those parts specified by options. When N is not present,
list parts specified by options C, E, I, and K.

73. The use of an 'N' option with either an 'I' option or an 'L' option will
result in the printing of diagnostics, but the source language will not
be listed.

74. The 'N' option has priority over both the 'I' option and the 'L' option.

75. Both the 'I' option and the 'L' option have priority over the 'N' option.

76. Single space listing.

77. List matched names of CORRESPONDING data-names.

78. List parts specified by options 0, R, and N.

3. FORMAT OF CONTROL CARDS

V indicates a master space (7-8 punch).

6 indicates a blank.

ALL CONTROL CARDS MUST HAVE A V IN COLUMN 1.

EOF: V6EOF6 (ignored by system - not printed)

FIN: V6FIN6 (ignored by system - not printed)

COL: V6COL6 (ignored by system - not printed)

7
PAGE:

UP-40S8 UNIVAC 1108 EXEC II

RUN: 7ARUN f1, f2, f3, f4, f5, f6

~ is an option letter and may be omitted.

Appendix C
SECTION:

At least one blank must precede and at least one blank must follow
the mnemonic 'RUN ' • Spaces may follow but may not precede each
of the commas (,).

Fields f3, f4, f5, and f6 are optional.

The last of the fields f2, f3, f4, f5, and f6 must be followed by
a blank and not by a comma.

Reference: Section 3 B.1 .a ..

PAGE:

ASG: voptions~ ••• ~ASG~ ••. ~assignment, assignment, ••• assignment (Form I)

v ~ ••• 6.ASG6. •.• 6.c/u, c/u, •••

voptions6. ••• 6.ASG6. ... 6.c/u,c/u, ••• assignment

Options may not appear on ASG cards of form II.

(Form II)

(Form III)

At least one blank must precede and at least one blank must follow
the mnemonic 'ASG'.

Blanks may follow but not precede commas (,) and slashes (/), and
equal signs (=) in assignments.

The last unit number, u, on cards of form II and form III must be
followed by a blank and not by a comma.

Reference: Section 3 B.1.b ••

MSG: voptions6. ••• 6,MSG6.message to be printed begins with first non-blank
character.

At least one blank must precede and at least one blank must follow
the control card mnemonic, 'MSG'.

Reference: Section 3 B.2 ••

HDG: voptions~ ••• 6.HDG6. ••• message to be printed appears in columns 13
through 72.

At least one blank must precede and at least one blank must follow
the control card mnemonic, 'HDG'.

Reference: Section 3 B.3.c ••

TPR: voptions: ••• 6.TPR6. (rest of card ignored).

At least one blank must precede and at least one blank must follow
the control card mnemonic, 'TPR ' •

Reference: Section 3 B.3.b.

8

UP-4058 UNIVAC 1108 EXEC II Appendix C
SECTION:

DPR: 9~ ••• ~DPR~ (rest of card ignored).

There are no valid option letters for DPR.

At least one blank must precede and at least one blank must follow
the control card mnemonic, 'DPR'. Reference: Section 3 B.3.b.

PAGE:

4. FORMAT OF PROCESSOR CONTROL CARDS

ASM:
COB:
FOR:
MAP:

PDP:

Voptions~ •.. ~xxx, lac f1, f2, f3 (flags)

The mnemonic, 'xxx', must be preceded by at least one blank; it must be
followed by either a comma and the 'lac' field, or by a series of one
or more blanks. The 'lac' field is defined as a single letter (A-Z)
or an asterisk (*) preceded by an optional string of blanks and followed
by a required string of one or more blanks. Each of f1, f2, f3 is a
name or a name/version. Blanks may follow but may not precede a slash
(/) or a comma separating f1, f2, and f3.

If flags are specified, a left parenthesis and a string of letters
(A-Z) containing no blanks must immediately follow the last of f1, f2,
f3. The string of letters must be terminated by a blank, or by a right
parenthesis followed by a blank. The fields f2, and f3 are optional
and may be omitted. The last of f1, f2, f3 must be followed by a blank
if flags are not specified.

Reference: Sections 3 B.4.a., 3 B.4.b., 2 B.4.c., 3 B.5.a ••

CLP: Voptions~ ••• ~xxx,loc
LFT:

f1 ,f2

XQT:

The mnemonic, 'xxx', must be preceded by at least one blank; it must
be followed either by a comma and the 'lac' field, or by a series of one
or more blanks. The 'lac' field is defined as a single letter (A-Z)
or a (*), preceded by an optional string of blanks. f1 and f2 are of
the form name or name/version. Blanks may follow but not precede a
slash (/), or the comma separating f1 and f2. f2 is optional and
may be omitted, in which case f1 must be followed by a blank and not
by a comma.

Reference: Sections 3 B.4.a., 3 B.4.b., 4 A.1 ••

SeD: 90ptions~ ••• ~xxx~ ••• ~ f1,f2
ABS:

The mnemonic, 'xxx', must be preceded and followed by at least one
blank. f1 and f2 are of the form 'name' or 'name/version'. Blanks may
follow but not precede a slash (/) or a comma. f2 is optional and may
be omitted on ABS and SCD; it must be omitted on XQT. If f2 is omitted,
f1 must be followed by a blank and not by a comma.

Reference: Section 3 B.5.b.

ELT: 9~ •.. ~ELT~ •.. ~ f1, f2, f3, f4

The mnemonic, 'ELT', must be preceded and followed by at least one
blank. f1 is of the form 'name/version (flags)'. Both 'version'
'flags' are optional, but if flags are included a left parenthesis
must directly follow the last letter of the version or the last letter
of the name if version is omitted. Following the left parenthesis is
a string of flag letters containing no blanks, and terminated by a

9

UP-4058 UNIVAC 110B EXEC II Appendix C
SECTION:

Ies:
LBR:

right parenthesis. Blanks may follow but not precede commas and the
slash (/). f2, f3, and f4 are optional and may be omitted. The last
of f1, f2, f3, and f4 must be followed by at least one blank.

Reference: Section 3 B.6.a ••

\l t:. • • • t:.xxx

The mnemonic, 'xxx', must be preceded and followed by at least one
blank.

Reference: Sections 3 B.7., and 3 B.9.a ••

PMD: \loptions~ ••• ~PMD~ ... ~specifications

The mnemonic, 'PMD', must be preceded and followed by at least one
blank. The specifications field is of the form 'name1', 'name2' , •.• ,
'namen' or 'name', 'start', 'length', 'format'. In either case,
blanks may follow but may not precede commas. This card has a fixed
format in certain cases.

Reference: Section 3 B.9.b.

10
PAGE:

UP-4058 UNIVAC 1108 EXEC II Appendix D
SECTION:

APPENDIX D. SPECIAL BLOCK FORMATS

1. PRINT IMAGE BLOCKS

a. Drum Blocks

The print image drum blocks, which are 256 words in length, are chained
together. The block format is as follows:

256

DRUM ADDRESS OF NEXT DRUM BLOCK
(0 FOR LAST BLOCK)

---------------------------------~~ - - -

The control words are of the following form:

A B C D E
6 bits 6 bits 6 bits 6 bits 12 bits

CONTROL WORDS

WITH TEXT

FOLLOWING

EACH CONTROL

WORD

If A equals 077, then the printing of the previous line is terminated.

If B equals 0, it indicates that the text that follows is to be printed.

If B is non-zero and the upper third of the next word (the first word
of text) is zero, it indicates a margin change.

If B is non-zero, and the upper third of the next word (the first word
of text) is non-zero, it indicates a form change. The text is a
message to be printed on the console printer.

If C equals 0, then the following text does not end the buffer.

If C equals 076, then this control word is the last meaningful word in
the buffer; it indicates the end of the buffer.

D is the number of words of text following (before the next control
word) •

E is the physical line number for this line of text (the text following
the control word).

1
PAGE:

UP-4058 UNIVAC 1108 EXEC II

b. Tape Block for Print Images

Appendix D
SECTION:

(1) If the print images were output by PRINT$, then each file contains
those blocks exactly as they would be found on drum except that the
first word of each block contains either the six character label
specified on the TPR control card or all spaces if the label was
not specified. (Reference Appendix C for information on the TPR
control card).

(2) If the print images were output by the DMP symbiont (Reference
Section 4 B.1 .a.), then the blocks are of exactly the same format
as on drum except the first word in each block is meaningless.

c. Print Image Blocks Written in DLT-5 Format

The blocks, which are of 23 word length, have the following format:

CONTROL WORD

~---------------~--------------------~

Format of Control Word

05 05 x y z

22 WORD TEXT OF

FIELDATA PRINT IMAGE

If x is Fieldata "E", it indicates end-of-file. Otherwise x is
Fieldata blank (05).

If Y is "blank" (05), it indicates no skip; any other value for y in­
dicates a skip to the top of the next page.

z is the number of lines to be spaced before printing.

2
PAGE:

UP-4058 UNIVAC 110B EXEC II Appendix D
SECTION:

2. CARD IMAGE BLOCKS

a. Drum Blocks

2

255

256

The blocks, which have length of 256 words, are chained together. The
block format is as follows:

CHAIN TO NEXT DRUM BLOCK
(0 FOR LAST BLOCK OF CHAIN)

o FOR 80 COLUMN CARDS NUMBER OF CARD IMAGES
1 FOR 90 COLUMN CARDS IN THIS BLOCK

----- - --
- --------------------------------- WORDS 3-256

CONTAIN 14

WORDS (OR 15

WORDS FOR 90

COLUMN CARDS)

CARD IMAGES.

b. Tape Blocks

Tape blocks for card images are output by the DMP symbiont. They have
the same format as the drum blocks for card images, except that the
first word of each block is meaningless.

3. PAPER TAPE IMAGES ON MAGNETIC TAPE (via symbiont action)

Each block of data has the following format:

o

2

3

253

254

255

NOT USED

NOT USED I IMAGE COUNT

1st IMAGE 2nd IMAGE 3rd IMAGE

4th IMAGE ETC.

- ----

r-'--"=-------.l

O~image count~76210

Character images are packed
left to right in thirds of
words starting with the
third word of each block. A
punch in the paper tape
corresponds to a 1 bit in the
image, channel 1 will occupy
the least significant bit
position and sequential
channels occupy sequential
bit positions proceeding
leftward in the image.

3
PAGE:

UP-4058 UNIVAC 1108 EXEC II Appendix D

SECTION:

Each file contains any number of data blocks followed by a hardware end-of­
file mark. A single tape reel may contain any number of files.

Unless the file spans two tape reels - (See next paragraph), the end of
tape indication is of the following structure:

(1) A ten word block of the form:

;0: 1 : 1 ~ 1 : I: I

8
9

- -
any bit configuration

(2) A hardware end-of-file mark following the above block.

If a file spans more than one tape reel, then the end of tape indication is
replaced by the following structure.

(1) The first tape may contain any number of files followed by any number
of blocks of the last file.

(2) The file to be continued must be followed directly by a ten word block
of the format:

o [: 1 : I : I : I_~ 1 ~ I
7

8

9

- _

any bit configuration

(3) A hardware end-of-file mark must follow the above "end reel" block.

4. PROGRAM ELEMENTS ON MAGNETIC TAPE (via CUR)

An element is recorded on magnetic tape by means of the same card images
that are punched into cards, and therefore, the ELT card is a part of the
element. When the elements of the PCF are written on tape, (such as with
the CUR operations TWR or OUT), the TOC of the PCF does not accompany the
elements; the TOC is reconstructed when the elements on the tape are re­
entered into the PCF. The tape format is shown pictorially where:

(1) "Beginning Sentinel" is the name of the element for the first block
of an element and plus zero for all other blocks.

(2) "Item Count" indicates in binary the number of card images in the
block. It may vary from zero to 36.

4
PAGE:

UP-4058 UNIVAC 1108 EXEC II Appendix D

SECTION:

(3) "Ending Sentinel" is plus zero for all but the last block of an element
for which it is minus zero. Block size for tape elements is fixed at
507 words. The unused portion of a block, past the last card image,
contains filler.

BEGINNING SENTINEL

ITEM COUNT

FIRST CARD IMAGE IN THIS BLOCK

LAST CARD IMAGE IN THIS BLOCK
(THERE MAY BE NO MORE THAN 36
CARD IMAGES PER TAPE BLOCK)

ENDING SENTINEL

5. BLOCK BUFFERING PACKAGE FILE DESCRIPTION TABLE

Note: In the following format illustrations and discussion the fields
enclosed in parentheses are filled in by the package and are not
normally of concern to the user.

Word 1

2

3

4

35

5 I

Location of Drum Block
Pool

(End of Queue)

(User's Buffer)

Length of Information

3029 24 23 18 17

LAF I (AB) I (LOCK)

I

Location of Buffer Pool

(Start of Queue)

Abnorma I Return

Location of Information

12 11 6 5 0

(RQ) I (MODE) I (DEVICE I

5
PAGE:

UP-4058 UNIVAC 1108 EXEC II

6 Device Error Return Calling Sequence Error Return

7 Input Device Routines Output Device Routines

8 Block Size (Cur rent Buffer)

9 Command Word

10 Sentinel Word

In i ti a I Drum Address

Word 11

UC*

Final Drum Address

12

Available Space Count *

(Access Word)

13

not used

Current Drum Address

14

not used

* For Tape Fi les.

Appendix D

SECTION:

Alternates

Alternates

Alternates

Alternates

6
PAGE:

UP-40S8 UNIVAC 1108 EXEC II Appendix D
SECTION:

Word 1:

LOCATION OF DRUM BLOCK POOL

LOCATION OF BUFFER POOL

Word 2:

(END OF QUEUE)

(START OF QUEUE)

Word 3:

(USER'S BUFFER)

ABNORMAL RETURN

Word 4:

LENGTH OF INFORMATION

LOCATION OF INFORMATION

Word 5:

LAF

(AB)

(LOCK)

(RQ)

(MODE)

The user supplies the location of the
drum block pool. Required for random
drum files only.

The user supplies the location of the
buffer pool that is to be used by this
file.

Location of last entry in the queue of
waiting buffers.

Location of first entry in the queue of
waiting buffers.

Location of buffer for which word four
applies.

Exit provided by user for abnormal
returns.

The package provides the length of
each block that it gives to the user.
This half-word represents that length.
When writing a tape file, the user may
provide the length of the information
he has just placed in the buffer should
he wish to write a short block.

This is the initial core address of the
current block.

Maximum number of blocks to be read
ahead on an input file (look-ahead
factor).

Number of entrjes in the queue of
waiting buffers.

Switch to indicate that read ahead is
suspended.

Switch to indicate that the dispatcher
has a request from this file pending.

Indicates whether or not the file is
open for writing or reading and in
what direction.

o = Read forward
1 = Read backward
4 = Write

7
PAGE:

UP-40S8 UNIVAC 1108 EXEC II Appendix D
SECTION:

(DEVICE)

Word 6:

DEVICE ERROR RETURN

CALLING SEQUENCE ERROR
RETURN

Word 7:

INPUT DEVICE ROUTINES

OUTPUT DEVICE ROUTINES

Word 8:

BLOCK SIZE

(CURRENT BUFFER)

Word 9:

COMMAND WORD

Indicates the type of device currently
in use.

o = Tape
2 = Drum continuous
4 = Drum random
5 = Drum random, release

Exit provided by the user for unrecover­
able hardware errors.

Exit provided by the user for improper
calling sequences.

The user provides one of the following
addresses if the file is to be read:

BITT$
BIDC$
BIDR$

Input Tape
Input Continuous Drum
Input Random Drum

The user provides one of the following
if the file is to be written:

BOTT$
BODC$
BODR$

Output Tape
Output Continuous Drum
Output Random Drum

Block size to be used for drum files;
maximum block size for tape files.

Location of the buffer currently
involved with the input/output device.

The command word, along with the data
word is used to determine when a
sentinel has been encountered. The
package performs an execute on the
command word with Register 12 contain­
ing the length of the block just read
and location of its first cell.
Register 13 contains the location of
its last cell, and 15 has the location
of the file description table. The
function of the command word is to
load Register 12 with a word from this
block that will be compared to the
data word after return to the package.
If more than one instruction is
necessary for loading the possible
sentinel word, the command word should
be an SLJ or LMJ in order to save the
return point to the package.

8
PAGE:

UP-40S8 UNIVAC 1108 EXEC II Appendix D
SECTION:

Word 10:

SENTINEL WORD

FOR DRUM FILES ONLY

Word 11:

INITIAL DRUM ADDRESS

Word 12:

FINAL DRUM ADDRESS

Word 13:

(ACCESS WORD)

Word 14:

(CURRENT DRUM ADDRESS)

All volatile registers are available for
use. The command word is executed by
the package while in interrupt coding.
Normally, no reference to the system
should be made.

After execution of the Command Word,
equality of Register 12 and the sentinel
word implies a sentinel.

When writing, user must supply the first
location of the drum area which is to
be used for a continuous drum file.
When writing in the random drum mode,
the package will set the initial drum
address. When reading forward, the
information will be read beginning with
this block. When reading backward, an
abnormal return results from reading
past the addressed block.

The user must supply the last drum
location to be used by the package for
writing a continuous drum file. Since
it is assumed that the same file des­
cription table is to be used for
writing and reading, the package will
replace this value with the location
of the last block used by this file
when it is closed after writing. If a
file is being read forward, an abnormal
return results from reading past the
final drum address. Reading commences
with this address when a file is opened
backwards. When reading, the final
drum address is the first word of the
last block read.

Access word for buffer currently in­
volved with the drum system.

Drum address for the buffer currently
involved with the drum system.

9
PAGE:

UP-4058 UNIVAC 1108 EXEC II Appendix D
SECTION:

FOR TAPE FILES ONLY

Word 11:

UC

Word 12:

The user specifies the logical unit to
be used.

AVAILABLE SPACE COUNT The user specifies the number of words
of available tape on the reel to be
written. This available space is
counted down by the package as the
reel is written. An abnormal return
occurs when writing two more blocks of
maximum size would exhaust the tape.

The information in the file description area, which is dependent on device
and I/O, need only be included as indicated. The following check list should
serve as a guide for the fields required when a file is to be opened. Other
fields are either filled in by the package itself or are ignored.

a. Always Required

For all modes:

Name of buffer pool
Block size
Abnormal return
Device error return
Calling sequence error return

b. Open File For Output

For tape files:

Output device routine - BOTT$
UC
Available space count

For continuous drum files:

Output device routine - BODC$
Initial drum address
Final drum address

For random drum files:

Location of drum block pool
Output device routine - BODR$

c. Open File For Input

For tape files:

LAF
Input device routine - BITT$
Command word
Data word
UC

10
PAGE:

UP-4058 UNIVAC 110B EXEC II Appendix D

SECTION:

For continuous drum files:

LAF
Input device routine - BIDC$
Command word
Data word
Initial drum address
Final drum address

Left in place if file was written
using this file description area.

For random drum file:

Location of drum block pool
LAF
Input device routine - BIDR$
Command word
Data word
Initial drum address
Final drum address

Left in place if file was written
using this file description area.

6. LABEL and ITEM PACKAGE FORMATS

a. Format of the File Description Area

The label and item handling routines require seven additional words
following the file description area (see Appendix D 5.)

Word 15 IS (BLOCK COUNT)

16 (Storage for Routine) (Storage for Routine)

17 (Storage for Routine) (Item Count)

18 NL LOCL

19 NF LOCF

20 EOFX REW

21 EORR EORW

22 (Size) LABEX

FILE DESCRIPTION AREA

Those fields enclosed in parentheses are filled in by the package and
are not normally of concern to the user.

Word 15:

IS

(BLOCK COUNT)

Word 16:

(STORAGE FOR ROUTINE)

The user supplies the item size. The
item size is some non-zero value for
fixed length items and zero for variable
length items.

The number of blocks used for this file.

Words 16 and the left half of word 17
are used by the item handlers as
location pointers.

11
PAGE:

UP-40S8 UNIVAC 1108 EXEC II Appendix 0
SECTION:

Word 17:

(ITEM COUNT)

Word 18:

NL

Lex:: L

Word 19:

NF

Lex::F

Word 20:

EOFX

REW

Word 21:

EORR

EORW

While writing, the number of items in
current buffer. While reading, the
number of items remaining in current
buffer.

The number of label image words.

The location of the file label image.
A zero means no label exists.

The number of free words.

The location of the free words. Zero
implies no free words.

Exit provided by user for end-of-files.

The rewind conditions for tape are as
follows:

o = No rewind
1 = Rewind
2 = Rewind with interlock

The end-of-reel exit for reading is
provided by the user. If this is set
to zero, the standard ending-reel pro­
cedure is used.

When control is transferred to the
end-of-reel exit X11 if entered, con­
tains a return point to the Label
Package.

The end-of-reel exit for writing is
provided by the user. If this is set
to zero, the standard ending-reel
procedure is used.

When control is transferred to the
end-of-reel exit X11 if entered, con­
tains a return point to the Label
Package.

12
PAGE:

UP-4058

2

3

4

5

6

Word N- 2

Word N-1

Word N

UNIVAC 1108 EXEC II

b. Format of Label Block

7 4 7 5 7 4 7 5 7 4 7

6 I Block Count Usable Tape

Block Length - Current Fi Ie Item Size - Current Fi Ie

Number of File Label Words Number of Free Words

Date of Recording (Field Data Code)

Disregarded Reel Number (Binary)

Label Words

-- -

Free Words

Disregarded Words

Block Length-Previous File Item Size - Prev ious Fi Ie

6 Block Count Usable Tape

7 4 5 7 4 7 5 7 4 7

LABEL BLOCK

5

5

Appendix D
SECTION:

~

File

Label

Free

Words

Balance

of Block

if Any

~"

233 Words for

240 Word

Blocks

or

113 Words for
120 Word
Blocks

Word 1 and word N contain the sentinel identification word 747574757475
(octal). Word 2 and word N-1 contain the label sentinel 6 (octal) bits
00-02, block count bits 03-17 and usable tape bits 18-35. Word 2 des­
cribes the initial condition for the file. Word N-1 describes the up­
dated condition for the file. Word 3 described the current file, and
word N-2 describes the previous file (if any). Word 5 is the first
word of the file image and is the date of recording in Fieldata code.
The high-order half of word 6 contains the reel number.

13
PAGE:

UP-40S8 UNIVAC 110B EXEC II

c. Format of Bypass Sentinels

Word 1 7 4 7 5 7

Word 2 4 I Block Count

Word 3 Block Length - Current Fi Ie

4 7

Disregarded Words

5 7

Appendix 0
SECTION:

4 7 5

Usable Tape

Item Size - Current Fi Ie

114 Words for a 120 Word Block
234 Words for a 240 Word Block

-- -

Word N - 2 Block Length - Current File Item Size - Current Fi Ie

Word N-l 4 I Block Count Usable Tape

Word N 7 4 7 5 7 4 7 5 7 4 7 5

BYPASS SENTINEL

-

Word 1 and word N contain the sentinel identification word 747574757475
(octal). Word 2 and N-1 contain the Bypass Sentinel 4 (octal) in bits
00-02, block count in bits 03-17 and usable tape bits 18-35. Words 2
and N-1 indicate the updated condition of the file. Words 3 and N-2
describe the current file.

d. Format of End-of-File Sentinel

Word 1 7 4 7 5 7 4 7 5 7 4 7 5

Word 2 0 I Block Count Usable Tape

Word 3 Block Length - Current File Item Size - Current Fi Ie

Words 4 through 47 are Disregarded -
Word 48

Word 49

Word 50

,--

0 I
7

~

Block Length - Current Fi Ie Item Size - Current Fi Ie

Block Count Usable Tape

4 7 5 7 4 7 5 7 4 7

END-of-FILE SENTINEL

Words 1 and 50 contain the sentinel identifcation word 747574757475
(octal). Words 2 and 49 contain the end-of-file sentinel 0 (octal)
bits 00-02, block count bits 03-17, usable tape bits 18-35. Words 2
and 49 describe the condition of the file not including the block.
Words 3 and 48 describe the current file.

e. Format of End-of-Reel Sentinel

5

Word 1 7 4 7 5 7 4 7 5 7 4 7 5

Word 2 2 I 0 0 0 0 a a 0 a 0 a 0

Word 3 Block Length - Current Fi Ie 1 Item Size - Current Fi Ie

Words 3 through 47 are Disregarded --- - -
Word 48 Block Length - Current Fi Ie J Item Size - Current Fi Ie

Word 49 2 J a 0 0 0 0 0 0 0 0 0 0

Word 50 7 4 7 5 7 4· 7 5 7 4 7 5

END-of-REEL SENTINEL

-

PAGE

UP-40S8 UNIVAC 1108 EXEC II Appendix D
SECTION:

Words 1 and 50 contain the sentinel identification 747574757475 (octal).
Words 2 and 49 contain the end-of-reel sentinel 2 (octal) bits 00-02,
block count bits 03-17, usable tape bits 18-35. Words 2 and 49 des­
cribe the condition of the file not including the block. Words 3 and
48 describe the current file.

f. Format of Fixed-Length Item Data Block

Word 1 Number of Items in Block I Number of Words in Block

Word 2 1st Fixed Length Item

2nd Fixed Length Item

L-. ----- - - ----...-
N - 1st Fixed Length Item

Nth Fixed Length Item

Disregarded Words (if any)

Word N-2 I Number of Disregarded Items (if any)

Word N-1 Check Sum

Word N Number of Items in Block 1 Number of Words in Block

FIXED-LENGTH ITEM DATA BLOCK

Words 1 and N describe how many items are contained in the data block
and the size of the block. If the block has any disregarded words, the
"number of words in block" will be negative. There will be no dis­
regarded words in a block of a tape file unless required to bring the
block up to the 120 or 240 word minimum. Drum files will always con­
tain full sized blocks as described in word 8 of the file description
area. The number of disregarded words will be made sufficient to fill
out the block. Word 2 is the first word of the first item. Word N-1
contains the sum for the entire data block excluding the N-1st word of
the block. The right half of words 1 and N will be negative if the
data block has any disregarded words. If there are disregarded words
in the block, then the right half of word N-2 contains the number of
these words. Otherwise, it is the last word of the last item in the
block.

15
PAGE:

UP-4058 UNIVAC 1108 EXEC II Appendix D

SECTION:

g. Format of Variable-Length Item Data Block

Word 1 Number of Items in Block I Number of Words in Block

Word 2 0 0 0 0 0 0 I Number of Words in Following Item

Data Item (variable length)

Word P Number of Words in Preceding Item I Number of Words in Following Item

<---

Number of Words in Preceding Item I Number of Words in Following Item

Data Item (variable length)

Word M Number of Words in Preceding Item I 0 0 0 0 0 0

Balance of Block (if any) Disregarded

Word N-2 I Number of Disregarded Words

Word N-I Check Sum

Word N Number of Items in Block I Number of Words in Block

VARIABLE-LENGTH ITEM DATA BLOCK

Words 1 and N describe how many items are in the block and the size of
the block. If the block has any disregarded words, the "number of words
in the block" will be negative. In the case there are no disregarded
words M will equal N-2. There will be no disregarded words in a block
of a tape file unless they are required to bring the block up to the
120 or 240 minimum. Drum files will always contain full size blocks
as specified in word 8 of the file description area. The number of dis­
regarded words will be made sufficient to fill out the block. Word N-1
contains the sum for the entire block excluding the N-1st word of the
block. The right half of word 2 tells the size of the variable item
as does the left half of word P. The right half of word P indicates
the size of the next variable length item, etc. The right half of
word M indicates that there are no more items in this block.

h. Multifile Reels

Multifile reels will be equipped with a label block for each file and an
end-of-file sentinel block after the final file. The multifile configura­
tion is not available for drum files. If the location and length of a
label image is given as zero in the file description table, label and
sentinel block are not written; hence, the multifile configuration re­
quires that label images be specified.

The layout of a multifile reel is described below.

Label Block for File 1

data for fi Ie 1

Labe I Block for Fi Ie 2

t
data for file 2

Label Block for Fi Ie N

data for file n

i
End of Fi Ie Sentinel

LAYOUT OF MULTIFILE REEL

16

PAGEl

UNIVAC
DIVISIDN DF ."'ERRV RAND CDR"'DRATIDN

U P·4058

	00001
	00002
	0001
	0002
	001
	002
	003
	004
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	4-001
	4-002
	4-003
	4-004
	4-005
	4-006
	4-007
	4-008
	4-009
	4-010
	4-011
	4-012
	4-013
	4-014
	4-015
	4-016
	4-017
	4-018
	4-019
	4-020
	4-021
	4-022
	4-023
	4-024
	4-025
	4-026
	4-027
	4-028
	4-029
	4-030
	4-031
	4-032
	4-033
	4-034
	4-035
	4-036
	4-037
	4-038
	4-039
	4-040
	4-041
	4-042
	4-043
	4-044
	4-045
	4-046
	4-047
	4-048
	4-049
	4-050
	4-051
	4-052
	4-053
	4-054
	4-055
	4-056
	4-057
	4-058
	4-059
	4-060
	4-061
	4-062
	4-063
	4-064
	4-065
	4-066
	4-067
	4-068
	4-069
	4-070
	4-071
	4-072
	4-073
	4-074
	4-075
	4-076
	4-077
	4-078
	4-079
	4-080
	4-081
	4-082
	4-083
	4-084
	4-085
	4-086
	4-087
	4-088
	4-089
	4-090
	4-091
	4-092
	4-093
	4-094
	4-095
	4-096
	4-097
	4-098
	4-099
	4-100
	4-101
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	A-01
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	xBack

