
§1 ANALYSIS INTRODUCTION 1

1. Introduction.

ANALYSIS

Egg Database Analysis Tools

by John Walker
http://www.fourmilab.ch/

This program is in the public domain.

This program implements frequently-performed analyses of generic eggsummary data, in the form of a
generic egganalysis class derived therefrom which adds various analytic tools and the storage to represent
them and support their computation. (The “generic” stuff refers to the fact that all of these classes are
defined as templates in which the data type used for the egg sample data is parametric. This permits
analyses which wish to aggregate data or express it in other measures, for example, z scores, to avoid the
round-off which forcing the egg sample to its default value of unsigned char would entail. We classify
statistics computed as “all egg”, where we produce time series which evaluate quantities at a moment of
time across all eggs reporting, and “per egg”, where we measure the behaviour of individual eggs across the
entire time period in the data set.

To use this code, you’ll need to be familiar with the eggdata program; you’ll probably use the cache
to obtain your data sets and prepare extracts of time intervals of interest, and you’ll need to understand
the generic eggsummary class to access raw data. You may also wish to consult the timedate program to
manipulate dates and times, and the statlib program for statistical tests on the data.

In general, you can think of the development of analysis software as a process of migration of tools from
specific purpose-built analysis programs such as those presented in examples, into this program as they
become more widely used, and finally into eggdata if they are fundamentally applicable to the original data
set.

〈 analysis_test.c 1 〉 ≡
#define REVDATE "4th February 2002"

See also section 23.

2 PROGRAM GLOBAL CONTEXT ANALYSIS §2

2. Program global context.

#include "config.h" /∗ System-dependent configuration ∗/
〈Preprocessor definitions 〉
〈Application include files 4 〉
〈Class implementations 6 〉

3. We export the class definitions for this package in the external file analysis.h that programs which
use this library may include.
〈 analysis.h 3 〉 ≡
#ifndef ANALYSIS_HEADER_DEFINES

#define ANALYSIS_HEADER_DEFINES

#include <math.h> /∗ Make sure math.h is available ∗/
#include <iostream>

#include <iomanip>

#include <fstream>

#include <exception>

#include <stdexcept>

#include <string>

#include <vector>

#include <map>

using namespace std;
#include <ctype.h>

#include <assert.h>

#include "eggdata.h"

#include "timedate.h"

#include "statlib.h"

〈Class definitions 8 〉
#endif

4. The following include files provide access to external components of the program not defined herein.
〈Application include files 4 〉 ≡
#include "analysis.h" /∗ Class definitions for this package ∗/
This code is used in section 2.

5. This is a dummy placeholder for code to be compiled into the binary part of the program. At the
moment, we have only template classes, so we’d get an error on the reference absent this definition of the
code portion. If we end up exclusively with templates, this definition and the reference below may be
removed.
〈Egg analysis utilities 5 〉 ≡
This code is used in section 6.

6. The following classes are defined and their implementations provided.
〈Class implementations 6 〉 ≡
〈Egg analysis utilities 5 〉

This code is used in section 2.

§7 ANALYSIS EGG ANALYSIS UTILITIES 3

7. Egg analysis utilities.

4 THE EGG ANALYSIS CLASS ANALYSIS §8

8. The Egg Analysis Class.
The egganalysis extends eggsummary to provide a variety of analyses of the raw sample data and output

thereof. The intention is that egganalysis will implement the standard “workhorse” statistics, then be further
extended to add exploratory measures. We “slice” the raw data two ways here: as a time series across all
eggs reporting in a given time period and per-egg—looking at the behaviour of each egg over the entire time
period in the data set.

As with the parent class, we define this as a template, generic egganalysis , which can be instantiated with
whatever data type is required for the individual egg samples. A default instantiation with unsigned char
is provided via the typedef egganalysis .
〈Class definitions 8 〉 ≡

template〈class Sample〉 class generic egganalysis : public generic eggsummary < Sample > {
public:

double ∗mean , ∗variance , ∗stouffer z ;
double ∗egg mean , ∗egg stdev ;
Sample ∗egg min sample , ∗egg max sample ;
int ∗egg num sample ;
int ∗nsamples ; private:
void free all egg analysis data (void){

#define ReleaseTable (x)
if ((x) 6= Λ) {

delete (x);
(x) = Λ;

}
ReleaseTable (mean);
ReleaseTable (variance);
ReleaseTable (stouffer z);
ReleaseTable (nsamples);

#undef ReleaseTable
} void free per egg analysis data (void){

#define ReleaseTable (x)
if ((x) 6= Λ) {

delete (x);
(x) = Λ;

}
ReleaseTable (egg mean);
ReleaseTable (egg stdev);
ReleaseTable (egg min sample);
ReleaseTable (egg max sample);
ReleaseTable (egg num sample);

#undef ReleaseTable
}

public:
generic egganalysis ()
{

mean = variance = stouffer z = Λ;
nsamples = Λ;
egg mean = egg stdev = Λ;
egg min sample = egg max sample = Λ;
egg num sample = Λ;

}
void write egg statistics CSV (string fileName);
void write per egg statistics CSV (string fileName);

§8 ANALYSIS THE EGG ANALYSIS CLASS 5

void write deviation plot (string fileName , string chartTitle = "", int timeInterval = 1, int
tickOffset = 0, string x axis label = "",double referenceProbability = 0.05, systemtime
referenceProbabilityStartTime = systemtime(0));

∼generic egganalysis ()
{

free all egg analysis data ();
free per egg analysis data ();

}
void compute all egg statistics (void);
void compute per egg statistics (void); } ;
typedef generic egganalysis < unsigned char > egganalysis ;

See also sections 9, 10, 16, 17, and 18.

This code is used in section 3.

9. Here we compute a time series for each time interval in the database, aggregating data across all the
eggs (assuming they are synchronised). We compute:

nsamples Number of eggs reporting in this second
mean Mean value across all eggs reporting in this second
stouffer_z Stouffer Z for eggs reporting

Let ve be the sample reported by egg e for a given second, n the number of eggs which reported values
this second, µ and σ the mean and standard deviation, respectively, of the samples produced by the eggs.
Then the values tabulated are as follows:

nsamples n

mean

∑n

e=0
ve

n

stouffer_z

∑n

e=0
mean−µ

σ/
√

n

〈Class definitions 8 〉 +≡
template〈class Sample〉 void generic egganalysis〈Sample〉 ::compute all egg statistics (void){

assert (generic eggsummary < Sample > ::seconds per row) ;
/∗ If this pops, you probably forgot to load the data ∗/

int nitems = generic eggsummary < Sample > ::seconds of data/generic eggsummary <
Sample > ::seconds per row ;

free all egg analysis data ();
mean = new double[nitems];
variance = new double[nitems];
stouffer z = new double[nitems];
nsamples = new int[nitems];
int i; for (i = 0; i < nitems ; i++) { int j;
double rsum = 0, zsum = 0;
int n = 0; for (j = 0; j < generic eggsummary < Sample > ::eggs reporting ; j++) { if

(isSampleValid (generic eggsummary < Sample > ::get egg index (i, j))) { n++;
rsum += generic eggsummary < Sample > ::get egg index (i, j); } } nsamples [i] = n;

mean [i] = rsum/n; stouffer z [i] = (mean [i] − (generic eggsummary < Sample > ::trial size/2))
/ (sqrt (generic eggsummary < Sample > ::trial size/4.0) / sqrt (static cast〈double〉(n)))
;

if (isnan (stouffer z [i]) ∧ (i > 0)) {
stouffer z [i] = stouffer z [i− 1];

}
} }

6 THE EGG ANALYSIS CLASS ANALYSIS §10

10. Slicing the data set the other way, by egg rather than time, yields statistics on the behaviour of
individual eggs over the time period in the database. These statistics are largely irrelevant to hypotheses
being tested by the GCP, but facilitate studies of peculiarities of individual or classes of random event
generators which may influence the composite result. For each egg, we compute for all n valid samples sx:

egg_num_sample n

egg_mean µ =
∑n

i=0
si

n

egg_stdev σ =

√∑n

i=0
(si−µ)2

n−1

egg_min_sample min1≤i≤n si

egg_max_sample max1≤i≤n si

〈Class definitions 8 〉 +≡
template〈class Sample〉 void generic egganalysis〈Sample〉 ::compute per egg statistics (void)
{
〈Allocate and initialise per egg statistics tables 11 〉;
〈Compute per egg sum, maximum, and minimum values 12 〉;
〈Compute per egg mean and standard deviation 13 〉;

}

11. We begin computation of the per-egg statistics by allocating arrays for the results, one slot per egg
and initialise them appropriately for the subsequent computations. If previously allocated tables are present,
they are released.
〈Allocate and initialise per egg statistics tables 11 〉 ≡

free per egg analysis data (); egg mean = new double [generic eggsummary <
Sample > ::eggs reporting] ; egg stdev = new double [generic eggsummary <
Sample > ::eggs reporting] ; egg min sample = new Sample [generic eggsummary <
Sample > ::eggs reporting] ; egg max sample = new Sample [generic eggsummary
< Sample > ::eggs reporting] ; egg num sample = new int [generic eggsummary <
Sample > ::eggs reporting] ; /∗ Initialise variables for per-egg statistics ∗/

int i; int nitems = generic eggsummary < Sample > ::seconds of data/generic eggsummary <
Sample > ::seconds per row ; for (i = 0; i < generic eggsummary < Sample > ::eggs reporting ;
i++) { egg mean [i] = egg stdev [i] = 0; egg min sample [i] = generic eggsummary <
Sample > ::trial size + 1;

egg max sample [i] = 0;
egg num sample [i] = 0; }

This code is used in section 10.

§12 ANALYSIS THE EGG ANALYSIS CLASS 7

12. Next, we make a first pass over the data, accumulating the sum (to be used later to obtain the mean
value), minimum, and maximum of valid samples from that egg. Along the way, we count the number of
valid samples from each egg present in the data set.
〈Compute per egg sum, maximum, and minimum values 12 〉 ≡

for (i = 0; i < generic eggsummary < Sample > ::eggs reporting ; i++) { int j; for (j = 0; j < nitems ;
j++) { Sample es = generic eggsummary < Sample > ::get egg index (j, i);

if (isSampleValid (es)) {
egg num sample [i]++;
egg mean [i] += es ;
if (es < egg min sample [i]) {

egg min sample [i] = es ;
}
if (es > egg max sample [i]) {

egg max sample [i] = es ;
}

}
} }

This code is used in section 10.

13. Finally, we can compute the mean and standard deviation for each egg, the mean simply by dividing
the sample sum computed in the first pass by the number of valid samples, and the standard deviation by
making a second pass over the data now that the mean is known. Eggs which contributed no valid samples
are ignored in this step and their mean and standard deviation set to zero. The standard deviation is also
set to zero if an egg contributes only a single sample.
〈Compute per egg mean and standard deviation 13 〉 ≡

for (i = 0; i < generic eggsummary < Sample > ::eggs reporting ; i++) { int j; if
(egg num sample [i] > 1) { egg mean [i] /= egg num sample [i]; for (j = 0; j < nitems ; j++) {
Sample es = generic eggsummary < Sample > ::get egg index (j, i);

if (isSampleValid (es)) {
egg stdev [i] += (es − egg mean [i]) ∗ (es − egg mean [i]);

}
} egg stdev [i] = sqrt (egg stdev [i]/(egg num sample [i]− 1)); } }

This code is used in section 10.

14. As a convenience, output routines which depend on the all-egg statistics having been computed test
whether the statistics have been computed and, if not, perform this task automatically.
〈Compute all egg statistics if not previously done 14 〉 ≡

if (mean ≡ Λ) {
compute all egg statistics ();

}
This code is used in sections 16 and 18.

15. And here’s the same convenience for folks interested in the per-egg statistics.
〈Compute per egg statistics if not previously done 15 〉 ≡

if (egg mean ≡ Λ) {
compute per egg statistics ();

}
This code is used in section 17.

8 THE EGG ANALYSIS CLASS ANALYSIS §16

16. This method writes a .csv file containing a time series of the all-egg statistics for the time period.
Need to include a table of fields in this file once it stops changing.

〈Class definitions 8 〉 +≡
template〈class Sample〉 void generic egganalysis〈Sample〉 ::write egg statistics CSV (string

fileName){ FILE ∗of = fopen (fileName .c str (), "w");
double ichisum = 0, chisum = 0; int nitems = generic eggsummary < Sample >

::seconds of data/generic eggsummary < Sample > ::seconds per row ;
int i, idof = 0;
〈Compute all egg statistics if not previously done 14 〉;
for (i = 0; i < nitems ; i++) { double zsquare = stouffer z [i] ∗ stouffer z [i];
double xe = chiSquareDistribution ::x from p k (0.99999, i + 1);
chisum += zsquare ;
idof ++; fprintf (of , "24,%lu,%d,%.6f,%.6f,%.6f,%d,%.6f,%.6f\n", generic eggsummary <

Sample > ::start time .get time () + (i ∗ generic eggsummary < Sample > ::seconds per row
) , nsamples [i],mean [i], stouffer z [i], chisum , idof , xe , (chisum − xe)/xe ,
chiSquareDistribution ::p from k x (chisum , i + 1)) ; } fclose (of); }

17. The write per egg statistics CSV method creates a .csv file containing the per-egg statistics calcu-
lated by compute per egg statistics . The statistics will be calculated automatically if they haven’t already
been prepared. The .csv file contains one record for each egg which contributed samples to the database,
formatted as follows:

25,Egg number,Number of samples,Mean,Max,Min,Stdev
where 25 is the record type code, Egg number the egg number, Number of samples the number of valid

samples from this egg present in the data set, Mean, Max, and Min the arithmetic mean value of all samples,
and the maximum and minimum values present, and Stdev the standard deviation of the samples from the
egg. Eggs whose data have been entirely discarded as invalid are not listed in the report.
〈Class definitions 8 〉 +≡

template〈class Sample〉 void generic egganalysis〈Sample〉 ::write per egg statistics CSV (string
fileName){ ofstream of (fileName .c str ());

〈Compute per egg statistics if not previously done 15 〉;
of � setprecision (8); for (int i = 0; i < generic eggsummary < Sample > ::eggs reporting ;

i++) { if (egg num sample [i] > 0) { of � "25," � generic eggsummary < Sample >
::egg number [i] � "," � egg num sample [i] � "," � egg mean [i] � "," � ((double)
egg max sample [i]) � "," � ((double) egg min sample [i]) � "," � egg stdev [i] � endl ; } }
of .close (); }

§18 ANALYSIS THE EGG ANALYSIS CLASS 9

18. The write deviation plot method generates, with the able assistance of GNUPLOT, a chart of the
cumulative deviation the time span in the object. A comparison line to a given referenceProbability
(0.05 by default) can be plotted as well. If a referenceProbability of zero is specified, no reference line
is plotted. You can offset the reference probability curve with respect to the data set by specifying a
referenceProbabilityStartTime for the curve; the curve is plotted starting at the first time at or after the
specified moment, with this Y axis origin at the value of the all-egg deviation curve at that moment.
Specifying a negative value for the referenceProbability causes the curve to be plotted below the expectation
value curve.
〈Class definitions 8 〉 +≡

template〈class Sample〉 void generic egganalysis〈Sample〉 ::write deviation plot (string
fileName , string chartTitle , int timeInterval , int tickOffset , string x axis label ,double
referenceProbability , systemtime referenceProbabilityStartTime){ ofstream
gp((fileName + ".gp").c str ()), dat ((fileName + ".dat").c str ());

〈Compute all egg statistics if not previously done 14 〉;
〈Write GNUPLOT data table for deviation plot 19 〉;

/∗ Create GNUPLOT instructions to plot data ∗/
double final p = chiSquareDistribution ::p from k x (idof , chisum);
gp � "set term pbm small color" � endl ;
〈Generate chart title for deviation plot 20 〉;
gp � "set ylabel \"Cumulative Deviation" � endl ;
〈Generate label for X (time) axis of deviation plot 21 〉;
if (timeInterval 6= 1) {
〈Generate X axis tick labels for deviation plot 22 〉;

}
gp � "plot \"" � fileName � ".dat\" using 1:2 title \"Composite: " �

generic eggsummary < Sample > ::eggs reporting � " eggs; p = " � setprecision (3) �
(1.0− final p) � "\" with lines,\\" � endl ;

if (referenceProbability 6= 0) {
gp � " \"" � fileName � ".dat\" using 1:3 title \"p=" � referenceProbability �

"\" with lines,\\" � endl ;
}
gp � " 0 title \"\"" � endl ;
string command ("gnuplot ");
command += fileName + ".gp | ppmtogif >" + fileName + ".gif";

#ifdef DEV_PLOT_DEBUG

cout � command � endl ;
#else

command += " 2>/dev/null";
#endif

gp .close ();
dat .close ();
system (command .c str ());

#ifndef DEV_PLOT_DEBUG /∗ Delete the temporary files used to create the plot ∗/
remove ((fileName + ".gp").c str ());
remove ((fileName + ".dat").c str ());

#endif
}

10 THE EGG ANALYSIS CLASS ANALYSIS §19

19. The GNUPLOT data file for the deviation plot consists of three columns: the time interval index (used
for the x axis), the cumulative deviation, and the reference probability curve (if referenceProbability 6= 0).
〈Write GNUPLOT data table for deviation plot 19 〉 ≡

double ichisum = 0, chisum = 0; int nitems = generic eggsummary < Sample >
::seconds of data/generic eggsummary < Sample > ::seconds per row ;

int i, ref = 0, idof = 0;
double cxebase ;
bool firstref = true ; for (i = 0; i < nitems ; i++) { double zsquare = stouffer z [i] ∗ stouffer z [i];
double xe = chiSquareDistribution ::x from p k (0.5, i + 1);
chisum += zsquare ;
idof ++;
dat � i � " " � (chisum − xe); if ((generic eggsummary < Sample > ::start time .get time () + (

generic eggsummary < Sample > ::seconds per row ∗i)) ≥ referenceProbabilityStartTime .get time ()
)

{
double xpRef = chiSquareDistribution ::x from p k (fabs (referenceProbability), ref + 1);
if (firstref) {

cxebase = chisum − xe ;
firstref = false ;

}
dat � " " � (((referenceProbability < 0) ? −1 : 1) ∗ ((chiSquareDistribution ::x from p k (0.5,

ref + 1)− xpRef) + cxebase));
ref ++;

}
dat � endl ; }

This code is used in section 18.

20. If the user doesn’t supply a custom title for the chart, generate one from the start and end times of
the data plotted. If the chart covers precisely one day, the default title is just the date. If the start and end
times are in the same day but not the first and last seconds of it, the date is given only before the start time.
〈Generate chart title for deviation plot 20 〉 ≡

if (chartTitle ≡ "") { chartTitle = generic eggsummary < Sample > ::start time .dateToString ();
if ((generic eggsummary < Sample > ::start time .get time () 6= generic eggsummary <
Sample > ::start time .midnight ()) ∨ ((generic eggsummary < Sample > ::end time .get time ()+1
) 6= (generic eggsummary < Sample > ::start time .get time () + systemtime ::SecondsPerDay))
) { chartTitle += " " + generic eggsummary < Sample > ::start time .timeToString ();

chartTitle += " −− "; if (generic eggsummary < Sample >
::start time .midnight () 6= generic eggsummary < Sample > ::end time .midnight ())
{ chartTitle += generic eggsummary < Sample > ::end time .dateToString () + " ";
} chartTitle += generic eggsummary < Sample > ::end time .timeToString (); } }
gp � "set title \"" � chartTitle � "\"" � endl ;

This code is used in section 18.

§21 ANALYSIS THE EGG ANALYSIS CLASS 11

21. The caller can supply the label for the x (time) axis of the deviation plot explicitly by passing the
desired label as the x axis label argument (or a single blank for no label at all). If the null string is supplied
(the default if the argument is omitted), a label will be generated based on the timeInterval argument. If
the timeInterval is not one of the intervals defined below, the axis will be labeled as “Time Periods”—you
should provide a custom label along with a nonstandard time interval.
〈Generate label for X (time) axis of deviation plot 21 〉 ≡

if (x axis label 6= " ") {
if (x axis label ≡ "") {

switch (timeInterval) {
case 1: x axis label = "Seconds";

break;
case systemtime ::SecondsPerMinute : x axis label = "Minutes";

break;
case systemtime ::SecondsPerHour : x axis label = "Hours";

break;
case systemtime ::SecondsPerDay : x axis label = "Days";

break;
default: x axis label = "Time Periods";

break;
}
x axis label += " Elapsed";

}
gp � "set xlabel \"" � x axis label � "\"" � endl ;

}
This code is used in section 18.

22. If the timeInterval is one second (the default), GNUPLOT’s default x axis labeling is adequate. Other-
wise, we must generate a “set xtics” statement which supplies the labels and gives their locations along
the axis. We place labels at each timeInterval , offset tickOffset seconds, which may be positive or negative.
〈Generate X axis tick labels for deviation plot 22 〉 ≡

int ctime = generic eggsummary < Sample > ::start time .get time () + tickOffset ;
bool first = true ;
gp � "set xtics (\\" � endl ;
for (i = 0; i < nitems ; i++) {

if ((ctime % timeInterval) ≡ 0) {
if (¬first) {

gp � ",\\" � endl ;
}
first = false ;
gp � "\"" � ((i + tickOffset)/timeInterval) � "\" " � i;

}
ctime ++;

}
gp � "\\" � endl � ")" � endl ;

This code is used in section 18.

12 TEST PROGRAM ANALYSIS §23

23. Test program.

〈 analysis_test.c 1 〉 +≡
〈Test program include files 26 〉;
〈Show how to call test program 25 〉;
int main (int argc , char ∗argv []){ extern char ∗optarg ; /∗ Imported from getopt ∗/

extern int optind ; try { int opt ;
〈Process command-line options 24 〉;

#if 0 /∗ Eggsummary analysis and plotting tests ∗/
{ int j;
eggdatabasesed ;
ed .set Fourmilab defaults ();

#ifndef CACHE_TEST

#define DEFAULT_EGGANALYSIS

#ifdef DEFAULT_EGGANALYSIS

generic eggsummary cache < egganalysis > ec(&ed , "rotten_egg.csv", 50, 150);
egganalysis ∗ esr ;
egganalysis ext ;

#else

typedef generic egganalysis〈double〉 double egganalysis; generic eggsummary cache <
double egganalysis > ec(&ed , "rotten_egg.csv", 50, 150);

double egganalysis ∗esr ;
double egganalysis ext ;

#endif

esr = ec .get by date ("2001−04−22");
systemtime refstart ; /∗ refstart.fromString(”2001-04-22 08:00:00”); ∗/

/∗ refstart.fromString(”2001-04-22 00:00:00”); ∗/
#ifndef EXTRACT_TEST

systemtime exstart , exend ;
exstart .fromString ("2001−04−22 13:00:00");
exend .fromString ("2001−04−22 22:30:00");
esr~extract time range (&ext , exstart , exend);
esr = &ext ;

#endif
esr~compute per egg statistics ();
esr~describe ();
esr~write per egg statistics CSV ("peregg.csv");
esr~write deviation plot ("devtest", /∗ Name of plot file ∗/
"", /∗ Custom title for chart ∗/
systemtime ::SecondsPerHour , /∗ Time interval for x axis labels ∗/
systemtime ::SecondsPerHour ∗ 8, /∗ Offset in seconds for x axis labels ∗/
"", /∗ Custom title for x axis ∗/
0.05, /∗ Probability for reference curve ∗/
refstart /∗ Time to begin reference curve plot ∗/
);

#else
egganalysis esr ;
systemtime t;
t.fromString ("2001−04−22"); /∗ t.fromString(”2001-11-29”); ∗/
esr .load from CSV (ed .database file (t));
esr .exclude bad data ("rotten_egg.csv");

§23 ANALYSIS TEST PROGRAM 13

esr .limit to range (50, 150,&cout);
esr .compute all egg statistics ();

#if 0
for (j = 0; j < esr .eggs reporting ; j++) {

cout � esr .egg number [j] � ": " � (int) esr .get egg index (86399, j) � "\n";
}

#endif
#if 0

esr .write egg statistics CSV ("test_24.csv");
#endif
#ifndef SIMPLE

esr .write deviation plot ("devtest", /∗ Name of plot file ∗/
"", /∗ ”Earth Day: 2001 April 22”, // Custom title for chart ∗/
systemtime ::SecondsPerHour , /∗ Time interval for x axis labels ∗/
systemtime ::SecondsPerHour ∗ 8, /∗ Offset in seconds for x axis labels ∗/
"", /∗ Custom title for x axis ∗/
0.05 /∗ Probability for reference curve ∗/
);

#else
esr .write deviation plot ("devtest", /∗ Name of plot file ∗/
"Earth Day: 2001 April 22", /∗ Custom title for chart ∗/
systemtime ::SecondsPerHour /∗ Time interval for x axis labels ∗/
);

#endif
#endif

}
#endif
#if 1 /∗ Multi-day extraction and analysis tests ∗/

{
eggdatabasesed ;
ed .set Fourmilab defaults ();
generic eggsummary cache < egganalysis > ec(&ed , "rotten_egg.csv", 50, 150);
egganalysis ext ;
systemtime refstart ;
systemtime exstart , exend ;
exstart .fromString ("2001−04−20 13:00:00");
exend .fromString ("2001−04−24 22:30:00");
ec .extract time range (&ext , exstart , exend);
ext .compute per egg statistics ();
ext .describe ();
ext .write per egg statistics CSV ("peregg.csv");
ext .write deviation plot ("devtest", /∗ Name of plot file ∗/
"", /∗ Custom title for chart ∗/
systemtime ::SecondsPerHour , /∗ Time interval for x axis labels ∗/
systemtime ::SecondsPerHour ∗ 8, /∗ Offset in seconds for x axis labels ∗/
"", /∗ Custom title for x axis ∗/
0.05, /∗ Probability for reference curve ∗/
refstart /∗ Time to begin reference curve plot ∗/
);

}
#endif

} catch(exception &e)

14 TEST PROGRAM ANALYSIS §23

{
cout � "Blooie!!! Exception popped: " � e.what () � endl ;

#ifndef CORE_DUMP

#ifdef STACK_TRACE

char s[160];
sprintf (s,

"/bin/echo ’where\nq’ >/tmp/gdbcmd ; gdb −batch −−command ""/tmp/gdbcmd %s %d",
argv [0], getpid ());

system (s);
sleep(5);

#endif
throw; /∗ Re-throw exception to dump core ∗/

#endif
}
return 0; }

24. We use getopt to process command line options. This permits aggregation of options without
arguments and both −darg and −d arg syntax.
〈Process command-line options 24 〉 ≡

while ((opt = getopt (argc , argv , "nu−:")) 6= −1) {
switch (opt) {
case ’u’: /∗ −u Print how-to-call information ∗/

case ’?’: usage ();
return 0;

case ’−’: /∗ −− Extended options ∗/
switch (optarg [0]) {
case ’c’: /∗ −−copyright ∗/

cout � "This program is in the public domain.\n";
return 0;

case ’h’: /∗ −−help ∗/
usage ();
return 0;

case ’v’: /∗ −−version ∗/
cout � PRODUCT � " " � VERSION � "\n";
cout � "Last revised: " � REVDATE � "\n";
cout � "The latest version is always available\n";
cout � "at http://www.fourmilab.ch/eggtools/eggshell\n";
return 0;

}
}

}
This code is used in section 23.

§25 ANALYSIS TEST PROGRAM 15

25. Procedure usage prints how-to-call information.
〈Show how to call test program 25 〉 ≡

static void usage (void)
{

cout � PRODUCT � " −− Analyse eggsummary files. Call:\n";
cout � " " � PRODUCT � " [options] [infile] [outfile]\n";
cout � "\n";
cout � "Options:\n";
cout � " −−copyright Print copyright information\n";
cout � " −u, −−help Print this message\n";
cout � " −−version Print version number\n";
cout � "\n";
cout � "by John Walker\n";
cout � "http://www.fourmilab.ch/\n";

}
This code is used in section 23.

26. We need the following definitions to compile the test program.
〈Test program include files 26 〉 ≡
#include "config.h" /∗ Our configuration ∗/ /∗ C++ include files ∗/
#include <iostream>

#include <exception>

#include <stdexcept>

#include <string>

using namespace std;
#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#ifdef HAVE_GETOPT

#ifdef HAVE_UNISTD_H

#include <unistd.h>

#endif
#else
#include "getopt.h" /∗ No system getopt—use our own ∗/
#endif
#include "analysis.h" /∗ Class definitions for this package ∗/
This code is used in section 23.

16 INDEX ANALYSIS §27

27. Index. The following is a cross-reference table for analysis. Single-character identifiers are not
indexed, nor are reserved words. Underlined entries indicate where an identifier was declared.

ANALYSIS_HEADER_DEFINES: 3.
argc : 23, 24.
argv : 23, 24.
assert : 9.
c str : 16, 17, 18.
CACHE_TEST: 23.
chartTitle : 8, 18, 20.
chiSquareDistribution : 16, 18, 19.
chisum : 16, 18, 19.
close : 17, 18.
command : 18.
compute all egg statistics : 8, 9, 14, 23.
compute per egg statistics : 8, 10, 15, 17, 23.
CORE_DUMP: 23.
cout : 18, 23, 24, 25.
ctime : 22.
cxebase : 19.
dat : 18, 19.
database file : 23.
dateToString : 20.
DEFAULT_EGGANALYSIS: 23.
describe : 23.
DEV_PLOT_DEBUG: 18.
double egganalysis: 23.
e: 23.
ec : 23.
ed : 23.
egg max sample : 8, 11, 12, 17.
egg mean : 8, 11, 12, 13, 15, 17.
egg min sample : 8, 11, 12, 17.
egg num sample : 8, 11, 12, 13, 17.
egg number : 17, 23.
egg stdev : 8, 11, 13, 17.
egganalysis : 8, 23.
eggdatabases : 23.
eggs reporting : 9, 11, 12, 13, 17, 18, 23.
eggsummary : 8.
end time : 20.
endl : 17, 18, 19, 20, 21, 22, 23.
es : 12, 13.
esr : 23.
exception: 23.
exclude bad data : 23.
exend : 23.
exstart : 23.
ext : 23.
EXTRACT_TEST: 23.
extract time range : 23.
fabs : 19.
false : 19, 22.

fclose : 16.
fileName : 8, 16, 17, 18.
final p : 18.
first : 22.
firstref : 19.
fopen : 16.
fprintf : 16.
free all egg analysis data : 8, 9.
free per egg analysis data : 8, 11.
fromString : 23.
generic egganalysis: 1, 8, 9, 10, 16, 17, 18, 23.
generic eggsummary : 1, 8, 9, 11, 12, 13, 16,

17, 18, 19, 20, 22.
generic eggsummary cache : 23.
get by date : 23.
get egg index : 9, 12, 13, 23.
get time : 16, 19, 20, 22.
getopt : 23, 24.
getpid : 23.
gp : 18, 20, 21, 22.
HAVE_GETOPT: 26.
HAVE_UNISTD_H: 26.
i: 9, 11, 16, 17, 19.
ichisum : 16, 19.
idof : 16, 18, 19.
isnan : 9.
isSampleValid : 9, 12, 13.
j: 9, 12, 13, 23.
limit to range : 23.
load from CSV : 23.
main : 23.
mean : 8, 9, 14, 16.
midnight : 20.
n: 9.
nitems : 9, 11, 12, 13, 16, 19, 22.
nsamples : 8, 9, 16.
of : 16, 17.
ofstream: 17, 18.
opt : 23, 24.
optarg : 23, 24.
optind : 23.
p from k x : 16, 18.
PRODUCT: 24, 25.
ref : 19.
referenceProbability : 8, 18, 19.
referenceProbabilityStartTime : 8, 18, 19.
refstart : 23.
ReleaseTable : 8.
remove : 18.
REVDATE: 1, 24.

§27 ANALYSIS INDEX 17

rsum : 9.
s: 23.
Sample: 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 22.
seconds of data : 9, 11, 16, 19.
seconds per row : 9, 11, 16, 19.
SecondsPerDay : 20, 21.
SecondsPerHour : 21, 23.
SecondsPerMinute : 21.
set Fourmilab defaults : 23.
setprecision : 17, 18.
SIMPLE: 23.
sleep : 23.
sprintf : 23.
sqrt : 9, 13.
STACK_TRACE: 23.
start time : 16, 19, 20, 22.
std: 3, 26.
stouffer z : 8, 9, 16, 19.
string: 8, 16, 17, 18.
system : 18, 23.
systemtime: 8, 18, 20, 21, 23.
t: 23.
tickOffset : 8, 18, 22.
timeInterval : 8, 18, 21, 22.
timeToString : 20.
trial size : 9, 11.
true : 19, 22.
usage : 24, 25.
variance : 8, 9.
VERSION: 24.
what : 23.
write deviation plot : 8, 18, 23.
write egg statistics CSV : 8, 16, 23.
write per egg statistics CSV : 8, 17, 23.
x axis label : 8, 18, 21.
x from p k : 16, 19.
xe : 16, 19.
xpRef : 19.
zsquare : 16, 19.
zsum : 9.

18 NAMES OF THE SECTIONS ANALYSIS

〈Allocate and initialise per egg statistics tables 11 〉 Used in section 10.

〈Application include files 4 〉 Used in section 2.

〈Class definitions 8, 9, 10, 16, 17, 18 〉 Used in section 3.

〈Class implementations 6 〉 Used in section 2.

〈Compute all egg statistics if not previously done 14 〉 Used in sections 16 and 18.

〈Compute per egg mean and standard deviation 13 〉 Used in section 10.

〈Compute per egg statistics if not previously done 15 〉 Used in section 17.

〈Compute per egg sum, maximum, and minimum values 12 〉 Used in section 10.

〈Egg analysis utilities 5 〉 Used in section 6.

〈Generate X axis tick labels for deviation plot 22 〉 Used in section 18.

〈Generate chart title for deviation plot 20 〉 Used in section 18.

〈Generate label for X (time) axis of deviation plot 21 〉 Used in section 18.

〈Process command-line options 24 〉 Used in section 23.

〈Show how to call test program 25 〉 Used in section 23.

〈Test program include files 26 〉 Used in section 23.

〈Write GNUPLOT data table for deviation plot 19 〉 Used in section 18.

〈 analysis.h 3 〉
〈 analysis_test.c 1, 23 〉

ANALYSIS

Section Page
Introduction . 1 1
Program global context . 2 2
Egg analysis utilities . 7 3

The Egg Analysis Class . 8 4
Test program . 23 12
Index . 27 16

	Introduction
	Program global context
	Egg analysis utilities
	The Egg Analysis Class
	Test program
	Index
	Names of the sections
	Allocate and initialise per egg statistics tables
	Application include files
	Class definitions
	Class implementations
	Compute all egg statistics if not previously done
	Compute per egg mean and standard deviation
	Compute per egg statistics if not previously done
	Compute per egg sum, maximum, and minimum values
	Egg analysis utilities
	Generate X axis tick labels for deviation plot
	Generate chart title for deviation plot
	Generate label for X (time) axis of deviation plot
	Process command-line options
	Show how to call test program
	Test program include files
	Write GNUPLOT data table for deviation plot
	analysis.h
	analysis_test.c

