
§1 EXAMPLES INTRODUCTION 1

1. Introduction.

EXAMPLES

Examples of Egg Data Analysis

by John Walker
http://www.fourmilab.ch/

This program is in the public domain.

Almost everything I know of the craft of programming I learned reading code—I remember one Sunday
morning when I was in college, with The Fifth Dimension record on the stereo and a listing of “The
Collector”—the linker for UNIVAC EXEC-8 open on the desk in front of me, thinking “It doesn’t get
any better.” Almost nobody reads code any more, and consequently those who write code rarely bother
with the æsthetic niceties which render it readable, closing the vicious circle of “write-only software”. One
of the principal goals of Literate Programming is to encourage the reading of code by making code more
readable: providing tools to assist those writing code in making it attractive and accessible to readers.

Rather than write a separate document for users of the analysis suite I’ve developed for the Global
Consciousness Project data set, I’ve tried to make the programs themselves readable, with the following set
of examples as the port of entry. Each of the following examples performs an analysis of genuine interest on
the data set using the analysis toolkit. Every example produces a stand-alone executable program you can
run and examine its output. The examples are all self-contained—you can read their code from start to end
without reference to anything else other than simple application “glue” which is shared by all the programs.
There is some duplication of code among examples, but I believe that’s justified to make each readable in
isolation.

While the examples show how a variety of tasks are accomplished with the toolkit, they only provide a
glimpse of the underlying tools they employ. To explore further, you’ll want to look at the the following
programs, listed in more or less decreasing order of abstraction from the nitty-gritty.

analysis This program implements higher level analyses of egg data sets, either original one day
summaries or arbitrary time spans extracted from the collection of daily summaries.

eggdata Provides tools for reading both egg data tables and auxiliary databases, such as the
properties of individual eggs, known bad data which should be excluded from analyses, etc., with
facilities for extracting and assembling data sets for analysis.

fourier Tools for computing Fourier and inverse Fourier transforms of data sets and determining
power spectra from frequency domain information. Note: I am not an expert in this domain, and
anybody using this code would be well-advised to look closely at its implementation and test it with
known data before relying on its results.

statlib General purpose statistical library, which includes both tools for computing various
probability distributions as well as descriptive statistics on data tables with a user-defined type.

timedate Facilities for working with times and dates, using UNIX time t quantities as the under-
lying type. Conversion to and from string representations, Julian day numbers, and computation of
astronomical quantities such as sidereal time, the phase of the Moon, and the position of the Sun and
Moon are provided.

colour Tools for manipulating colours and colour spaces, both physical and perceptual. This
program isn’t currently used by any of the examples; it was implemented for eventual use in stand-
alone graphics generation (eliminating the need for GNUPLOT post-processing, but may prove useful in
“artistic” presentations of the data set.

http://www.literateprogramming.com/

2 INTRODUCTION EXAMPLES §1

Although the examples are independent of one another, it’s best to read them in the order they’re presented,
since in-depth explanation of each facility is provided only at its first use.

If you develop innovative analyses using these tools, please consider making verions which conform to the
conventions of this document and submitting them as additional examples. There’s nothing liked “worked
problems” to enable and encourage others to tackle problems so far unexplored.

#define REVDATE "22nd February 2002"

2. Let’s define the names of our auxiliary databases right up front so if they change we don’t have to fix
all the examples individually.
#define EGGS_CSV "eggs.csv" /∗ Egg properties table ∗/
#define ROTTEN_CSV "rotten_egg.csv" /∗ Known bad data table ∗/

§3 EXAMPLES EXAMPLE 1: EARTH DAY 2001 3

3. Example 1: Earth Day 2001.
Let’s start with a very simple example which shows how easy it is to perform routine analyses and prepare

graphical presentations of them. We’ll take advantage of many defaults to simplify the code; in subsequent
examples we’ll delve more deeply into the flexibility additional parameters can provide.

The task in this example is to produce a cumulative deviation plot for “Earth Day,” April 22nd 2001.
We’ll plot the entire 24 hour period for all eggs which reported during that day, with egg samples aligned by
the Universal Time at which they were taken. For each second’s data, the samples for each egg are expressed
as a z score and the Stouffer Z is computed for each one second period. This is then plotted, along with
the p = 0.05 expectation value and a zero baseline. Samples from known bad eggs and samples which fail
“sanity check” limits (below 50 or above 150) are excluded from the analysis.

Since this is the first example, the explanation of what’s going on will be even more prolix than usual.

4. Every UNIX program requires a modicum of “glue” to deal with the operating system and C++ library.
To avoid repeating this for every example, we’ve created a standard prologue and epilogue for all of the
examples which are included by reference, wrapped around the code which actually does the work. A
program containing just the prologue and epilogue is a well-formed executable program which does nothing
at all. If you’re interested in the details of this, please refer to the “Common Framework for Example
Programs” near the end of this document.
〈 example−1.c 4 〉 ≡
〈Prologue for example program 47 〉;

See also sections 5, 6, 7, 8, and 9.

5. First of all, we need to tell the analysis suite where to look for the eggsummary CSV files we’re
going to analyse. The directory paths for both the real and pseudorandom mirror data are supplied by
the eggdatabases class defined in eggdata. You can supply the explicit path names when you create the
object, but here we rely on a gimmick which sets the correct path names at the existing GCP data set
mirror sites based on the host name determined when the program was configured; this allows compiling
analysis programs for use on any of the sites without the need for any source code changes. The analysis
code assumes that eggsummary and pseudorandom data files for all days are kept in two separate directories.
The files may be compressed with gzip.
〈 example−1.c 4 〉 +≡

eggdatabasesed ;
ed .set local defaults ();

6. With the egg database directories identified, we can now create an egg summary cache to mediate our
interaction with the data set. One needn’t use the cache—you’re free to call lower level functions and load
files directly, but the cache keeps track of which days’ data are in memory to avoid redundant loading of
data from disc, and can automatically exclude bad data so you don’t forget. The cache is implemented as a
C++ template class generic eggsummary cache in the eggdata program, which we instantiate here with an
egganalysis object defined in the analysis program. egganalysis , in turn, is an extension of the eggsummary
class defined in eggdata which adds analytical functionality.

When creating the cache, we supply the database location via the eggdatabases object, the name of the
file containing data known to be bad, and lower and upper limits outside which samples are automatically
discarded. Any data returned by the cache will have bad samples removed.
〈 example−1.c 4 〉 +≡

generic eggsummary cache < egganalysis > ec(&ed , ROTTEN_CSV, 50, 150);

4 EXAMPLE 1: EARTH DAY 2001 EXAMPLES §7

7. Since we’re analysing an entire day’s data, we can simply request it from the cache by date. By default,
the cache returns actual data from the eggs; a simple change when it’s declared will cause the pseudorandom
data to be returned instead. The cache returns a pointer to the egganalysis object for the given day, which
we can give in a variety of forms: here we’ll specify it as a string.
〈 example−1.c 4 〉 +≡

egganalysis ∗ esr = ec .get by date ("2001−04−22");

8. The egganalysis object itself has all functionality we need to compute the cumulative deviation and
plot it. The following call computes statistics for each second in the day, then writes a plot file named
“example−1.gif” of the results with the time axis labeled in hours since midnight. We supply a custom
title for the chart.
〈 example−1.c 4 〉 +≡

esr~write deviation plot ("example−1", /∗ Name of plot file ∗/
"Earth Day: 2001 April 22", /∗ Custom title for chart ∗/
systemtime ::SecondsPerHour /∗ Time interval for x axis labels ∗/
);

9. That’s it, except for the other book-end: the epilogue common to all the examples.
〈 example−1.c 4 〉 +≡
〈Epilogue for example program 48 〉;

§10 EXAMPLES EXAMPLE 2: EARTH DAY 2001—PSEUDORANDOM CONTROL 5

10. Example 2: Earth Day 2001—pseudorandom control.
Now let’s compare the results for Earth Day obtained from the actual egg network with pseudorandom data

replacing the samples from the eggs. As each day’s summary is prepared, a pseudorandom mirror is generated
in which each sample provided by an egg is replaced by one generated by a high quality pseudorandom number
generator with statistics equal to the chance expectation of the random event generators used by the egg
sites. We start precisely as before.
〈 example−2.c 10 〉 ≡
〈Prologue for example program 47 〉;
eggdatabasesed ;
ed .set local defaults ();

See also sections 11 and 12.

11. This time, when creating the cache, we add an argument to specify that we’re interested in the
pseudorandom data. (In the example above, this argument was omitted, which causes it to default to "gcp",
the identifier for the genuine egg data. The same bad data limits are used.
〈 example−2.c 10 〉 +≡

generic eggsummary cache < egganalysis > ec(&ed , ROTTEN_CSV, 50, 150, "pseudo");

12. The rest is identical to the plot from the egg data, other than labeling this plot as based on the
pseudorandom data.
〈 example−2.c 10 〉 +≡

egganalysis ∗ esr = ec .get by date ("2001−04−22");
esr~write deviation plot ("example−2", /∗ Name of plot file ∗/
"Earth Day: 2001 April 22 (Pseudorandom Data)", /∗ Custom title for chart ∗/
systemtime ::SecondsPerHour /∗ Time interval for x axis labels ∗/
);
〈Epilogue for example program 48 〉;

6 EXAMPLE 3: MULTIPLE DAY TIME SPAN PLOT EXAMPLES §13

13. Example 3: Multiple day time span plot.
In the previous examples, the cache proved handy when we wanted to switch between live and pseudoran-

dom data, but otherwise it didn’t do much for us. The cache comes into its own when you want to study
time spans which cross day boundaries, or random access days from the database.

Here’s a simple example. Let’s study the behaviour of the eggs in the six hours surrounding the year
2001–2002 transition, measured by Universal Time (it may make more sense to align the data by local time
at the eggs, but we’ll leave that for later). We start by defining the database and creating the cache, precisely
as in Example 1.
〈 example−3.c 13 〉 ≡
〈Prologue for example program 47 〉;
eggdatabasesed ;
ed .set local defaults ();
generic eggsummary cache < egganalysis > ec(&ed , ROTTEN_CSV, 50, 150);

See also sections 14, 15, and 16.

14. The cache provides an extract time range method which retrieves samples for the specified time
interval from the database, loading individual daily summary files as required, and fills in an egg data object
of the type it was instantiated with with samples for the requested interval. Here we initialise an egganalysis
object with samples for the six hours surrounding midnight UTC at the end of A.D. 2001. The start and end
of the interval are given as “constants” of the systemtime class defined in the timedate program. This
class comes in very handy when dealing with various ways of specifying dates and times, and is worth a
quick scan if you need to do arithmetic on dates and times.
〈 example−3.c 13 〉 +≡

egganalysis ext ;
ec .extract time range (&ext , systemtime("2001−09−07 00:00:00"),

systemtime("2001−09−16 0:00:00"));

15. With the data for the interval of interest extracted, we use the describe method to print a summary
of it on standard output. This can be written to any output stream; by omitting the argument, we select
the default, cout .
〈 example−3.c 13 〉 +≡

ext .describe ();

16. Finally, we produce the deviation plot, here adding arguments to offset the time axis in the plot by
−3 hours so midnight is labeled as zero, and specifying a custom label for the X axis. We also explicitly
specify the probability for the reference curve, but we really didn’t need to, as it is the default value. Then,
it’s just a matter of tacking on the standard epilogue and we’re out of here.
〈 example−3.c 13 〉 +≡

ext .write deviation plot ("example−3", /∗ Name of plot file ∗/
"", /∗ Custom title for chart ∗/
systemtime ::SecondsPerDay , /∗ Time interval for x axis labels ∗/
8 ∗ systemtime ::SecondsPerDay , /∗ Offset in seconds for x axis labels ∗/
"September Days (UTC)", /∗ Custom title for x axis ∗/
0.05 /∗ Probability for reference curve ∗/
);
〈Epilogue for example program 48 〉;

§17 EXAMPLES EXAMPLE 4: PER-EGG STATISTICS FOR A WEEK’S DATA 7

17. Example 4: Per-egg statistics for a week’s data.
So far, we’ve “sliced” data along the time axis: considering the behaviour of eggs at individual seconds of

Universal Time. It’s also interesting to monitor the behaviour of the individual eggs over periods of time.
The expectation value is well defined, and deviations from that may indicate problems with the random
event generators or the computers they’re connected to. Also, studies of egg behaviour may point out
idiosyncrasies of individual random event generators or of a given kind.

Here we study the behaviour of the eggs which submitted data in the first week of June, 2001. Most of the
heavy lifting is done by methods of the egganalysis class, which you may consult in the analysis program.
We start by extracting a data set for the week in question, as in the previous example.
〈 example−4.c 17 〉 ≡
〈Prologue for example program 47 〉;
eggdatabasesed ;
ed .set local defaults ();
generic eggsummary cache < egganalysis > ec(&ed , ROTTEN_CSV, 50, 150);
egganalysis ext ;
ec .extract time range (&ext , systemtime("2001−06−01 00:00:00"),

systemtime("2001−06−07 23:59:59"));
See also sections 18, 19, and 20.

18. With data for the week in hand, we use the compute per egg statistics method to prepare the statistics
for the individual eggs.
〈 example−4.c 17 〉 +≡

ext .compute per egg statistics ();

19. Finally, we write a primate-readable report of the statistics. If you require a computer-readable CSV
file instead, the write per egg statistics CSV method of the egganalysis class will be happy to oblige. Before
delving into the per-egg statistics, we print column headings.
〈 example−4.c 17 〉 +≡

cout � " Egg Samples Mean Max Min Std. Dev." � endl ;
cout .setf (ios ::fixed , ios ::floatfield);
cout .precision (8);
for (int i = 0; i < ext .eggs reporting ; i++) {

if (ext .egg num sample [i] > 0) {
cout � setw (4) � ext .egg number [i] � " " � setw (6) � ext .egg num sample [i] �

" " � setw (12) � ext .egg mean [i] � " " � setw (4) � ((int)
ext .egg max sample [i]) � " " � setw (4) � ((int)
ext .egg min sample [i]) � " " � setw (12) � ext .egg stdev [i] � endl ;

}
}

8 EXAMPLE 4: PER-EGG STATISTICS FOR A WEEK’S DATA EXAMPLES §20

20. Okay, but what are the expectation values for an egg behaving entirely randomly? What an excellent
opportunity to dig into the statlib program, which defines most of the common statistical metrics and
provides facilities for evaluating their parameters! The random event generators at the egg sites are modeled
by a binomal distribution with a probability r = 0.5 and n = 200 trials.

We create a binomialDistribution with the requisite parameters, and it serves up the mean (µ) and standard
deviation (σ) for the distribution of our eggs’ data. The expectation for the number of samples is simply the
number of seconds in the interval.
〈 example−4.c 17 〉 +≡

binomialDistributionpdist (200, 0.5);
cout � endl � setw (4) � "Exp." � " " � setw (6) � ext .seconds of data � " " � setw (12) �

pdist .mean () � " " � setw (4) � " " � " " � setw (4) � " " � " " � setw (12) �
pdist .stdev () � endl ;

〈Epilogue for example program 48 〉;

§21 EXAMPLES EXAMPLE 5: THE EGG PROPERTIES TABLE 9

21. Example 5: The egg properties table.
Finally. . .an example that’s meant to be run as much as read! The egg properties database class in eggdata

provides access to a manually compiled table of characteristics of individual egg sites including location and
the kind of random event generator used by the site. This database permits analyses to make geographical
distinctions among eggs, for example aligning samples by local solar time at the site rather than Universal
Time, or to study differences in the behaviour of different random event generators.

In this example we’ll simply load the egg properties database from the CSV file in which it’s maintained
and print it out in tabular form using a method provided by the class. Refer to the resulting table in
conjunction with the definition of the class in eggdata for details of the information it provides.
〈 example−5.c 21 〉 ≡
〈Prologue for example program 47 〉;
egg properties databaseed ;
ed .loadFromCSV (EGGS_CSV);

See also section 22.

22. The egg properties table can be written to any ostream. Here we omit the argument to the tabulate
method, which causes the table to be written to the default of cout . When you look at the output of this
program, note that sites for which the altitude (metres above mean sea level) is unknown (the majority) show
−9999 in the “Alt” column. North latitudes are positive, South negative; longitudes West of the Greenwich
meridian are positive, East longitudes negative.
〈 example−5.c 21 〉 +≡

ed .tabulate ();
〈Epilogue for example program 48 〉;

10 EXAMPLE 6: NEW YEAR TRANSITION IN LOCAL TIME EXAMPLES §23

23. Example 6: New year transition in local time.
In Example 3 above we studied the six hour period surrounding the year 2001 − 2002 transition in the

Gregorian calendar, looking at the behaviour of all the eggs at midnight Universal time. But we might ask
what the data look like if we consider the local time at each egg—perhaps the local definition of midnight
is more significant than Universal Time. (In this example, we ignore considerations about eggs located in
areas where the Gregorian calendar is not used.)

What we’d like to do then, is time-shift the samples according to the prevailing time zone at each egg so that
midnight in the resulting data set represents midnight at each egg. What we really need to accomplish this
is a table giving the UNIX time zone declaration for each egg site, but we haven’t compiled that information
for the egg properties database (but we ought to!). So, unable to precisely correct for time zones, we opt for
a rather tacky alternative of dividing the world into rigid 15◦ time zones and determining an egg’s notional
time zone by its latitude, ignoring politically-drawn zone boundaries and summer time. (The latter isn’t as
bad as you might think in this case, since the majority of the eggs are in the northern hemisphere as of this
date, and aren’t subject to summer time. Further, many southern hemisphere countries, which tend to be
closer to the equator than those in the northern hemisphere, don’t indulge in the silliness of summer time.)

We start out by declaring a cache and the egg properties database and loading the latter from the CSV
file.
〈 example−6.c 23 〉 ≡
〈Prologue for example program 47 〉;
eggdatabasesed ;
ed .set local defaults ();
generic eggsummary cache < egganalysis > ec(&ed , ROTTEN_CSV, 50, 150);
egg properties databaseepd ;
epd .loadFromCSV (EGGS_CSV);

See also sections 24, 25, 26, 27, and 28.

24. Now we bring in three days’ worth of data surrounding the New Year in Universal Time. Why three
days? Because the process of shifting the eggs to align them to their time zone will shift the data in the
table and we need to be sure we have sufficient data to cover the period of interest after shifting.
〈 example−6.c 23 〉 +≡

egganalysis ext ;
ec .extract time range (&ext , systemtime("2001−12−30 00:00:00"),

systemtime("2002−01−01 23:59:59"));

§25 EXAMPLES EXAMPLE 6: NEW YEAR TRANSITION IN LOCAL TIME 11

25. Now we’ll build a table of time zones for eggs contributing to the data set, looking up each in the egg
properties database and estimating the time zone from its longitude. We build a map from egg number to
the number of seconds of offset between its local clock and Universal Time.
〈 example−6.c 23 〉 +≡

int i;
map〈unsigned int, int〉 offset ;
for (i = 0; i < ext .eggs reporting ; i++) {

egg properties ∗ ep = epd .find (ext .egg number [i]);
assert (ep 6= Λ);
double zlon = ep~ longitude − ((360/24)/2.0);
double alon = fabs (zlon);
int atz = (int)(alon/(360/24));
int tz = (zlon < 0) ? (−atz) : atz ;
offset .insert (make pair (ep~eggNumber , tz ∗ systemtime ::SecondsPerHour));

#if 0
cout � ep~eggNumber � " " � ep~ longitude � " " � tz � " " �

offset .find (ep~eggNumber)~second � endl ;
#endif
}

26. Now we walk through the eggs and time shift the data of each to align them to the time zones we’ve
sorted them into. The time shift method shifts samples for the given egg (specified by index rather than
number, which is why we need to map the egg number to index with egg number to index) by the specified
number of seconds. Samples shifted out of the data set are replaced with a code which causes them to
be ignored, but that’s of no concern to us since in the next section we’ll extract a sub-interval which is
guaranteed to contain valid data for all eggs.

Note that we complement the sign of the time shift we computed above. Think about it: when it’s
midnight in London, it’s 1 A.M. in Berne, so for a time zone expressed as −1 we need to shift the samples one
hour later to align them with those already in Universal time. Using positive numbers for time zones West
of Greenwich and negative for East is pretty much an artefact of provincialism on the part of the creators
of UNIX, but there’s nothing we can do about it now.
〈 example−6.c 23 〉 +≡

for (i = 0; i < ext .eggs reporting ; i++) {
if (offset .find (ext .egg number [i])~second 6= 0) {

#if 0
cout � "Shifting egg " � ext .egg number [i] � " by " �

(−offset .find (ext .egg number [i])~second) � " seconds." � endl ;
#endif

ext .time shift (ext .egg number to index (ext .egg number [i]),−(offset .find (ext .egg number [i])~second));
}

}

12 EXAMPLE 6: NEW YEAR TRANSITION IN LOCAL TIME EXAMPLES §27

27. Having time-aligned the data for each egg to its local time zone in the data set spanning three days
(in the process, potentially shifting out up to 12 hours on either end), we now use the extract time range
method of the egganalysis class (inherited from its parent, generic eggsummary in eggdata to prepare an
extract of the six hours surrounding local midnight on December 31st, 2001. Note the difference between
the extract time range methods of the egg summary object and the cache: the former extracts a subset of
the data within a data set while the latter assembles a data set from the historical database.
〈 example−6.c 23 〉 +≡

egganalysis exa ;
ext .extract time range (&exa , systemtime("2001−12−31 21:00:00"),

systemtime("2002−01−01 03:00:00"));

28. The deviation plot is made from the extracted data set as before.
〈 example−6.c 23 〉 +≡

exa .write deviation plot ("example−6", /∗ Name of plot file ∗/
"", /∗ Custom title for chart ∗/
systemtime ::SecondsPerHour , /∗ Time interval for x axis labels ∗/
−3 ∗ systemtime ::SecondsPerHour , /∗ Offset in seconds for x axis labels ∗/
"Hours from Midnight, Local Time", /∗ Custom title for x axis ∗/
0.05 /∗ Probability for reference curve ∗/
);
〈Epilogue for example program 48 〉;

§29 EXAMPLES EXAMPLE 7: SUPERBOWL 2001 13

29. Example 7: SuperBowl 2001.
The SuperBowl of American Football is probably for most fervently celebrated secular sacrament in the

United States. Let’s look at how we might proceed to compare the behaviour of eggs located in or near the
U.S. with other eggs around the world for SuperBowl XXXV in 2001. First of all, we bring in the data for
the day in question. No, the date isn’t wrong. . .recall that our databases are kept in Universal Time, and
the SuperBowl, which is played in the afternoon in the U.S., begins after midnight in Universal Time.
〈 example−7.c 29 〉 ≡
〈Prologue for example program 47 〉;
eggdatabasesed ;
ed .set local defaults ();
generic eggsummary cache < egganalysis > ec(&ed , ROTTEN_CSV, 50, 150);
egganalysis ∗ esr = ec .get by date ("2001−01−29");

See also sections 30, 31, and 32.

30. Now we’ll load the egg property database and walk though it, making a list of eggs in “North America”
and elsewhere. We arbitrarily define “North America” as the portion of the globe between 23◦ − 40◦ North
latitude and 60◦ − 135◦ West latitude. We build two vectors of egg numbers, na eggs for those within the
geographical bounds and other eggs for those outside.
〈 example−7.c 29 〉 +≡

egg properties databaseepd ;
epd .loadFromCSV (EGGS_CSV);
vector〈unsigned int〉 na eggs , other eggs ;
for (int i = 0; i < epd .size (); i++) {

egg properties ∗ ep = epd [i];
if ((ep~ latitude ≥ 25) ∧ (ep~ latitude ≤ 50) ∧ (ep~ longitude ≥ 60) ∧ (ep~ longitude ≤ 135)) {

na eggs .push back (ep~eggNumber);
}
else {

other eggs .push back (ep~eggNumber);
}

}

31. Now we declare two separate egganalysis objects and use the extract eggs method to extract data for
eggs near North America in one and the balance of eggs in the other.
〈 example−7.c 29 〉 +≡

egganalysis exg , exo ;
esr~extract eggs (&exg ,na eggs);
esr~extract eggs (&exo , other eggs);

14 EXAMPLE 7: SUPERBOWL 2001 EXAMPLES §32

32. Now it’s just a matter of making deviation plots for the complete set of eggs and the two geographical
subsets. This time we add arguments to the write deviation plot calls to offset the labels on the time axis
and the probability reference curve to 02:00, which I’ll take as the time of the kickoff (actually, I have no
idea when it actually was). Since most of the action in these charts was mostly to the downside, we use
a negative number for the reference probability curve, which causes it to be plotted below the expectation
value.
〈 example−7.c 29 〉 +≡

systemtime kickoff ("2001−01−29 02:00:00");
esr~write deviation plot ("example−7a", /∗ Name of plot file ∗/
"SuperBowl 2001−01−29: Worldwide Eggs", /∗ Custom title for chart ∗/
systemtime ::SecondsPerHour , /∗ Time interval for x axis labels ∗/
systemtime ::SecondsPerHour ∗ −2, /∗ Offset in seconds for x axis labels ∗/
"Hours from Kickoff", /∗ Custom title for x axis ∗/
−0.05, /∗ Probability for reference curve ∗/
kickoff /∗ Time to begin reference curve plot ∗/
);
exg .write deviation plot ("example−7b", /∗ Name of plot file ∗/
"SuperBowl 2001−01−29: North American Eggs", /∗ Custom title for chart ∗/
systemtime ::SecondsPerHour , /∗ Time interval for x axis labels ∗/
systemtime ::SecondsPerHour ∗ −2, /∗ Offset in seconds for x axis labels ∗/
"Hours from Kickoff", /∗ Custom title for x axis ∗/
−0.05, /∗ Probability for reference curve ∗/
kickoff /∗ Time to begin reference curve plot ∗/
);
exo .write deviation plot ("example−7c", /∗ Name of plot file ∗/
"SuperBowl 2001−01−29: Eggs Outside North America", /∗ Custom title for chart ∗/
systemtime ::SecondsPerHour , /∗ Time interval for x axis labels ∗/
systemtime ::SecondsPerHour ∗ −2, /∗ Offset in seconds for x axis labels ∗/
"Hours from Kickoff", /∗ Custom title for x axis ∗/
−0.05, /∗ Probability for reference curve ∗/
kickoff /∗ Time to begin reference curve plot ∗/
);
〈Epilogue for example program 48 〉;

§33 EXAMPLES EXAMPLE 8: FOURIER TRANSFORM ANALYSIS OF A DAY’S DATA 15

33. Example 8: Fourier transform analysis of a day’s data.

〈 example−8.c 33 〉 ≡
〈Prologue for example program 47 〉;
eggdatabasesed ;
ed .set local defaults ();
generic eggsummary cache < egganalysis > ec(&ed , ROTTEN_CSV, 50, 150);
egganalysis ext ;
ec .extract time range (&ext , systemtime("2001−06−01 00:00:00"),

systemtime("2001−06−01 23:59:59"));
See also sections 34, 35, 36, 37, and 38.

34. With data for the week in hand, we use the compute per egg statistics method to prepare the statistics
for the individual eggs.
〈 example−8.c 33 〉 +≡

ext .compute all egg statistics ();

35. The Stouffer Z scores for each second of data are now copied into a complex array (with the imaginary
part of each number set to zero) and Fourier transformed, then the power spectrum is computed from the
transform. The fourierTransform class requires the arrays it operates on to be a power of two, so we create
vectors of 217 elements, the next power of two larger than the number of seconds per day.
〈 example−8.c 33 〉 +≡

const int ftsize = 131072;
fourierTransform ::complex vec [ftsize];
double ps [ftsize];
unsigned int nrows = ext .seconds of data/ext .seconds per row ;
memset (vec , 0, sizeof vec);
for (int n = 0; n < nrows ; n++) {

vec [n].r = ext .stouffer z [n];
}
fourierTransformft (ftsize);
ft .transform (vec);
ft .power spectrum (vec , ps);

36. At this point, the first systemtime ::SecondsPerDay elements of the ps array starting with element
1 contain the power spectrum of the Stouffer Z scores in units of seconds. Now we aggregate the power into
longer time units, summing power in each bin, to determine whether there is a peak at some binned time.
〈 example−8.c 33 〉 +≡

int aggregationBin = systemtime ::SecondsPerHour ; /∗ Bin size in seconds ∗/
int nbins = systemtime ::SecondsPerDay/aggregationBin ;
double ∗powerBin = new double[nbins];
int psv = 1; /∗ Power spectrum starts in cell 1: 0 is DC bias ∗/
for (int b = 0; b < nbins ; b++) {

powerBin [b] = 0;
for (int k = 0; k < aggregationBin ; k++) {

powerBin [b] += ps [psv ++];
}

}

16 EXAMPLE 8: FOURIER TRANSFORM ANALYSIS OF A DAY’S DATA EXAMPLES §37

37. Now it’s just a matter of writing out the binned power spectrum and firing up GNUPLOT to create the
chart. The resulting chart isn’t particularly interesting, but this code may serve as a point of departure for
other analyses of this nature.
〈 example−8.c 33 〉 +≡

string fileName = "example−8";
ofstream gp((fileName + ".gp").c str ()), dat ((fileName + ".dat").c str ());
for (int j = 0; j < nbins ; j++) {

dat � j � " " � powerBin [j] � endl ;
}
delete powerBin ;
gp � "set term pbm small color" � endl ;
gp � "plot \"" � fileName � ".dat\" using 1:2 with boxes" � endl ;
string command ("gnuplot ");
command += fileName + ".gp | ppmtogif >" + fileName + ".gif";

#undef DEV_PLOT_DEBUG

#ifdef DEV_PLOT_DEBUG

cout � command � endl ;
#else

command += " 2>/dev/null";
#endif

gp .close ();
dat .close ();
system (command .c str ());

#ifndef DEV_PLOT_DEBUG /∗ Delete the temporary files used to create the plot ∗/
remove ((fileName + ".gp").c str ());
remove ((fileName + ".dat").c str ());

#endif

38. Finally, we write a primate-readable report of the statistics. If you require a computer-readable CSV
file instead, the write per egg statistics CSV method of the egganalysis class will be happy to oblige. Before
delving into the per-egg statistics, we print column headings.
〈 example−8.c 33 〉 +≡
〈Epilogue for example program 48 〉;

§39 EXAMPLES EXAMPLE 9: DEVIATION ANALYSIS FOR A WEEK’S DATA 17

39. Example 9: Deviation analysis for a week’s data.
This example illustrates data mining—searching the database for occurrences of a given kind of event or

analysing the frequency or time distribution of an event of a certain kind. Here, we’ll scan a week’s worth of
data from the eggs and tabulate the maximum deviation, both positive and negative, which occurred during
each day of the week.

This task will also provide the opportunity to look “under the hood” of the egganalysis object we’ve been
using in many of the previous examples. As before, we start by defining the database paths and create a
cache.
〈 example−9.c 39 〉 ≡
〈Prologue for example program 47 〉;
eggdatabasesed ;
ed .set local defaults ();
generic eggsummary cache < egganalysis > ec(&ed , ROTTEN_CSV, 50, 150);

See also sections 40, 41, 42, 43, and 44.

40. Next, we define the storage which will be used to hold the results we’re tabulating. We’ll analyse the
first full week of 2002, starting with Sunday the 6th of January. We initialise a systemtime variable to the
start date of the period of analysis and define the number of days we wish to process. Then, we emit the
column headings for the deviation table.
〈 example−9.c 39 〉 +≡

systemtime thisdate ("2002−01−06"); /∗ Current date ∗/
const int numDays = 7; /∗ How many days to analyse ∗/
cout � " Date Day Min. Dev. Max Dev. Delta Dev." � endl ;

41. Now we loop over the days in the interval. For each, we obtain an egganalysis object for the day in
question from the cache and apply the compute all egg statistics method to it in order to prepare the time
series analysis across all the eggs. Among the statistics prepared are the Stouffer Z for all the eggs reporting
for each second. Please see the definition of compute all egg statistics in the analysis program for details
of the values it computes.
〈 example−9.c 39 〉 +≡

for (int i = 0; i < numDays ; i++) {
egganalysis ∗ esr = ec .get by date (thisdate);
esr~compute all egg statistics ();

18 EXAMPLE 9: DEVIATION ANALYSIS FOR A WEEK’S DATA EXAMPLES §42

42. With the time series statistics in hand, all that remains is to loop over the seconds in the day and
compute the deviation by summing the squares of the Stouffer Z values (which obey χ2 statistics), normed
by the number of degrees of freedom, which is simply the incrementing number of seconds in the day. We
use the chiSquareDistribution class in the statlib program for the latter calculation. As the deviation is
computed over the day, we keep track of the extremal values.
〈 example−9.c 39 〉 +≡

double chisum = 0, mindev = 1 · 10100, maxdev = −1 · 10100;
int nitems = esr~seconds of data/esr~seconds per row ;
double cxebase ;
for (int j = 0; j < nitems ; j++) {

double zsquare = esr~stouffer z [j] ∗ esr~stouffer z [j];
double xe = chiSquareDistribution ::x from p k (0.5, j + 1);
chisum += zsquare ;
double deviation = chisum − xe ;
if (deviation < mindev) {

mindev = deviation ;
}
if (deviation > maxdev) {

maxdev = deviation ;
}

}

43. Now it’s just a simple matter of writing out the minimum and maximum deviation and the difference
between them in a nice tabular form.
〈 example−9.c 39 〉 +≡

static const char ∗dayOfWeek [7] = {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"};
cout .setf (ios ::fixed , ios ::floatfield);
cout .precision (3);
cout � thisdate .dateToString () � " " � dayOfWeek [thisdate .weekday ()] � " " � setw (10) �

mindev � " " � setw (10) � maxdev � " " � setw (10) � (maxdev −mindev) � endl ;

44. Tomorrow is another day! We use the nextDay method of the systemtime class to advance to the
next day. Please see the definition of this class in the timedate program for other tools for manipulating
dates and times. Since we’re working on days in a linear fashion and assured we’ll never revisit a day’s
data, we use the purge method of the cache to explicitly discard the data for the day we’ve requested. This
reclaims the memory used by the day we’ve just completed and reduces the total memory required to analyse
the week. In the case of a week-long analysis this doesn’t make much difference but if you were, for example,
scanning a year’s data, failing to purge might cause your program to run out of memory and crash. The
cache will eventually automatically purge data as required, but I haven’t gotten around to that yet. As long
as you know you’re through with data in the cache, explicitly purging it can’t hurt.
〈 example−9.c 39 〉 +≡

thisdate .nextDay (); /∗ Advance to next day ∗/
ec .purge (); /∗ Discard day just completed from cache ∗/
}
〈Epilogue for example program 48 〉;

§45 EXAMPLES TEMPLATE FOR NEW EXAMPLES 19

45. Template for new examples.

〈 examples_test.c 45 〉 ≡
〈Prologue for example program 47 〉;
cout � "Here is where you put the code for the example." � endl ;
〈Epilogue for example program 48 〉;

20 COMMON FRAMEWORK FOR EXAMPLE PROGRAMS EXAMPLES §46

46. Common Framework for Example Programs.

47. All the examples use a common prologue. It defines the main function which provides the entry point
of the program, processes command line options, and wraps the experiment-specific code in a try–catch
block which guarantees any unprocessed exceptions will result in an error message as opposed to a silent
memory dump.
〈Prologue for example program 47 〉 ≡
〈Example program include files 51 〉;
〈Show how to call test program 50 〉;
int main (int argc , char ∗argv []){ extern char ∗optarg ; /∗ Imported from getopt ∗/

extern int optind ; try { 〈Process command-line options 49 〉;
This code is used in sections 4, 10, 13, 17, 21, 23, 29, 33, 39, and 45.

48. A standard epilogue for example programs completes the exception handling block and terminates
the program with normal status.
〈Epilogue for example program 48 〉 ≡
} catch(exception &e)
{

cout � "Blooie!!! Exception popped: " � e.what () � endl ;
#ifndef CORE_DUMP

#ifdef STACK_TRACE

char s[160];
sprintf (s,

"/bin/echo ’where\nq’ >/tmp/gdbcmd ; gdb −batch −−command ""/tmp/gdbcmd %s %d",
argv [0], getpid ());

system (s);
sleep(5);

#endif
throw; /∗ Re-throw exception to dump core ∗/

#endif
}
return 0; }

This code is used in sections 9, 12, 16, 20, 22, 28, 32, 38, 44, and 45.

§49 EXAMPLES COMMON FRAMEWORK FOR EXAMPLE PROGRAMS 21

49. We use getopt to process command line options. This permits aggregation of options without
arguments and both −darg and −d arg syntax.
〈Process command-line options 49 〉 ≡

int opt ;
while ((opt = getopt (argc , argv , "nu−:")) 6= −1) {

switch (opt) {
case ’u’: /∗ −u Print how-to-call information ∗/

case ’?’: usage ();
return 0;

case ’−’: /∗ −− Extended options ∗/
switch (optarg [0]) {
case ’c’: /∗ −−copyright ∗/

cout � "This program is in the public domain.\n";
return 0;

case ’h’: /∗ −−help ∗/
usage ();
return 0;

case ’v’: /∗ −−version ∗/
cout � PRODUCT � " " � VERSION � "\n";
cout � "Last revised: " � REVDATE � "\n";
cout � "The latest version is always available\n";
cout � "at http://www.fourmilab.ch/eggtools/eggshell\n";
return 0;

}
}

}
This code is used in section 47.

50. Procedure usage prints how-to-call information.
〈Show how to call test program 50 〉 ≡

static void usage (void)
{

cout � PRODUCT � " −− Analyse eggsummary files. Call:\n";
cout � " " � PRODUCT � " [options] [infile] [outfile]\n";
cout � "\n";
cout � "Options:\n";
cout � " −−copyright Print copyright information\n";
cout � " −u, −−help Print this message\n";
cout � " −−version Print version number\n";
cout � "\n";
cout � "by John Walker\n";
cout � "http://www.fourmilab.ch/\n";

}
This code is used in section 47.

22 COMMON FRAMEWORK FOR EXAMPLE PROGRAMS EXAMPLES §51

51. We need definitions in the following header files to compile the example programs. Note that
analysis.h takes the initiative to pull in the rest of the header files of the analysis suite as well as the
usual ratty collection of C++ standard header files.
〈Example program include files 51 〉 ≡
#include "config.h" /∗ Our configuration ∗/
〈Preprocessor definitions 〉

#include "analysis.h" /∗ analysis.h pulls in everything else we need ∗/
#include "fourier.h" /∗ . . .except fourier.h, which is rather more specialised ∗/
#include <stdio.h>

#include <stdlib.h>

#ifdef HAVE_GETOPT

#ifdef HAVE_UNISTD_H

#include <unistd.h>

#endif
#else
#include "getopt.h" /∗ No system getopt—use our own ∗/
#endif
This code is used in section 47.

52. We generate an empty C program to keep make happy; it isn’t used for anything.

§53 EXAMPLES INDEX 23

53. Index. The following is a cross-reference table for examples. Single-character identifiers are not
indexed, nor are reserved words. Underlined entries indicate where an identifier was declared.

aggregationBin : 36.
alon : 25.
argc : 47, 49.
argv : 47, 48, 49.
assert : 25.
atz : 25.
b: 36.
binomialDistribution : 20.
c str : 37.
chiSquareDistribution : 42.
chisum : 42.
close : 37.
command : 37.
complex : 35.
compute all egg statistics : 34, 41.
compute per egg statistics : 18, 34.
CORE_DUMP: 48.
cout : 15, 19, 20, 22, 25, 26, 37, 40, 43, 45,

48, 49, 50.
cxebase : 42.
dat : 37.
dateToString : 43.
dayOfWeek : 43.
describe : 15.
DEV_PLOT_DEBUG: 37.
deviation : 42.
e: 48.
ec : 6, 7, 11, 12, 13, 14, 17, 23, 24, 29, 33, 39, 41, 44.
ed : 5, 6, 10, 11, 13, 17, 21, 22, 23, 29, 33, 39.
egg max sample : 19.
egg mean : 19.
egg min sample : 19.
egg num sample : 19.
egg number : 19, 25, 26.
egg number to index : 26.
egg properties : 25, 30.
egg properties database : 21, 23, 30.
egg stdev : 19.
egganalysis : 6, 7, 8, 11, 12, 13, 14, 17, 19, 23,

24, 27, 29, 31, 33, 38, 39, 41.
eggdatabases : 5, 6, 10, 13, 17, 23, 29, 33, 39.
eggNumber : 25, 30.
EGGS_CSV: 2, 21, 23, 30.
eggs reporting : 19, 25, 26.
eggsummary : 6.
endl : 19, 20, 25, 26, 37, 40, 43, 45, 48.
ep : 25, 30.
epd : 23, 25, 30.
esr : 7, 8, 12, 29, 31, 32, 41, 42.
exa : 27, 28.

exception: 48.
exg : 31, 32.
exo : 31, 32.
ext : 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27,

33, 34, 35.
extract eggs : 31.
extract time range : 14, 17, 24, 27, 33.
fabs : 25.
fileName : 37.
find : 25, 26.
fixed : 19, 43.
floatfield : 19, 43.
fourierTransform : 35.
ft : 35.
ftsize : 35.
generic eggsummary : 27.
generic eggsummary cache : 6, 11, 13, 17, 23,

29, 33, 39.
get by date : 7, 12, 29, 41.
getopt : 47, 49.
getpid : 48.
gp : 37.
HAVE_GETOPT: 51.
HAVE_UNISTD_H: 51.
i: 19, 25, 30, 41.
insert : 25.
ios : 19, 43.
j: 37, 42.
k: 36.
kickoff : 32.
latitude : 30.
loadFromCSV : 21, 23, 30.
longitude : 25, 30.
main : 47.
make pair : 25.
map: 25.
maxdev : 42, 43.
mean : 20.
memset : 35.
mindev : 42, 43.
n: 35.
na eggs : 30, 31.
nbins : 36, 37.
nextDay : 44.
nitems : 42.
nrows : 35.
numDays : 40, 41.
offset : 25, 26.
ofstream: 37.
opt : 49.

24 INDEX EXAMPLES §53

optarg : 47, 49.
optind : 47.
ostream: 22.
other eggs : 30, 31.
pdist : 20.
power spectrum : 35.
powerBin : 36, 37.
precision : 19, 43.
PRODUCT: 49, 50.
ps : 35, 36.
psv : 36.
purge : 44.
push back : 30.
remove : 37.
REVDATE: 1, 49.
ROTTEN_CSV: 2, 6, 11, 13, 17, 23, 29, 33, 39.
s: 48.
second : 25, 26.
seconds of data : 20, 35, 42.
seconds per row : 35, 42.
SecondsPerDay : 16, 36.
SecondsPerHour : 8, 12, 25, 28, 32, 36.
set local defaults : 5, 10, 13, 17, 23, 29, 33, 39.
setf : 19, 43.
setw : 19, 20, 43.
size : 30.
sleep : 48.
sprintf : 48.
STACK_TRACE: 48.
stdev : 20.
stouffer z : 35, 42.
string: 37.
system : 37, 48.
systemtime: 8, 12, 14, 16, 17, 24, 25, 27, 28,

32, 33, 36, 40, 44.
tabulate : 22.
thisdate : 40, 41, 43, 44.
time shift : 26.
transform : 35.
tz : 25.
usage : 49, 50.
vec : 35.
vector: 30.
VERSION: 49.
weekday : 43.
what : 48.
write deviation plot : 8, 12, 16, 28, 32.
write per egg statistics CSV : 19, 38.
x from p k : 42.
xe : 42.
zlon : 25.
zsquare : 42.

EXAMPLES NAMES OF THE SECTIONS 25

〈Epilogue for example program 48 〉 Used in sections 9, 12, 16, 20, 22, 28, 32, 38, 44, and 45.

〈Example program include files 51 〉 Used in section 47.

〈Process command-line options 49 〉 Used in section 47.

〈Prologue for example program 47 〉 Used in sections 4, 10, 13, 17, 21, 23, 29, 33, 39, and 45.

〈Show how to call test program 50 〉 Used in section 47.

〈 example−1.c 4, 5, 6, 7, 8, 9 〉
〈 example−2.c 10, 11, 12 〉
〈 example−3.c 13, 14, 15, 16 〉
〈 example−4.c 17, 18, 19, 20 〉
〈 example−5.c 21, 22 〉
〈 example−6.c 23, 24, 25, 26, 27, 28 〉
〈 example−7.c 29, 30, 31, 32 〉
〈 example−8.c 33, 34, 35, 36, 37, 38 〉
〈 example−9.c 39, 40, 41, 42, 43, 44 〉
〈 examples_test.c 45 〉

EXAMPLES

Section Page
Introduction . 1 1
Example 1: Earth Day 2001 . 3 3
Example 2: Earth Day 2001—pseudorandom control . 10 5
Example 3: Multiple day time span plot . 13 6
Example 4: Per-egg statistics for a week’s data . 17 7
Example 5: The egg properties table . 21 9
Example 6: New year transition in local time . 23 10
Example 7: SuperBowl 2001 . 29 13
Example 8: Fourier transform analysis of a day’s data . 33 15
Example 9: Deviation analysis for a week’s data . 39 17
Template for new examples . 45 19
Common Framework for Example Programs . 46 20
Index . 53 23

	Introduction
	Example 1: Earth Day 2001
	Example 2: Earth Day 2001---pseudorandom control
	Example 3: Multiple day time span plot
	Example 4: Per-egg statistics for a week's data
	Example 5: The egg properties table
	Example 6: New year transition in local time
	Example 7: SuperBowl 2001
	Example 8: Fourier transform analysis of a day's data
	Example 9: Deviation analysis for a week's data
	Template for new examples
	Common Framework for Example Programs
	Index
	Names of the sections
	Epilogue for example program
	Example program include files
	Process command-line options
	Prologue for example program
	Show how to call test program
	example-1.c
	example-2.c
	example-3.c
	example-4.c
	example-5.c
	example-6.c
	example-7.c
	example-8.c
	example-9.c
	examples_test.c

