
§1 ETSET INTRODUCTION 1

1. Introduction.

ETSET

Typeset an Electronic Text

by John Walker

This program is in the public domain.

#define PRODUCT "etset"

#define VERSION "3.1"

#define REVDATE "2005−05−06"

http://www.fourmilab.ch/

2 COMMAND LINE ETSET §2

2. Command line.

ETSET is invoked with a command line as follows:

etset options input file output file

where options specify processing modes as defined below and are either long names beginning with two
hyphens or single letter abbreviations introduced by a single hyphen. If no input file is specified, or “−” is
given for its name, input is read from standard input. Similarly, output is written to standard output if
output file is omitted or “−” is specified. When generating HTML, an output file name must be specified; it
is the “base name” used to generate the various HTML files making up the document tree, which are created
in the current directory.

§3 ETSET OPTIONS 3

3. Options.
Options are specified on the command line prior to the input and output file names (if any). Options may

appear in any order. Long options beginning with “−−” may be abbreviated to any unambiguous prefix;
single-letter options introduced by a single “−” may be aggregated.

−−ascii−only
Check for the presence of any characters not part of the 7-bit ASCII set (for example, ac-
cented letters belonging to the ISO 8859-1 set), and generate warning messages identifying
them.

−−babel lang
Use the LATEX babel package for language lang.

−−check
Check text for publication. Report any invalid characters or formatting errors to standard
error.

−−clean
Clean up text for publication: expand tab characters to spaces, remove trailing blanks
from lines.

−−copyright

Print copying information.
−−debug−parser file

Write parser debugging information to file. Each line in the body of the text is labeled
with the identification assigned it by the parser.

−−dos−characters
Translate MS-DOS Code Page 850 character set to ISO 8859-1 and remove carriage returns
from the ends of lines.

−−flatten−iso
ISO 8859-1 8-bit characters are replaced with their closest 7-bit ASCII equivalent (for
example, accented letters are changed to unaccented characters). This is a destructive
transformation, and should be performed only when a text must be displayed on a device
which cannot accept 8-bit characters.

−−french−punctuation
Insert nonbreaking spaces around punctuation as normally done when typesetting French.
Guillemets, colons, semicolons, question marks, and exclamation points are set off from
the adjoining text by a space. This mode is unnecessary when typesetting French with
the “−−babel francais” option.

−−help, −u
Print how-to-call information including a list of options.

−−html, −h
Generate HTML output. By default, a document tree is generated with an index document
which links to individual chapter documents, each of which contains navigation links. If
the −−single−file option is specified, a single HTML document containing the entire
text is generated. HTML files are written to the current directory.

−−latex, −l
Generate a LATEX file to typeset the document. If the document is in a language other than
English, you may also wish to use the −−babel option to invoke formatting appropriate
for the language.

−−palm, −p
Generate a file in Palm Markup Language to create a document for Palm Reader on
handheld platforms.

−−save−epilogue file
The document epilogue is written to the designated file.

−−save−prologue file
The document prologue is written to the designated file.

4 OPTIONS ETSET §3

−−single−file
Generate a single HTML file containing all chapters, as opposed to the default of a
document tree with a separate file for each chapter.

−−special−strip
Remove all format-specific special commands from the document, and blank lines following
special command if they would result in consecutive blank lines in the document. This
option may be used in conjunction with the −−clean option when preparing a text for
publication in “Plain ASCII” format.

−−verbose, −v
Print information regarding processing of the document, including the number of lines
read and written.

−−version

Print program version information.

§4 ETSET INPUT FORMAT 5

4. Input format.
Beautifully Typeset Etexts

Plain Vanilla Etexts don’t have to be austere and typographically uninviting. Most literature (as opposed
to scientific publications, for example), is typographically simple and can be rendered beautifully into type
without encoding it into proprietary word processor file formats or impenetrable markup languages. Etexts
may be encoded in a form which permits them to be both read directly (Plain Vanilla) and typeset in a form
virtually indistinguishable from printed editions of the work.

To create “typographically friendly” Etexts, observe the following rules:

1. Characters follow the 8-bit ISO 8859/1 Latin-1 character set. ASCII is a proper subset of this character
set, so any “Plain ASCII” file meets ths criterion by definition. The extension to ISO 8859/1 is required
so that Etexts which include the accented characters used by Western European languages may continue
to be “readable by both humans and computers”.

2. No white space characters other than blanks and line separators are used (in particular, tabs are expanded
to spaces).

3. The text bracket sequence:
<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

appears both before and after the actual body of the Etext. This allows including an arbitrary prologue
and epilogue to the body of the document.

4. Normal body text begins in column 1 and is set ragged right with a line length of 70 characters. The
choice of 70 characters is arbitrary and was made to avoid overly long and therefore less readable lines in
the Plain Vanilla text.

5. Paragraphs are separated by blank lines.

6. Centring, right, and left justification is indicated by actually so-justifying the text within the 70 character
line. Left justified lines should start in column 2 to avoid confusion with paragraph body text.

7. Block quotations are indented to start in column 5 and set ragged right with a line length of 60 characters.

8. Preformatted tables begin with a line which starts in column 3 and contains at least one sequence of three
or more spaces between nonblanks. The table is formatted verbatim until the next blank line.

9. Text set in italics is bracketed by underscore characters, “ ”. These must match.

10. Footnotes are included in-line, bracketed by “[]”. The footnote appears at the point in the copy where
the footnote mark appears in the source text. Footnotes may not be nested and may consist of only a
single paragraph.

11. The title is defined as the sequence of lines which appear between the first text bracket “<><><>. . .” and
a centred line consisting exclusively of three or more equal signs “====”.

12. The author’s name is the text which follows the line of equal signs marking the end of the title and precedes
the first chapter mark. This may be multiple lines.

13. Chapters are delimited by a three line sequence of centred lines:
Chapter number

−−−−−−−−−−−−−−−−−−−−

Chapter name
The line of minus signs must be centred and contain three or more minus signs and no other characters
apart from white space. Chapter “numbers” need not be numeric—they can be any text.

14. Dashes in the text are indicated in the normal typewritten text convention of “−−”. No hyphenation of
words at the end of lines is done.

6 INPUT FORMAT ETSET §4

15. Ellipses are indicated by “...”; sentence-ending ellipses by “....”.

16. Greek letters and mathematical symbols are enclosed in the brackets “\(” and “\)” and are expressed as
their character or symbol names in the LATEX typesetting language. For example, write the Greek word
for “word”: λóγoς as:

\(\lambda \acute{o} \gamma o \varsigma \)
and the formula for the roots of a quadratic equation as:

\(x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)
I acknowledge that this provision is controversial. It is as distasteful to me as I suspect it is to you. In
its defence, let me treat the Greek letter and math formula cases separately. Using LATEX encoding for
Greek letters is purely a stopgap until Unicode comes into common use on enough computers so that we
can use it for Etexts which contain characters not in the ASCII or ISO 8859/1 sets (which are the 7- and
8-bit subsets of Unicode, respectively). If an author uses a Greek word in the text, we have two ways to
proceed in attempting to meet the condition:

The etext, when displayed, is clearly readable, and does not contain characters other
than those intended by the author of the work, although. . ..

The first approach is to transliterate into Roman characters according to a standard table such as that
given in The Chicago Manual of Style. This preserves readability and doesn’t require funny encoding, but
in a sense violates the author’s “original intent”—the author could have transliterated the word in the
first place but chose not to. By transliterating we’re reversing the author’s decision. The second approach,
encoding in LATEX or some other markup language, preserves the distinction that the author wrote the
word in Greek and maintains readability since letters are called out by their English language names, for
the most part. Of course LATEX helps us only for Greek (and a few characters from other languages). If
you’re faced with Cyrillic, Arabic, Chinese, Japanese, or other languages written in non-Roman letters,
the only option (absent Unicode) is to transliterate.
I suggest that encoding mathematical formulas as LATEX achieves the goal of “readable by humans” on the
strength of LATEX encoding being widely used in the physics and mathematics communities when writing
formulas in E-mail and other ASCII media. Just as one is free to to transliterate Greek in an Etext, one
can use ASCII artwork formulas like:

+ / 2

-b - \/ b - 4ac
x = ------------------
1,2 2a

This is probably a better choice for occasional formulas simple enough to write out this way. But to produce
Etexts of historic scientific publications such as Einstein’s “Zur Elektrodynamik bewegter Körper” (the
special relativity paper published in Annalen der Physik in 1905), trying to render dozens of complicated
equations in ASCII is not only extremely tedious but in all likelihood counter-productive; ambiguities
in trying to express complex equations would make it difficult for a reader to determine precisely what
Einstein wrote unless conventions just as complicated (and harder to learn) as those of LATEX were adopted
for ASCII expression of mathematics. Finally, the choice of LATEX encoding is made not only based on its
existing widespread use but because the underlying software that defines it (TEX and LATEX) are entirely
in the public domain, available in source code form, implemented on most commonly-available computers,
and frozen by their authors so that, unlike many commercial products, the syntax is unlikely to change in
the future and obsolete current texts.

17. Other punctuation in the text consists only of the characters:
. , : ; ? ! ‘ ’ () { } " + = - / * @ # $ % & ~ ^ | < >

In other words, the characters:
_ [] \

are never used except in the special senses defined above.

§4 ETSET INPUT FORMAT 7

18. Quote marks may be rendered explicitly as open and close quote marks with the sequences ‘single quotes’
or “double quotes”. As long as quotes are balanced within a paragraph, the ASCII quote character ‘"’
may be used. Alternating occurrences of this character will be typeset as open and close quote characters.
The open/close quote state is reset at the start of each paragraph, limiting the scope of errors to a single
paragraph and permitting “continuation quotes” when multiple paragraphs are quoted.

8 PROGRAM GLOBAL CONTEXT ETSET §5

5. Program global context.

〈Preprocessor definitions 〉
〈System include files 145 〉
〈Program implementation 6 〉

6. The following classes are defined and their implementations provided.
〈Program implementation 6 〉 ≡
〈Global variables 48 〉
〈Global functions 147 〉
〈Class definitions 8 〉
〈Main program 141 〉

This code is used in section 5.

7. The following definitions describe the formatting of input body copy. Note that column numbers cited
below assume the first column of a line is 0.
#define FormatWidth 70 /∗ Format width of original text ∗/
#define RaggedRightIndent 1 /∗ Indentation for ragged right copy ∗/
#define PreformattedTableIndent 2 /∗ Indentation for preformatted tables ∗/
#define QuoteIndent 4 /∗ Indentation for block quotes ∗/
#define TitleMarkerCharacter ’=’ /∗ Character identifying document title/author sequences ∗/
#define ChapterMarkerCharacter ’−’ /∗ Character identifying chapter number/title sequences ∗/
#define MarkerMinimumLength 3 /∗ Minimum length of title and chapter markers ∗/
#define SpecialMarker "<><><>" /∗ Special text line marker (start and end of line) ∗/
#define SpecialPrefix (SpecialMarker "Special:") /∗ Special text line prefix ∗/
#define PUNCTUATION ("?!:;" RIGHT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK)

/∗ Punctuation set after a space in French text processed with the −f option ∗/
#define Iabs (x) (((x) < 0) ? (−(x)) : (x)) /∗ Absolute value ∗/

§8 ETSET TEXT PROCESSING COMPONENTS 9

8. Text processing components.
The textComponent class is the abstract superclass of all of the text source, sink, and filter classes. A

source is simply a filter whose input is not a component, and a sink a filter whose output is not a component.
〈Class definitions 8 〉 ≡ /∗ This ought to be a static member of textComponent , but I’ll be damned if

I can figure out how to make it work as one. ∗/
static const string fTypeName [4] = {"Undefined", "Source", "Filter", "Sink"};
class textComponent {
protected:

textComponent ∗output ; /∗ Next filter in chain ∗/
textComponent ∗source ; /∗ Source at head of pipeline ∗/
int lineNumber ; /∗ Output line number ∗/
enum filterType {

UndefinedType = 0,SourceType = 1,FilterType = 2,SinkType = 3
};
filterType fType ;

public:
textComponent()
{

output = Λ;
source = Λ;
lineNumber = 0;
fType = UndefinedType ;

}
virtual string componentName (void) = 0; /∗ Return name of filter ∗/
virtual void put (string s) = 0; /∗ Write string to filter ∗/
〈Connect components in pipeline 9 〉;
〈Emit output to next component in pipeline 10 〉;
〈Handle end of file notification 11 〉;
textComponent ∗getSource (void)
{

assert (source 6= Λ); /∗ Filter not wired to a source ∗/
return source ;

}
int getLineNumber (void)
{ /∗ Output line number of this filter ∗/

return lineNumber ;
}
int getSourceLineNumber (void)
{ /∗ Line number of ultimate source ∗/

return getSource ()~getLineNumber ();
} /∗ Issue message tagged with source line number ∗/
virtual void issueMessage (string msg ,ostream &of = cerr)
{

of � getSourceLineNumber () � ": " � msg � "\n";
} /∗ Write description to stream of ∗/
virtual void writeDescription (ostream &of)
{

of � fTypeName [fType] � ": " � componentName () � "\n";
}
;

10 TEXT PROCESSING COMPONENTS ETSET §8

};
See also sections 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 27, 28, 42, 44, 45, 46, 47, 51, 52, 62, 63, 64, 66, 67, 68, 69, 76, 77, 90,

91, 92, 102, 103, 105, 112, 113, 114, 115, 116, 117, 119, 120, 127, 128, 129, and 140.

This code is used in section 6.

9. Every text processing pipeline must start with a source (fType of SourceType) and terminate with a
sink (fType of SinkType). Any number of filters (fType of FilterType) may be interposed between these
ends. Successive components in a pipeline are connected to one another by calling the setOutput method of
each component, starting with the source, in the order in which they appear in the pipeline, giving the next
component as the argument. The sink at the end of the pipeline delivers the result to the ultimate output,
so setOutput is not called for it.

For example, suppose you have a three component pipeline consisting of a source named faucet, a filter
strainer, and a sink sewer. To plumb these three components into a pipeline, you could make the following
function calls:

faucet.setOutput(strainer);
strainer.setOutput(sewer);

We overload the | operator to allow connecting pipelines in a less verbose fashion, one familiar to users of
UNIX shell commands. Using this operator, the three component pipeline can be connected with the single
expression:

faucet | strainer | sewer;
Each component in a pipeline contains a link back to the first (SourceType) component. The source

component points to itself, and the link to the start of the pipeline is propagated as each additional component
is added. To obtain the source link, use the getSource method of any component in the pipeline. This is
frequently used when a downstream component wishes to label a diagnostic message with the line number
of the original source line from which the text it’s processing was derived. This is needed so frequently, in
fact, that the getSourceLineNumber method is provided to directly obtain this value.
〈Connect components in pipeline 9 〉 ≡

virtual void setOutput (textComponent &ofilt)
{

output = &ofilt ;
ofilt .source = source ; /∗ Propagate source to output ∗/

}
textComponent &operator|(textComponent &dest)
{

setOutput (dest);
return dest ;

}
This code is used in section 8.

§10 ETSET TEXT PROCESSING COMPONENTS 11

10. Each component in the pipeline receives lines through its get method, performs whatever processing
is in order, then passes them down the pipe to the next component with the emit method, which also keeps
track of the number of lines generated by this component. For the textSource component at the start of the
pipeline, this automatically counts lines in the input stream.

Output from a component is normally emitted to the next component in the pipeline, designated by
output , but may be directed to another component by supplying a pointer to it as the second argument.
This permits components to have multiple outputs and hence forks in pipelines. Note that the lineNumber
in the component counts all lines emitted, regardless of the destination.
〈Emit output to next component in pipeline 10 〉 ≡

virtual void emit (string s, textComponent ∗destination = Λ)
{

if (destination ≡ Λ) {
destination = output ;

}
if (destination ≡ Λ) {

throw (invalid argument("void destination in emit()"));
}
lineNumber ++;
destination~put (s);

}
This code is used in section 8.

11. When the source at the head of the pipeline reaches the end of the input to be processed, it performs
whatever end of file processing is appropriate and passes an end of file notification down the pipeline. The
default mechanism for handling this is the eof method defined in the superclass, which does nothing except
forward the notification onward.

If a component needs to perform local cleanup at end of file (for example, if it’s buffered look ahead data
which needs to be flushed out), it should override the default eof method with one which does whatever
local processing is needed, then calls eof in its parent class to pass the notification down the pipe.
〈Handle end of file notification 11 〉 ≡

virtual void eof (void)
{

output~eof ();
}

This code is used in section 8.

12 SOURCE COMPONENTS ETSET §12

12. Source components.
The head end of a filter pipeline must be a textSource . It obtains its input from some external source and

passes it to the next component in the pipeline. A source drives the pipeline when send is called; this reads
successive lines from the source and passes them to the next item in the pipeline.
〈Class definitions 8 〉 +≡

class textSource : public textComponent {
protected:

virtual bool get (string &s) = 0; /∗ Get next string from source ∗/
public:

textSource()
{

fType = SourceType ;
source = this; /∗ A source is its very own source, of course ∗/

}
void put (string s)
{

throw (invalid argument("cannot put to a source"));
}
virtual void send (void)
{ /∗ Send lines from source to next in chain ∗/

string s;
while (get (s)) {

emit (s);
}
eof (); /∗ Notify downstream components of end of file ∗/

}
};

§13 ETSET STREAM SOURCE 13

13. Stream source.
The streamSource is a source which reads text lines from an input stream. The setStripEOL method may

be used to set a mode which causes MS-DOS carriage returns left on the ends of lines to be removed.
〈Class definitions 8 〉 +≡

class streamSource : public textSource {
private:

istream ∗i;
bool strip ;

protected:
bool get (string &s)
{

return getline (∗i, s);
}

public:
string componentName (void)
{

return "streamSource";
}
void openFile (string pathName) /∗ Bind an input file to the stream source ∗/
{

if (pathName ≡ "−") {
i = &cin ;

}
else {

i = new ifstream(pathName .c str (), ios :: in);
if (¬(∗i)) {

throw (invalid argument("Cannot open input file \"" + pathName + "\"."));
}

}
}
streamSource(istream &is = cin)

/∗ Construct a stream source from an existing input stream ∗/
{

i = &is ;
strip = false ;

}
streamSource(string pathName)

/∗ Construct a stream to read from specified pathName ; “−” denotes standard input ∗/
{

openFile (pathName);
strip = false ;

}
void setStripEOL(bool dostrip)
{

strip = dostrip ;
}
bool getStripEOL(void)
{

return strip ;
}

14 STREAM SOURCE ETSET §13

virtual void emit (string s, textComponent ∗destination = Λ)
{

if (strip) {
if (s[s.length ()− 1] ≡ ’\r’) {

s.erase (s.length ()− 1, 1);
}

}
textSource ::emit (s, destination);

}
};

§14 ETSET SINK COMPONENTS 15

14. Sink components.
A textSink forms the tail of a filter pipeline. It consumes lines from the pipeline and writes them to the

ultimate destination.
〈Class definitions 8 〉 +≡

class textSink : public textComponent {
public:

textSink()
{

fType = SinkType ;
}
void setOutput (textComponent &ofilt)
{

throw (invalid argument("cannot setOutput of a sink"));
}
virtual void put (string s)

/∗ Default put method keeps track of lines output to sink destination. ∗/
{

lineNumber ++;
}
virtual void eof (void) /∗ Default end of file action for a sink is to do nothing, as there’s no

component downstream to receive the EOF notification. ∗/
{ }

};

16 STREAM SINK ETSET §15

15. Stream sink.
A streamSink writes output sent it to an output stream. Two constructors permit you to create a

streamSink to write to an already open ostream or to a specified file name or standard output.
〈Class definitions 8 〉 +≡

class streamSink : public textSink {
private:

ostream ∗o;
public:

string componentName (void)
{

return "streamSink";
}
streamSink(ostream &os)

/∗ Construct a stream sink that writes to an existing output stream ∗/
{

o = &os ;
}
streamSink(string pathName)

/∗ Construct a stream sink that writes to a named pathName ; “−” denotes standard output ∗/
{

if (pathName ≡ "−") {
o = &cout ;

}
else {

o = new ofstream(pathName .c str (), ios ::out);
}

}
void put (string s)
{

if (&s 6= Λ) {
∗o � s � "\n";
textSink ::put (s); /∗ Call parent to update line counter ∗/

}
}

};

§16 ETSET HEAT SINK 17

16. Heat sink.
A heatSink discards all data sent to it. As the process of erasing its input is necessarily dissipative; heatSink

thermalises the information content it receives, increasing the entropy of the universe. See: Bennett, C.H.
“The Thermodynamics of Computation—a Review”. Int. J. Theor. Phys. 21:905–940 (1982).

You can use heatSink as the final component in a pipeline where the desired output is a side effect of an
earlier component, for example, the diagnostic messages produced by auditFilter . On a UNIX system you
could use streamSink with a destination of /dev/null for this purpose, but that will not work on other
operating systems.
〈Class definitions 8 〉 +≡

class heatSink : public textSink {
public:

string componentName (void)
{

return "heatSink";
}
void put (string s)
{ }

};

18 FILTER COMPONENTS ETSET §17

17. Filter components.
Each filter receives its input through its put method and delivers output to the next item in the pipeline

by calling the put method of its designed output .
〈Class definitions 8 〉 +≡

class textFilter : public textComponent {
public:

textFilter()
{

fType = FilterType ;
}

};

18. Trim filter.
A trimFilter removes any blank space from the end of strings which pass through it.

〈Class definitions 8 〉 +≡
class trimFilter : public textFilter {
public:

string componentName (void)
{

return "trimFilter";
}
void put (string s)
{

while (s.length () > 0 ∧ isspace (∗(s.end ()− 1))) {
s.erase (s.end ()− 1);

}
emit (s);

}
};

§19 ETSET TAB EXPANDER FILTER 19

19. Tab expander filter.
A tabExpanderFilter replaces tab characters with spaces to align to the specified tabInterval . We assume

tab stops are set at uniform intervals.
〈Class definitions 8 〉 +≡

class tabExpanderFilter : public textFilter {
private:

int tabInterval ;
public:

string componentName (void)
{

return "tabExpanderFilter";
}
tabExpanderFilter(int interval = 8)
{

setTabInterval (interval);
}
void setTabInterval (int interval)
{

tabInterval = interval ;
}
void put (string s)
{

if (s.find (’\t’) 6= string ::npos) {
〈Expand tabs in text line 20 〉;

}
assert (s.find (’\t’) ≡ string ::npos);
emit (s);

}
};

20. Given a string s which may contain horizontal tab characters, replace the tabs with spaces to achieve
the same alignment, assuming tab stops are set every tabInterval columns.
〈Expand tabs in text line 20 〉 ≡

string os ;
string :: iterator p;
int n = 0;
for (p = s.begin (); p 6= s.end (); p++) {

if (∗p ≡ ’\t’) {
do {

os += ’ ’;
n++;

} while ((n % tabInterval) 6= 0);
}
else {

os += ∗p;
n++;

}
}
s = os ;

This code is used in section 19.

20 FLATTEN ISO CHARACTERS FILTER ETSET §21

21. Flatten ISO characters filter.
A flattenISOCharactersFilter replaces ISO-8859/1 characters with their closest 7-bit ASCII representation.

This butchers any text containing accented characters, but if the user asks for it, ya gotta do what ya gotta
do.
〈Class definitions 8 〉 +≡

class flattenISOCharactersFilter : public textFilter {
public:

string componentName (void)
{

return "flattenISOCharactersFilter";
}
void put (string s)
{
〈Flatten ISO 8859 characters to 7-bit ASCII 22 〉;
emit (s);

}
};

22. Given a string s which may contain ISO-8859/1 characters with codes between #A0–#FF, return a
string with all such characters replaced by the closest ASCII equivalents.
〈Flatten ISO 8859 characters to 7-bit ASCII 22 〉 ≡

string os ;
string :: iterator p;
int c;
for (p = s.begin (); p 6= s.end (); p++) {

c = (∗p) & #FF;
if ((c ≥ #A0) ∧ (c ≤ #FF)) {

os += flattenISO [c− #A0];
}
else {

os += c;
}

}
s = os ;

This code is used in section 21.

§23 ETSET CONVERT FOREIGN CHARACTER SET TO ISO FILTER 21

23. Convert foreign character set to ISO filter.
A convertForeignCharacterSetToISOFilter converts characters in a foreign character set to ISO 8859-1.

It is driven by a conversion table provided when the filter is instantiated or set by the setConversionTable
method.
〈Class definitions 8 〉 +≡

class convertForeignCharacterSetToISOFilter : public textFilter {
private:

unsigned char ∗conversionTable ;
public:

void setConversionTable (unsigned char ∗tbl)
{

conversionTable = tbl ;
}
convertForeignCharacterSetToISOFilter(unsigned char ∗tbl)
{

setConversionTable (tbl);
}
string componentName (void)
{

return "convertForeignCharacterSetToISOFilter";
}
void identityTransform (void)
{

int i;
conversionTable = new unsigned char[256];
for (i = 0; i < 256; i++) {

conversionTable [i] = i;
}

}
unsigned char convert (unsigned char from)
{

return conversionTable [from];
}
void setTranslation (unsigned char from ,unsigned char to)
{

conversionTable [from] = to ;
}
void put (string s)
{

string :: iterator p;
for (p = s.begin (); p 6= s.end (); p++) {
∗p = convert ((∗p) & #FF);

}
emit (s);

}
};

22 SECTION SEPARATOR SQUID ETSET §24

24. Section separator squid.
An Etext is divided into three sections, the prologue, body, and epilogue, delimited by the sectionSep

marker which consists of a 68 character line filled with the sequence <><><>. . .<><><>. The section separator
processes lines of the input stream in sequence, testing each against the section separator. Lines prior to
the first section separator are emitted to the prologueProcessor component, lines within the body to the
regular output of the component, and lines following the separator at the end of the body (if any) to the
epilogueProcessor component. If the prologueProcessor or epilogueProcessor pointers are Λ, output for the
corresponding section will be discarded.

This is, thus, a component with one input and multiple outputs, creating a three-way fork in the pipeline,
permitting arbitrary components to be attached to each output. In the spirit of UNIVAC 1004 plugboard
wiring, this is referred to as a squid.
#define sectionSep "<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>"

〈Class definitions 8 〉 +≡
class sectionSeparatorSquid : public textFilter {
private:

textComponent ∗prologueProcessor , ∗epilogueProcessor , ∗currentOutput ;
int nsep ;

public:
sectionSeparatorSquid(textComponent ∗proP = Λ, textComponent ∗epiP = Λ)
{

prologueProcessor = proP ;
epilogueProcessor = epiP ;
nsep = 0;
currentOutput = prologueProcessor ;

}
string componentName (void)
{

return "sectionSeparatorSquid";
}
void setPrologueProcessor (textComponent ∗proP)
{

assert (prologueProcessor ≡ Λ ∧ currentOutput ≡ Λ);
currentOutput = prologueProcessor = proP ;

}
void setEpilogueProcessor (textComponent ∗epiP)
{

assert (epilogueProcessor ≡ Λ);
epilogueProcessor = epiP ;

}
〈Section separator squid end of file handling 26 〉;
void put (string s)
{

if (s.compare (sectionSep) ≡ 0) {
〈Handle section separator 25 〉;

}
if (currentOutput 6= Λ) {

emit (s, currentOutput);
}

}
};

http://www.fourmilab.ch/documents/univac/

§25 ETSET SECTION SEPARATOR SQUID 23

25. The section separator squid is rather flexible in the ways it permits you to direct contents of the
sections, and this makes for a modicum of complexity when we see a section separator and wish to redirect
the incoming stream. First of all, any of the three output branches—prologue, body, or epilogue—may be
discarded by directing them to a Λ component pointer. Further, you may specify the same component as
output for more than one branch; for example, if you wish to concatenate the prologue and epilogue into
one file.

We need to provide the conventional end of file notification by calling our output components’ eof methods
after they’ve received the last line of output, but since a component may be attached to more than one branch,
when we’re switching branches we only want to call eof when the component does not appear in a subsequent
branch.
〈Handle section separator 25 〉 ≡

switch (nsep) {
case 0:

nsep ++; /∗ Advance to body ∗/
if ((currentOutput 6= Λ) ∧ (currentOutput 6= output) ∧ (currentOutput 6= epilogueProcessor)) {

currentOutput~eof ();
}
currentOutput = output ; /∗ Direct output to main component output ∗/
return; /∗ Discard section separator ∗/

case 1:
nsep ++;
if ((currentOutput 6= Λ) ∧ (currentOutput 6= epilogueProcessor)) {

currentOutput~eof ();
}
currentOutput = epilogueProcessor ; /∗ Direct output to epilogue processor ∗/
return; /∗ Discard section separator ∗/

case 2: /∗ Extra sectionSep in epilogue. Treat as part of epilogue. ∗/
break;

}
This code is used in section 24.

24 SECTION SEPARATOR SQUID ETSET §26

26. Our much-vaunted “flexibility” in output arrangements also has consequences for end of file processing.
When we receive an end of file notification, we can be in any of the three sections, emitting or discarding
output, and with potentially identical destinations for sections subsequent to the one which contained the
end of file. We thus need to guarantee that not only the current section destination is notified of the end of
file (unless it’s Λ), but also that destinations for subsequent sections which will never receive any lines are
notified unless they are the same as the destination for an earlier section which has been notified.
〈Section separator squid end of file handling 26 〉 ≡

void sectionSeparatorSquid ::eof (void)
{

if (currentOutput 6= Λ) { /∗ Notify current destination unless it’s Λ ∗/
currentOutput~eof ();

}
switch (nsep) {
case 0: /∗ In prologue. Notify body of eof unless it’s Λ or the same destination as prologue. If the

epilogue destination is the same as that of the prologue, Λ it out so it isn’t notified twice. ∗/
if ((currentOutput 6= output) ∧ (output 6= Λ)) {

output~eof ();
if (epilogueProcessor ≡ currentOutput) {

epilogueProcessor = Λ; /∗ eof already sent ∗/
}

}
currentOutput = output ;

/∗ Wheee!!! Fall-through. . . ∗/
case 1: /∗ End of file encountered in the body. Notify the epilogue destination it’s not going to be

getting any output unless it’s Λ or the same destination as the body, which has already been
notified. ∗/

if ((currentOutput 6= epilogueProcessor) ∧ (epilogueProcessor 6= Λ)) {
epilogueProcessor~eof ();

}
case 2: /∗ End of file in the epilogue. No special handling is required. ∗/

break;
}

}
This code is used in section 24.

§27 ETSET TEE SQUID 25

27. Tee squid.
The tee squid makes a simple fork in a pipeline. It copies everything it receives to both the component

next in the pipeline and the component designated as its secondDestination .
〈Class definitions 8 〉 +≡

class teeSquid : public textFilter {
private:

textComponent ∗secondDestination ;
public:

teeSquid(textComponent ∗secP)
{

secondDestination = secP ;
}
string componentName (void)
{

return "teeSquid";
}
void eof (void)
{

secondDestination~eof ();
textFilter ::eof ();

}
void put (string s)
{

emit (s, secondDestination);
emit (s);

}
};

26 ETEXT BODY PARSER FILTER ETSET §28

28. Etext body parser filter.
This filter processes the body of an Etext (if the source document contains a prologue and epilogue, this

filter should be placed downstream of a sectionSeparatorSquid), identifying components in the text and
passing them down the pipeline tagged with their type. The body parser is implemented as a state machine,
driven by the lines of body copy if receives through its put method.
〈Class definitions 8 〉 +≡

class etextBodyParserFilter : public textFilter {
private:

bodyState state ; /∗ Current state of parser ∗/
queue〈string〉 lq ; /∗ Queue for lines during look-ahead ∗/
string specialFilter ; /∗ Filter special commands ? ∗/
void emits (bodyStates, char bracket , string text = "")
{ /∗ Emit coded line ∗/

string bracks = "";
bracks += bracket ;
emit (EncodeBodyState (s) + bracks + text);

}
void emitQueuedLines (bodyStates); /∗ Emit lines in lq with bracketed state s ∗/

public:
etextBodyParserFilter()
{

state = BeginText ;
specialFilter = "";

}
virtual ∼etextBodyParserFilter()
{ }
string componentName (void)
{

return "etextBodyParserFilter";
}
void setSpecialFilter (string f)
{

specialFilter = f ;
}
string getSpecialFilter (void)
{

return specialFilter ;
}
void eof (void)
{

emits (EndOfText ,Void);
textFilter ::eof ();

}
void put (string s)
{

bodyState lineClass = classifyLine (s);
if (specialFilter 6= "*") {

if (isLineSpecial (s)) {
if (specialType (s) 6= specialFilter) {

§28 ETSET ETEXT BODY PARSER FILTER 27

return; /∗ Discard special line not matching filter ∗/
}

}
}
〈Parser state machine 29 〉;

}
static bodyStateclassifyLine (string s); /∗ Classify line by justification type ∗/
static bool isLineSpecial (string s); /∗ Test for special command ∗/
static string specialType (string s); /∗ Extract type of special command ∗/
static string specialCommand (string s); /∗ Extract body of special command ∗/

};

29. We enter the parser state machine with two pieces of information: the current state of the machine and
the lineClass of the line just passed to the put method. The state machine consists of a switch statement
with cases for each possible state, wrapped in an endless loop which permits cycling the machine with the
same input line after a state change with a simple continue statement. This means, of course, that we need
to break out of the machine explicitly when we’ve consumed the input line, but this is simply accomplished
with a break at the bottom of the loop.
〈Parser state machine 29 〉 ≡

while (true) {
switch (state) {
〈BeginText state 30 〉;
〈BeforeTitle state 31 〉;
〈Declarations state 32 〉;
〈PossibleTitle state 33 〉;
〈TitleMarker state 34 〉;
〈Author state 35 〉;
〈BetweenParagraphs state 36 〉;
〈Within aligned paragraph state 37 〉;
〈Within preformatted table state 38 〉;
〈PossibleChapterNumber state 39 〉;
〈ChapterMarker state 40 〉;
〈ChapterName state 41 〉;

default: cerr � "Internal error: state \"" � stateNames [state] �
"\" not handled in etextBodyParserFilter.\n";

exit (1);
}
break;

}
This code is used in section 28.

30. The state machine starts in BeginText state. All we do is emit the corresponding marker to identify
the start of the text and drop into BeforeTitle state to process the line.
〈BeginText state 30 〉 ≡
case BeginText : emits (BeginText ,Void);

state = BeforeTitle ;
continue;

This code is used in section 29.

28 ETEXT BODY PARSER FILTER ETSET §31

31. Once we’ve output the BeginText marker we arrive in this state. At this point we’re waiting to
encounter either the title and author sequence or the start of document body if no such sequence exists.
〈BeforeTitle state 31 〉 ≡
case BeforeTitle :

if (lineClass 6= BetweenParagraphs) { /∗ Discard blank lines before title/start of text ∗/
if (isLineSpecial (s)) {

emits (Declarations ,Begin);
state = Declarations ;
continue;

}
if (lineClass ≡ InCentred) {

state = PossibleTitle ;
lq .push (s);
break;

}
if (lineClass ≡ TitleMarker) { /∗ Weird–title marker with no title ∗/

state = TitleMarker ; /∗ Set state to accept author ∗/
emits (DocumentTitle ,Void); /∗ Indicate no document title ∗/
break;

}
/∗ Anything else is start of document with no title or author specified ∗/

emits (DocumentTitle ,Void);
emits (Author ,Void);
state = BetweenParagraphs ;
continue; /∗ Re-parse line in BetweenParagraphs state ∗/

}
break;

This code is used in section 29.

32. One or more format-specific special commands may appear before the document title. These are
generally used for document-wide declarations which need to appear before the body of the text. They are
returned in a Declarations block consisting of all consecutive special commands which appear before the
title. If you separate blocks of declarations by blank lines, multiple declarations blocks will be returned; this
is generally a dopey thing to do.
〈Declarations state 32 〉 ≡
case Declarations :

if (isLineSpecial (s)) {
emits (Declarations ,Body , s);
break;

}
emits (Declarations ,End);
state = BeforeTitle ;
continue;

This code is used in section 29.

§33 ETSET ETEXT BODY PARSER FILTER 29

33. We have seen a centred line at the start of the document. This may be a title, or it may simply be
centred text which happens to be at the start of a document with no title. We save centred lines in the lq
queue until we either encounter a line which isn’t centred or a title marker.
〈PossibleTitle state 33 〉 ≡
case PossibleTitle :

if (lineClass ≡ TitleMarker) { /∗ Title marker–lines saved were the title! ∗/
emitQueuedLines (DocumentTitle);
state = TitleMarker ;
break;

}
if (lineClass ≡ InCentred) {

lq .push (s); /∗ Another centred line–save it ∗/
break;

}
if (lineClass ≡ ChapterMarker) { /∗ Chapter marker–it was a chapter! ∗/

/∗ We get here if the document doesn’t have a title specification but begins with a chapter marker.
We need to emit a void title and author, then output the centred lines in the queue as a chapter
number. ∗/

emits (DocumentTitle ,Void);
emits (Author ,Void);
emitQueuedLines (ChapterNumber);
state = ChapterMarker ;
break;

}
/∗ Anything else means the lines in the queue are just centred text at the start of the document.
Emit a void title and author, then the lines as a centred sequence. ∗/

emits (DocumentTitle ,Void);
emits (Author ,Void);
emitQueuedLines (InCentred);
state = BetweenParagraphs ;
continue;

This code is used in section 29.

34. We have seen and processed a title marker. Subsequent centred lines are the author specification
and will be output as such. The author sequence is terminated by any non-centred line, but blank lines are
permitted between the title marker and the first line of the author specification.
〈TitleMarker state 34 〉 ≡
case TitleMarker :

if (lineClass ≡ InCentred) {
emits (Author ,Begin);
emits (Author ,Body , s);
state = Author ;
break;

}
if (lineClass ≡ BetweenParagraphs) {

break; /∗ Discard blank line after title marker ∗/
} /∗ No author specification. Emit void author and process as text ∗/
emits (Author ,Void);
state = BetweenParagraphs ;
continue;

This code is used in section 29.

30 ETEXT BODY PARSER FILTER ETSET §35

35. One or more lines of the author specification have been output. Successive centred lines are continu-
ation of the author, while anything else ends the author specification.
〈Author state 35 〉 ≡
case Author :

if (lineClass ≡ InCentred) {
emits (Author ,Body , s);
break;

}
emits (Author ,End);
state = BetweenParagraphs ;
continue;

This code is used in section 29.

36. BetweenParagraphs is the ground state while processing the bulk of the document. Here we have no
object open or pending, and we’re ignoring blank lines waiting to see something whose alignment determines
the handling of the next item we’re to process. If it’s text (justified, ragged right, ragged left, or block
quote), we begin a sequence of that type and set the state to accrue subsequent lines of the same kind. A
centred line, however, may be the first line of a chapter break, so we must save it in the lq queue and go
into PossibleChapterNumber state pending examination of the next line.
〈BetweenParagraphs state 36 〉 ≡
case BetweenParagraphs :

switch (lineClass) {
case BetweenParagraphs :

break; /∗ Nugatory blank line ∗/
case InTextParagraph :
case InRaggedRight :
case InBlockQuote :
case InRaggedLeft :
case InPreformattedTable :

emits (lineClass ,Begin); /∗ Emit begin of aligned block ∗/
emits (lineClass ,Body , s);
state = lineClass ;
break;

case InCentred : /∗ Regular centred line ∗/
case TitleMarker : /∗ Doesn’t belong here, but who knows? ∗/

lq .push (s);
state = PossibleChapterNumber ;
break;

case ChapterMarker : /∗ Chapter marker without preceding number ∗/
emits (ChapterNumber ,Void);
state = ChapterMarker ;
break;

default: /∗ Ignore anything else ∗/
break;

}
break;

This code is cited in section 158.

This code is used in section 29.

§37 ETSET ETEXT BODY PARSER FILTER 31

37. This section handles all kinds of aligned paragraphs: justified, ragged left and right, and block quote.
As long as we continue to receive lines with same alignment as the state we’re in, we simply emit them as
continuations of the current paragraph. Upon encountering a line with a different classification, we close the
paragraph, revert to BetweenParagraphs state, and re-parse the line in that state.

Note how the fact that classifyLine uses the same codes for its alignment classes as we use for state when
within a paragraph with that alignment pays a big dividend of simplification here.
〈Within aligned paragraph state 37 〉 ≡
case InTextParagraph :
case InRaggedRight :
case InBlockQuote :
case InRaggedLeft :

if (lineClass ≡ state) {
emits (state ,Body , s);
break;

}
emits (state ,End);
state = BetweenParagraphs ;
continue;

This code is used in section 29.

38. To give the maximum latitude for formatting in preformatted tables, once we’ve identified the first
line as beginning in the PreformattedTableIndent column and containing at least one sequence of three or
more spaces, we stay in preformatted table state until we encounter a blank line.
〈Within preformatted table state 38 〉 ≡
case InPreformattedTable :

if (lineClass 6= BetweenParagraphs) {
emits (state ,Body , s);
break;

}
emits (state ,End);
state = BetweenParagraphs ;
break;

This code is used in section 29.

32 ETEXT BODY PARSER FILTER ETSET §39

39. When we encounter a centred line, there are two possibilities. It may simply be the first of one or
more centred lines in the document, or it may be the first line of a chapter break, in which case it belongs to
a chapter number specification. We can’t distinguish these alternatives until we see either a chapter marker
or something other than a line of centred text (including a blank line). As long as we continue to receive
centred lines, add them to the lq queue. If we get a chapter marker, output the lines in the queue as a
chapter number and change state to process the chapter name; otherwise, emit the queued lines as a centred
paragraph, reset to BetweenParagraphs state, and re-parse the non-centred line.
〈PossibleChapterNumber state 39 〉 ≡
case PossibleChapterNumber :

if (lineClass ≡ InCentred) {
lq .push (s);
break;

}
if (lineClass ≡ ChapterMarker) {

emitQueuedLines (ChapterNumber);
state = ChapterMarker ;
break;

}
emitQueuedLines (InCentred);
state = BetweenParagraphs ;
continue;

This code is used in section 29.

40. We’ve identified a chapter marker and processed the preceding chapter number, if any. Centred lines
following the chapter number are output as the chapter name. Any non-centred line, including a blank one,
terminates the chapter name. Hence, a chapter marker followed by a blank line denotes a chapter with no
title.
〈ChapterMarker state 40 〉 ≡
case ChapterMarker :

if (lineClass ≡ InCentred) {
emits (ChapterName ,Begin);
emits (ChapterName ,Body , s);
state = ChapterName ;
break;

}
emits (ChapterName ,Void);
state = BetweenParagraphs ;
continue;

This code is used in section 29.

§41 ETSET ETEXT BODY PARSER FILTER 33

41. Once we’ve seen a centred chapter name line following a chapter mark, we consider subsequent centred
lines as continuations of the chapter name. Anything else (including a blank line) terminates the chapter
name and is re-parsed in BetweenParagraphs state.
〈ChapterName state 41 〉 ≡
case ChapterName :

if (lineClass ≡ InCentred) {
emits (ChapterName ,Body , s);
break;

}
emits (ChapterName ,End);
state = BetweenParagraphs ;
continue;

This code is used in section 29.

42. The classifyLine function examines a line of the body copy and classifies it based on its “heuristic”
justification and content, returning a context-free subset of the parser’s bodyState values. If you need to
modify how the program decides a line should be justified based on how it’s aligned in the input text, here
is where you should be looking.
〈Class definitions 8 〉 +≡

bodyState etextBodyParserFilter ::classifyLine (string s)
{

bodyStateclassification ;
if (s.length () ≡ 0) {

classification = BetweenParagraphs ; /∗ Blank line ∗/
}
else if (s[0] 6= ’ ’) {

classification = InTextParagraph ; /∗ Justified body copy ∗/
}
else {

int i = s.find first not of (’ ’);
if (i ≡ RaggedRightIndent) {

classification = InRaggedRight ; /∗ Ragged right text ∗/
}
else if ((i ≡ PreformattedTableIndent) ∧ (s.find first of (" ") 6= string ::npos)) {

classification = InPreformattedTable ; /∗ Preformatted table ∗/
}
else if (i ≡ QuoteIndent) {

classification = InBlockQuote ; /∗ Block quotation ∗/
}
else if (s.length () ≡ FormatWidth) {

classification = InRaggedLeft ; /∗ Ragged left ∗/
}
else {
〈Classify centred line 43 〉;

}
}
return classification ;

}

34 ETEXT BODY PARSER FILTER ETSET §43

43. An indented non-blank line which begins in neither the RaggedRightIndent nor QuoteIndent columns
is taken to be centred. We further classify centred lines as either regular text or separators between
document title and author lines or chapter number and name specifications which are denoted by centred
lines exclusively composed of, respectively, equal (=) or minus (−) signs.

The way in which we recognise these markers looks a little cowboy style unless you realise we already know
several important things about the string s before we arrive here: it is guaranteed to have no trailing white
space, to have at least one blank at the beginning and at least one non-blank thereafter, and to contain no
white space characters other than spaces. All of these conditions are guaranteed either by tests within this
filter or transformations performed on the input by previous components in the pipeline.
〈Classify centred line 43 〉 ≡

classification = InCentred ; /∗ Tentatively classify as centred text ∗/
char lchar = s[s.length ()− 1];
if ((lchar ≡ ChapterMarkerCharacter) ∨ (lchar ≡ TitleMarkerCharacter)) {

int fchar = s.find first not of (’ ’);
if (((s.length ()− fchar) ≥ MarkerMinimumLength)∧ (s.find first not of (lchar , fchar) ≡ string ::npos))
{
classification = (lchar ≡ TitleMarkerCharacter) ? TitleMarker : ChapterMarker ;

}
}

This code is used in section 42.

44. “Special” commands are text lines interpreted by a specific output format generator. Such commands
may be used, for example, to include image files in the generated document. Special commands follow the
heuristic justification rules of regular text, and are identified by beginning and ending with the SpecialMarker
sentinel, with the complete SpecialPrefix at the start. The isLineSpecial function tests whether a line is so
marked and should be interpreted as a special command. The function is public and static, and may be
called by downstream components to determine whether a line they have received is a special command.
〈Class definitions 8 〉 +≡

bool etextBodyParserFilter :: isLineSpecial (string s)
{

unsigned int first = s.find first not of (’ ’);
if ((first 6= string ::npos) ∧ (s.find (SpecialPrefix) ≡ first) ∧ (s.rfind (SpecialMarker) ≡

(s.length ()− ((sizeof SpecialMarker)− 1)))) {
return true ;

}
return false ;

}

§45 ETSET ETEXT BODY PARSER FILTER 35

45. Each special command contains a type which identifies which output format generators are interested
in it. This function, which assumes the line is a special command (isLineSpecial returns true for it), extracts
the type from the command and returns it. This is cowboy code—if you have trouble, try adding an
assert (isLineSpecial (s)) at the top of the function and see if it pops.
〈Class definitions 8 〉 +≡

string etextBodyParserFilter ::specialType (string s)
{

string o = " − invalid −";
unsigned int first = s.find (SpecialPrefix), last ;
if (first 6= string ::npos) {

first += (sizeof SpecialPrefix)− 1;
last = s.find (’ ’,first);
o = s.substr (first , last − first);

}
return o;

}

46. Extract the output format specific body from a special command. If given an invalid special command,
an empty string will be returned. specialCommand may be called by downstream components to extract the
command body from a special command it has received.
〈Class definitions 8 〉 +≡

string etextBodyParserFilter ::specialCommand (string s)
{

string o = "";
unsigned int first = s.find (SpecialPrefix), last ;
if (first 6= string ::npos) {

first += (sizeof SpecialPrefix);
first = s.find (’ ’,first);
if (first 6= string ::npos) {

last = s.rfind (SpecialMarker);
if (last 6= string ::npos) {

o = s.substr (first + 1, (last − first)− 1);
}

}
}
return o;

}

47. This little helper function emits lines stored in the look-ahead queue lq as a block of lines of a given
type s, complete with Begin and End brackets.
〈Class definitions 8 〉 +≡

void etextBodyParserFilter ::emitQueuedLines (bodyStates)
{

emits (s,Begin);
while (¬lq .empty ()) {

emits (s,Body , lq .front ());
lq .pop();

}
emits (s,End);

}

36 ETEXT BODY PARSER FILTER ETSET §48

48. These are the states among which the Etext body parser transitions as it processes lines of the text.
Note that some of these states are also used by classifyLine to denote the justification of individual lines.
#define EncodeBodyState (s) ((char)(’A’ + (s)))
#define DecodeBodyState (c) ((bodyState)((c)− ’A’))
〈Global variables 48 〉 ≡

enum bodyState { /∗ Body parser current state ∗/
BeginText , /∗ Begin text pseudo-marker ∗/
BeforeTitle , /∗ Title not yet seen ∗/
Declarations , /∗ Special declarations before title ∗/
PossibleTitle , /∗ Centred text which may be the title ∗/
TitleMarker , /∗ Separator between title and author ∗/
DocumentTitle , /∗ Document title ∗/
Author , /∗ Author information after title separator ∗/
BetweenParagraphs , /∗ Blank space between paragraphs ∗/
InTextParagraph , /∗ In regular text paragraph ∗/
InBlockQuote , /∗ In indented block quotation paragraph ∗/
InRaggedRight , /∗ In ragged right paragraph ∗/
InRaggedLeft , /∗ In ragged left paragraph ∗/
InPreformattedTable , /∗ In preformatted table ∗/
PossibleChapterNumber , /∗ Centred text which may be chapter number ∗/
InCentred , /∗ In centred text ∗/
ChapterNumber , /∗ Chapter number ∗/
ChapterMarker , /∗ Marker after chapter number ∗/
ChapterName , /∗ Chapter name ∗/
EndOfParagraph , /∗ End of paragraph pseudo-marker ∗/
EndOfText /∗ End of text pseudo-marker ∗/

};
See also sections 49, 50, 146, 149, 154, 155, and 156.

This code is used in section 6.

49. Each of the syntactic elements recognised by the parser are output to the component downstream
with brackets which mark the beginning, body, and end of each element. The Begin and End markers are
send with the state code identifying the element but no text. If an element such as the title or author is
omitted, a Void record is output to indicate its absence.
〈Global variables 48 〉 +≡

static const char Begin = ’{’, /∗ Structure nesting flags ∗/
Body = ’ ’, End = ’}’, Void = ’−’;

50. For debugging, it’s nice to be able to dump the parser states (particularly those with which lines
emitted by the parser are tagged). Strings in the following table correspond to the states in bodyState and
are used by the parserDiagnosticFilter to generate its output.
〈Global variables 48 〉 +≡

static string const stateNames [] = {"Begin text", "B4 Title", "Declarations", "Poss Title",
"Title mark", "Title", "Author", "Par break", "Text", "Blockquote", "Rag right",
"Rag left", "Table", "Poss Chap", "Centred", "Chap num", "Chap mark", "Chap name",
"End para", "End text"};

§51 ETSET STRIP SPECIAL COMMANDS FILTER 37

51. Strip special commands filter.
This filter scans its input for special commands (identified by the etextBodyParserFilter :: isLineSpecial

function) and removes them from the stream passed down the pipeline. If removal of special commands would
result in two consecutive blank lines in the output, the extra blank line is also elided. This filter assumes
that its input contains no tab characters nor trailing white space (and hence that any blank line is a zero
length string).
〈Class definitions 8 〉 +≡

class stripSpecialCommandsFilter : public textFilter {
private:

bool lastBlank , lastStripped ;
public:

stripSpecialCommandsFilter()
{

lastBlank = lastStripped = false ;
}
string componentName (void)
{

return "stripSpecialCommandsFilter";
}
void put (string s)
{

if (etextBodyParserFilter :: isLineSpecial (s)) {
lastStripped = true ;

}
else {

if (s.length () > 0) {
emit (s);
lastStripped = lastBlank = false ;

}
else {

if (lastStripped) {
if (¬lastBlank) {

emit (s);
}
lastStripped = false ;
lastBlank = true ;

}
else {

emit (s);
lastBlank = true ;

}
}

}
}

};

38 AUDIT FILTER ETSET §52

52. Audit filter.
The auditFilter performs a variety of tests on lines which pass through it. The tests are selected by a

bit mask of audit criteria passed to the constructor or set by setAuditCriteria (the default is to enable all
tests). The auditFilter passes input unchanged to the component downstream. Error messages are written
to an ostream log which defaults to cerr . For complete generality, this should probably be replaced with a
textComponent transforming auditFilter into a squid.
〈Class definitions 8 〉 +≡

class auditFilter : public textFilter {
public:

enum audit criteria {
trailing blanks = 1, embedded tabs = 2, exceeds maximum length = 4, invalid characters = 8,

dubious justification = 16, improper embedded blanks = 32, consecutive blank lines = 64,
special commands present = 128, permit 8 bit ISO characters = 256, trailing hyphen = 512,
everything = ∼0

};
private:

static const int DefaultCentringTolerance = 2; /∗ If you’re picky, you can set this to 1 ∗/
unsigned int maxLineLength ;
ostream ∗log ;
bool lastBlank ;
bool inTable ;
enum audit criteria check ;
int centringTolerance ;

public:
string componentName (void)
{

return "auditFilter";
}
void setMaxLength (unsigned int maxlen)
{

maxLineLength = maxlen ;
}
void setLogStream (ostream &s)
{

log = &s;
}
void setAuditCriteria (int check for)
{

check = (audit criteria) check for ;
}
audit criteria getAuditCriteria (void)
{

return check ;
}
void enableAuditCriteria (int check for)
{

check = (audit criteria)(check | check for);
}
void disableAuditCriteria (int check for)
{

§52 ETSET AUDIT FILTER 39

check = (audit criteria)(check & (∼check for));
}
void setCentringTolerance (int ct = DefaultCentringTolerance)
{

centringTolerance = ct ;
}
int getCentringTolerance (void)
{

return centringTolerance ;
}
auditFilter(unsigned int maxlen = FormatWidth ,ostream &os = cerr ,audit criteria

check for = everything)
{

setMaxLength (maxlen);
setLogStream (os);
lastBlank = false ;
inTable = false ;
setAuditCriteria (check for);
setCentringTolerance ();

}
static bool isCharacterPermissible (unsigned int c);
static string quoteArbitraryString (string s);
static bool isISOletter (int c)
{

assert ((c ≥ 0) ∧ (c ≤ #FF));
return ((c ≥ ’A’) ∧ (c ≤ ’Z’)) ∨ ((c ≥ ’a’) ∧ (c ≤ ’z’)) ∨ ((c ≥ #C0) ∧ (c ≤ #D6)) ∨ ((c ≥

#D8) ∧ (c ≤ #F6)) ∨ (c ≥ #F8);
}
void put (string s)
{

unsigned int i, n;
bool err = false ;
const string sentenceEnd = ".?!\"\’";
bodyState lclass ;
bool special = etextBodyParserFilter :: isLineSpecial (s);
〈Check for line with trailing white space 53 〉;
〈Check for line with trailing hyphen 54 〉;
〈Check for line with embedded tab characters 55 〉;
〈Check for line that exceeds maximum text length 57 〉;
〈Check for invalid characters in text 58 〉;
〈Check for justification-related problems 59 〉;
〈Check for line with improper embedded white space 56 〉;
〈Check for consecutive blank lines 60 〉;
〈Check for special commands present 61 〉;
if (err) {

issueMessage (quoteArbitraryString (s), ∗log);
}
emit (s);

}
};

40 AUDIT FILTER ETSET §53

53. In the interest of visual fidelity as well as minimising file size, we don’t want to include any lines with
nugatory white space between the last printable character and the end of line. If any have crept in, generate
a warning.
〈Check for line with trailing white space 53 〉 ≡

if (check & trailing blanks) {
int j;
n = 0;
for (j = s.length ()− 1; j ≥ 0; j−−) {

if (¬isspace (s[j])) {
break;

}
n++;

}
if (n > 0) {

ostringstream em ;
em � "Line contains " � n � " white space character" � (n ≡ 1 ? "" : "s") �

" at the end.";
issueMessage (em .str (), ∗log);
err = true ;

}
}

This code is cited in section 158.

This code is used in section 52.

54. One common problem in scanned documents is hyphenated lines which were not joined in the editing
phase. This check attempts to detect such lines. We only issue the warning if the character that precedes the
hyphen is alphabetic (including ISO accented letters), as trailing em-dashes and minus signs in mathematics
are perfectly valid.
〈Check for line with trailing hyphen 54 〉 ≡

if (check & trailing hyphen) {
if ((s.length () ≥ 2) ∧ (s[s.length ()− 1] ≡ ’−’)) {

int p = s[s.length ()− 2] & #FF;
if (isISOletter (p)) {

ostringstream em ;
em � "Line contains an apparent hyphen at the end.";
issueMessage (em .str (), ∗log);
err = true ;

}
}

}
This code is used in section 52.

§55 ETSET AUDIT FILTER 41

55. By the time we audit the text, any tab characters which may have appeared in the input should have
been expanded to spaces. Tab characters presume tab stop settings which, while usually defaulting to 8
characters, are nowhere specified in a standard. Leaving tabs in an Etext runs the risk that carefully-aligned
material may be scrambled if viewed on a system with different tab stops. Here we verify that no tabs
remain. Note that a tab will also fail 〈Check for invalid characters in text 58 〉, but making a special check
here makes the diagnostic for this common case more comprehensible.
〈Check for line with embedded tab characters 55 〉 ≡

if (check & embedded tabs) {
if ((i = s.find (’\t’)) 6= string ::npos) {

for (; i < s.length (); i++) {
if (s[i] ≡ ’\t’) {

ostringstream em ;
em � "Line contains tab character in column " � (i + 1) � ".";
issueMessage (em .str (), ∗log);
err = true ;

}
}

}
}

This code is used in section 52.

42 AUDIT FILTER ETSET §56

56. Lines should not have more than one space between words except after sentence-ending punctuation.
Such lines may result from attempts to justify text by adding space, and may be propagated even if the text
is re-aligned. Within a preformatted table embedded spaces are allowed and this test is skipped.
〈Check for line with improper embedded white space 56 〉 ≡

if ((check & improper embedded blanks) ∧ (¬inTable) ∧ (¬special)) {
i = s.find first not of (’ ’); /∗ Ignore leading spaces ∗/
if (i 6= string ::npos) {

while ((i = s.find (" ", i)) 6= string ::npos) {
if ((i > 0) ∧ (sentenceEnd .find (s[i− 1]) 6= string ::npos)) {

if (s.substr (i + 2, 1) ≡ " ") {
ostringstream em ;
em � "Line contains extra embedded space after sentence end in column " �

(i + 1) � ".";
issueMessage (em .str (), ∗log);
err = true ;
i += 3;

}
else {

i += 2;
}

}
else {

ostringstream em ;
em � "Line contains extra embedded space in column " � (i + 1) � ".";
issueMessage (em .str (), ∗log);
err = true ;
i += 2;

}
}

}
}

This code is used in section 52.

57. In the interest of human readability we restrict the maximum length of text lines in the document to
maxLineLength characters. If the line exceeds that limit, issue a warning. Note that we’ve already tested for
lines which still contain embedded tab characters or trailing white space at this point. Special commands
are exempted from this check.
〈Check for line that exceeds maximum text length 57 〉 ≡

if ((check & exceeds maximum length) ∧ (¬special) ∧ (s.length () > maxLineLength)) {
ostringstream em ;
em � "Line (length " � s.length () � ") exceeds maximum of " � maxLineLength �

" characters.";
issueMessage (em .str (), ∗log);
err = true ;

}
This code is used in section 52.

§58 ETSET AUDIT FILTER 43

58. Scan the text line to ensure it contains no impermissible characters as defined by isCharacterPermissible .
One little detail: if we’re explicitly checking for embedded tabs , there’s no need to report them a second time
as invalid characters. Finally, if permit 8 bit ISO characters is not set, we require the input to consist of
exclusively 7-bit ASCII characters; ISO characters are reported as errors in this mode.
〈Check for invalid characters in text 58 〉 ≡

if (check & invalid characters) {
for (i = 0; i < s.length (); i++) {

if ((¬isCharacterPermissible (s[i]))∨(((¬(check &permit 8 bit ISO characters))∧((s[i]&#FF) ≥ 127))))
{
if ((s[i] 6= ’\t’) ∨ (¬(check & embedded tabs))) {

ostringstream em ;
em � "Invalid character 0x" � hex � (s[i]&#FF) � dec � " in column " � (i+1) � ".";
issueMessage (em .str (), ∗log);
err = true ;

}
}

}
}

This code is cited in section 55.

This code is used in section 52.

59. Use the “heuristic justification” classifier of the etextBodyParserFilter to evaluate the line, then
verify if the actual content of the line is consistent with its evaluation. We also keep track of whether we’re
currently in a preformatted table, within which embedded spaces are permitted. The test for “dubious
centred lines” catches a multitude of sins, in particular ragged right, block quote, and ragged left lines which
do not start or end in the prescribed columns. Special commands are exempted from this check.
〈Check for justification-related problems 59 〉 ≡

if ((check & dubious justification) ∧ ¬special) {
lclass = etextBodyParserFilter ::classifyLine (s);
if (lclass ≡ InPreformattedTable) {

inTable = true ;
}
else if (lclass ≡ BetweenParagraphs) {

inTable = false ; /∗ Only blank line ends table ∗/
}
else if (¬inTable ∧ (lclass ≡ InCentred)) {

int l, r;
l = s.find first not of (’ ’); /∗ Number of leading spaces ∗/
r = maxLineLength − s.length (); /∗ Number of (virtual) trailing spaces ∗/
if (Iabs (l − r) > centringTolerance) {

ostringstream em ;
em � "Dubious centred line. " � l � " spaces at left, " � r � " spaces at right.";
issueMessage (em .str (), ∗log);
err = true ;

}
}

}
This code is used in section 52.

44 AUDIT FILTER ETSET §60

60. There’s no reason for more than one consecutive blank line to appear in the text. Multiple consecutive
blank lines are most likely editing errors which would render the raw text less readable.
〈Check for consecutive blank lines 60 〉 ≡

if (check & consecutive blank lines) {
if (s.find first not of (’ ’) ≡ string ::npos) {

if (lastBlank) {
issueMessage ("This and previous line are both blank.", ∗log);
err = true ;

}
lastBlank = true ;

}
else {

lastBlank = false ;
}

}
This code is used in section 52.

61. Output format specific Special commands are included in Etexts to facilitate the production of pub-
lished editions in various formats and media, but should be removed prior to distribution of an Etext in “Plain
ASCII” form. (This can be accomplished by passing the Etext through the stripSpecialCommandsFilter.)
This test detects specials inadvertently left in an Etext intended for publication.
〈Check for special commands present 61 〉 ≡

if ((check & special commands present) ∧ special) {
issueMessage ("Special command present in text.", ∗log);
err = true ;

}
This code is used in section 52.

62. The body of an Etext must contain nothing other than the ISO-8859/1 printable characters, blanks,
and end of line delimiters. You’d think this wouldn’t be a problem, but thanks to Microsoft’s little collection
of incompatible horrors jammed right in the middle of the ISO (and Unicode) 8 bit control set, plus editors
who amuse themselves by jamming form feeds, vertical tabs, etc. into documents, it pays to be sure, since
treating any such nonsense as legitimate text characters may lead to disaster downstream.

The following static helper function determines if its character argument is permissible in Etext body
copy. At the time this function is called we assume that any trailing white space including end of line
sequences has been deleted and that horizontal tabs have been expanded to spaces. Placing trimFilter and
tabExpanderFilter in the pipeline before auditFilter will guarantee these criteria are met.
〈Class definitions 8 〉 +≡

bool auditFilter :: isCharacterPermissible (unsigned int c)
{

if (c < ’ ’) {
return false ; /∗ ASCII control characters not permitted ∗/

}
if (c ≥ 127 ∧ c < 161) {

return false ; /∗ DEL, ISO control characters, or non-breaking space prohibited ∗/
}
return true ;

}

§63 ETSET AUDIT FILTER 45

63. When issuing an error message for a string which may contain invalid and/or non-printing characters,
we need to quote those characters so they’re apparent. This function takes a string containing arbitrary 8
bit characters and returns a string in which all characters other than ASCII and ISO graphics are quoted as
C hexadecimal escapes.
〈Class definitions 8 〉 +≡

string auditFilter ::quoteArbitraryString (string s)
{

string o = "";
string :: iterator cp ;
unsigned int c;
for (cp = s.begin (); cp < s.end (); cp ++) {

c = (∗cp) & #FF;
if (isCharacterPermissible (c)) {

if ((c ≡ ’ ’) ∧ (s.find first not of (’ ’, (cp + 1)− s.begin ()) ≡ string ::npos)) {
o += "\\x20";

}
else {

o += c;
}

}
else {

ostringstream eh ;
eh � "\\x" � hex � setw (2) � setfill (’0’) � c;
o += eh .str ();

}
}
return o;

}

64. Parser diagnostic filter.
This filter processes the body of an Etext (if the source document contains a prologue and epilogue, this

filter should be placed downstream of a sectionSeparatorSquid), identifying components in the text and
passing them down the pipeline tagged with their type. The body parser is implemented as a state machine,
driven by the lines of body copy if receives through its put method.
〈Class definitions 8 〉 +≡

class parserDiagnosticFilter : public textFilter {
private:

public:
string componentName (void)
{

return "parserDiagnosticFilter";
}
void put (string s)
{

bodyState rtype = DecodeBodyState (s[0]);
string spaces = " ", stateName = "";
stateName += stateNames [rtype];
emit (s.substr (1, 1) + " " + stateName + spaces .substr (0, 12− stateName .length ()) + s.substr (2));

}
};

46 UTILITIES ETSET §65

65. Utilities.
The following are not full-fledged pipeline components, but rather utilities which provide services to text

processing components.

66. Text substituter.
The textSubstituter performs replacement of substrings in text with defined substitutes.

〈Class definitions 8 〉 +≡
class textSubstituter {
private:

deque〈string〉 fromString ;
deque〈string〉 toString ;

public:
void addSubstitution (string from , string to)
{

fromString .push back (from);
toString .push back (to);

}
string substitute (string s);

};

67. The substitute method applies all of the substiutution rules of the textSubstituter to its argument
string and returns the result. Note that substitutions are not re-scanned, and hence cannot result in infinite
expansion loops.
〈Class definitions 8 〉 +≡

string textSubstituter ::substitute (string s)
{

deque〈string〉 :: iterator f = fromString .begin ();
deque〈string〉 :: iterator t = toString .begin ();
string o = s;
while (f 6= fromString .end ()) {

unsigned int i = 0, n;
while ((n = o.find (∗f, i)) 6= string ::npos) {

o.replace (n, f~ length (), ∗t);
i = n + t~ length ();

}
f ++;
t++;

}
return o;

}

§68 ETSET LATEX GENERATION 47

68. LaTeX Generation.
This filter translates parsed body copy (emitted by etextBodyParser) into LATEX source code, which it

passes down the pipeline.
〈Class definitions 8 〉 +≡

class LaTeXGenerationFilter : public textFilter {
private:

bool italics , inmath , quoth , hastitle , hasauthor , intable , firstchap ;
int footnest ;
textSubstituter transformer ;
string quoteLaTeXString (string s);
void emitq (string s)
{

emit (quoteLaTeXString (s));
}
void generateAlignedParagraph (string envtype , char bracket , string text , string

terminator = "\\\\");
bool isSubstitution (string s);

public:
LaTeXGenerationFilter()
{

italics = inmath = quoth = false ;
hastitle = hasauthor = false ;
intable = firstchap = false ;
footnest = 0;

}
virtual ∼LaTeXGenerationFilter()
{ }
string componentName (void)
{

return "LaTeXGenerationFilter";
}
void put (string s);

};

48 LATEX GENERATION ETSET §69

69. The put method of the LaTeXGenerationFilter wraps LATEX commands around the line-level structure
of the text to achieve the desired formatting. Since almost all of the real work is done upstream (by
etextBodyParserFilter) and downstream (by quoteLaTeXString) there is actually little that needs doing
here.
〈Class definitions 8 〉 +≡

void LaTeXGenerationFilter ::put (string s)
{

bodyState state = DecodeBodyState (s[0]);
char bracket = s[1];
string text = s.substr (2);
switch (state) {
case BeginText : 〈Generate start of document in LaTeX 70 〉;
case Declarations : 〈Process declarations in LaTeX 71 〉;
case DocumentTitle : 〈Process document title in LaTeX 72 〉;
case Author : 〈Process author in LaTeX 73 〉;
case ChapterNumber : break; /∗ Chapter numbers are totally ignored ∗/
case ChapterName : 〈Process chapter name in LaTeX 74 〉;
case InTextParagraph : 〈Generate justified text paragraph in LaTeX 75 〉;
case InBlockQuote : generateAlignedParagraph ("quote", bracket , text , "");

break;
case InRaggedRight : generateAlignedParagraph ("flushleft", bracket , text);

break;
case InRaggedLeft : generateAlignedParagraph ("flushright", bracket , text);

break;
case InPreformattedTable :

if (bracket ≡ Begin) {
intable = true ;

}
generateAlignedParagraph ("verbatim", bracket , text , "");
if (bracket ≡ End) {

intable = false ;
}
break;

case InCentred : generateAlignedParagraph ("center", bracket , text);
break;

case EndOfText : emit ("\\end{document}");
if (verbose) {

cerr � "LaTeX: " � getLineNumber () � " lines output.\n";
}
break;

default: cerr � "*** State " � stateNames [state] � " " � bracket �
" not handled in LaTeXGenerationFilter ***\n";

exit (1);
}

}

§70 ETSET LATEX GENERATION 49

70. Generate the boilerplate at the start of a LATEX document and declarations appropriate for the type
of document we’re about to write.
〈Generate start of document in LaTeX 70 〉 ≡

emit ("\\documentclass{book}");
{

time t t = time (Λ);
string stime = ctime (&t);
stime = stime .substr (0, stime .length ()− 1);
emit ("% Translated by "PRODUCT" "VERSION" ("REVDATE") on " + stime);

}
if (babelon) {

emit ("\\usepackage[" + babelang + "]{babel}");
emit ("\\usepackage[latin1]{inputenc}");
emit ("\\usepackage[T1]{fontenc}");

}
else {

if (frenchPunct) {
emit ("\\frenchspacing");

}
}
break;

This code is used in section 69.

71. Any LATEX-specific special commands appearing in declaration blocks before the title are output in
the preamble of the document where they may load packages and/or make definitions in global scope.
〈Process declarations in LaTeX 71 〉 ≡

if (bracket ≡ Body) {
assert (etextBodyParserFilter :: isLineSpecial (text));
if (¬isSubstitution (text)) {

emit (etextBodyParserFilter ::specialCommand (text));
}

}
break;

This code is used in section 69.

72. For the document title we need only wrap it in a LATEX title declaration in the preamble and set
hastitle to remind us to emit a maketitle command at the start of the document body.
〈Process document title in LaTeX 72 〉 ≡

switch (bracket) {
case Begin : emit ("\\title{");

break;
case Body : emitq (text);

break;
case End : emit ("}");

hastitle = true ;
break;

case Void : hastitle = false ;
break;

}
break;

This code is used in section 69.

50 LATEX GENERATION ETSET §73

73. Similarly, the author is wrapped in a LATEX author declaration in the preamble. When we see the
End bracket for the author specification (or the Void bracket if no author is given), it’s time to close the
preamble and begin the body of the document. If either a title or author were specified, we then need to emit
a maketitle command to create the title. Since maketitle requires both a title and author declaration, if
either is missing we supply a blank one before closing the preamble.
〈Process author in LaTeX 73 〉 ≡

switch (bracket) {
case Begin : emit ("\\author{");

break;
case Body : emitq (text);

break;
case End : emit ("}");

hasauthor = true ;
/∗ Note fall-through ∗/

case Void :
if (hastitle ∨ hasauthor) {

if (¬hastitle) {
emit ("\\title{}");

}
if (¬hasauthor) {

emit ("\\author{}");
}

}
emit ("\\begin{document}");
if (hastitle ∨ hasauthor) {

emit ("\\maketitle");
}
break;

}
break;

This code is used in section 69.

§74 ETSET LATEX GENERATION 51

74. Chapter names cause a chapter command to be generated with the chapter title as its argument.
Void chapter names generate chapters with blank titles.
〈Process chapter name in LaTeX 74 〉 ≡

switch (bracket) {
case Begin :

if (¬firstchap) {
firstchap = true ;
emit ("\\tableofcontents");

}
emit ("\\chapter{");
break;

case Body : emitq (text);
break;

case End : emit ("}");
break;

case Void : emit ("\\chapter{}");
break;

}
break;

This code is used in section 69.

75. Regular justified text paragraphs don’t need any special wrapper, as they’re the default in LATEX. We
output a blank line before the first line of the body to break the previous paragraph and reset the quote
parity so the first ASCII quote in the paragraph will be turned into an open quote.
〈Generate justified text paragraph in LaTeX 75 〉 ≡

switch (bracket) {
case Begin : emit ("");

quoth = false ;
break;

case Body :
if (etextBodyParserFilter :: isLineSpecial (text)) {

if (¬isSubstitution (text)) {
emit (etextBodyParserFilter ::specialCommand (text));

}
}
else {

emitq (text);
}
break;

case End : case Void : break;
}
break;

This code is used in section 69.

52 LATEX GENERATION ETSET §76

76. This function handles the various kinds of aligned paragraphs we encounter in a document. It wraps
the contents of the paragraph in a LATEX environment of the type specified by envtype .
〈Class definitions 8 〉 +≡

void LaTeXGenerationFilter ::generateAlignedParagraph (string envtype , char bracket , string
text , string terminator)

{
switch (bracket) {
case Begin : emit ("");

emit ("\\begin{" + envtype + "}");
quoth = false ;
break;

case Body :
if (etextBodyParserFilter :: isLineSpecial (text)) {

if (¬isSubstitution (text)) {
emit (etextBodyParserFilter ::specialCommand (text));

}
}
else {

emit (quoteLaTeXString (text) + terminator);
}
break;

case End : emit ("\\end{" + envtype + "}");
break;

case Void : break;
}

}

§77 ETSET LATEX GENERATION 53

77. Translate text string s into LATEX, quoting metacharacters and expanding Latin-1 characters as
required. This is where we handle switching to and from math mode, toggling italic, expanding ellipses and
em-dashes, and recognising footnotes.
〈Class definitions 8 〉 +≡

string LaTeXGenerationFilter ::quoteLaTeXString (string s)
{

string :: iterator cp ;
string o = "";
int c;
static const string mathModeQuoted = "|<>", punctuation = "?!:;",

/∗ Punctuation set after space for frenchPunct ∗/
quotedCharacters = "$&%#", quotedTextCharacters = "{}";
for (cp = s.begin (); cp < s.end (); cp ++) {

c = (∗cp) & #FF;
if (c < ’ ’) {
〈Quote control character in LaTeX 78 〉;

}
else if (c > 160) {
〈Translate ISO graphic character in LaTeX 79 〉;

}
else if (c ≥ ’ ’ ∧ c ≤ ’~’) {

if (¬inmath ∧ ¬intable ∧ c ≡ ’_’) {
〈Toggle italic text mode in LaTeX 80 〉;

}
else if (¬intable ∧ c ≡ ’\\’ ∧ ((cp + 1) < s.end ()) ∧ ((cp [1] ≡ ’(’) ∨ (cp [1] ≡ ’)’))) {
〈Toggle math mode in LaTeX 81 〉;

}
else if (¬inmath ∧ ¬intable ∧ ((cp + 2) < s.end ()) ∧ ((c ≡ ’[’) ∨ ((c ≡ ’ ’) ∧ (cp [1] ≡

’[’)) ∨ ((c ≡ ’ ’) ∧ (cp [1] ≡ ’ ’) ∧ (cp [2] ≡ ’[’)))) {
〈Begin footnote in LaTeX 82 〉;

}
else if (¬inmath ∧ ¬intable ∧ c ≡ ’]’) {
〈End footnote in LaTeX 83 〉;

}
else if (¬inmath ∧ ¬intable ∧ (c ≡ ’−’) ∧ ((cp + 1) < s.end ()) ∧ (cp [1] ≡ ’−’)) {
〈Translate em-dash in LaTeX 84 〉;

}
else if (¬inmath ∧ ¬intable ∧ (c ≡ ’.’) ∧ ((cp + 2) < s.end ()) ∧ (cp [1] ≡ ’.’) ∧ (cp [2] ≡ ’.’)) {
〈Translate ellipsis in LaTeX 85 〉;

}
else if (¬intable ∧ ((c ≡ ’~’) ∨ ((¬inmath) ∧ (c ≡ ’^’)))) {
〈Quote ASCII character as verbatim in LaTeX 86 〉;

}
else if ((¬inmath ∧ ¬intable) ∧ (mathModeQuoted .find first of (c) 6= string ::npos)) {
〈Quote character as math mode in LaTeX 87 〉;

}
else if (¬inmath ∧ ¬intable ∧ c ≡ ’"’) {
〈Convert ASCII quotes to open and close quotes in LaTeX 88 〉;

}
else {
〈Output ASCII text character in LaTeX 89 〉;

}

54 LATEX GENERATION ETSET §77

} /∗ Note that other characters, specifically those in the range from 127 through 160, get
dropped. ∗/

}
o = transformer .substitute (o); /∗ Apply substitutions, if any ∗/
return o;

}

78. This is a control character. Emit as ^letter unless it is considered as white space (for example, carriage
return and line feed), in which case it’s sent directly to the output.
〈Quote control character in LaTeX 78 〉 ≡

if (isspace (c)) {
o += c;

}
else {

o += "\\verb+^";
o += (’@’ + c);
o += ’+’;

}
This code is used in section 77.

79. This is a graphic character belonging to the ISO 8859 set with character codes between #A0 and #FF.
Translate it into the best LATEX equivalent or pass it on to be handled by the babel package if babelon is
set.
〈Translate ISO graphic character in LaTeX 79 〉 ≡

if (babelon) {
o += c;

}
else {

o += texform [c− 161];
}

This code is used in section 77.

80. The underscore character, “_”, toggles text between the normal roman and italic fonts.
〈Toggle italic text mode in LaTeX 80 〉 ≡

italics = ¬italics ;
if (italics) {

o += "{\\it ";
}
else {

o += "}";
}

This code is used in section 77.

81. We use the same sequences as LATEX, “\(” and “\)”, to toggle between text and math mode, so we
can simply emit the sequence unmodifed. We need to take note of it, however, to keep track of whether
we’re in math mode as that affects handling of some other sequences.
〈Toggle math mode in LaTeX 81 〉 ≡

o += c;
inmath = cp [1] ≡ ’(’;

This code is used in section 77.

§82 ETSET LATEX GENERATION 55

82. Footnotes appear in-line, within [square brackets]. Translate them to a LATEX footnote environment.
Footnotes aren’t supposed to be nested in Etexts, but LATEX handles them just fine.
〈Begin footnote in LaTeX 82 〉 ≡

footnest ++;
o += "\\footnote{";
if ((c ≡ ’ ’) ∧ ((cp + 1) < s.end ())) {

if (cp [1] ≡ ’ ’) {
cp ++;

}
cp ++;

}
This code is used in section 77.

83. Close a footnote when the right bracket is encountered.
〈End footnote in LaTeX 83 〉 ≡

o += ’}’;
if (footnest ≡ 0) {

issueMessage ("Mismatched end of footnote (\"]\") bracket.");
}
else {

footnest −−;
}

This code is used in section 77.

84. Two adjacent hyphens, “−−” denote an em dash in an ASCII Etext. Translate this sequence into
three hyphens as used by LATEX.
〈Translate em-dash in LaTeX 84 〉 ≡

o += "−−−";
cp ++;

This code is used in section 77.

85. Three consecutive periods are translated into a \ldots ellipsis.
〈Translate ellipsis in LaTeX 85 〉 ≡

o += "\\ldots";
if (cp [2] ≡ ’ ’) {

o += " ";
}
else {

o += "\\ ";
}
cp += 2;

This code is used in section 77.

86. This code handles tilde and circumflex characters (the latter only when not in math mode), which
must be quoted in a \verb sequence to appear in text.
〈Quote ASCII character as verbatim in LaTeX 86 〉 ≡

o += "\\verb+";
o += c;
o += ’+’;

This code is used in section 77.

56 LATEX GENERATION ETSET §87

87. The greater, less, and vertical bar symbols cannot appear in regular text in LATEX; output them in
math mode.
〈Quote character as math mode in LaTeX 87 〉 ≡

o += ’$’;
o += c;
o += ’$’;

This code is used in section 77.

88. ASCII quote characters are translated into open and close quote symbols. Note that the flag quoth is
unconditionally reset at the end of a paragraph so mismatched quotes won’t propagate beyond one paragraph.
This allows continued quotes in multiple paragraphs to work properly.
〈Convert ASCII quotes to open and close quotes in LaTeX 88 〉 ≡

o += quoth ? "’’" : "‘‘";
quoth = ¬quoth ;

This code is used in section 77.

89. Output a text character. Some LATEX metacharacters require backslash quoting in any mode, others
only outside math mode.
〈Output ASCII text character in LaTeX 89 〉 ≡

if (¬inmath ∧ frenchPunct ∧ (punctuation .find first of (c) 6= string ::npos) ∧ (((cp + 1) ≡ s.end ()) ∨
isspace (cp [1]) ∨ ((cp [1] & #FF) ≡ C_RIGHT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK) ∨ (cp [1] ≡
’,’))) {

o += "{\\small~}";
o += c;

}
else { /∗ Characters requiring protection against interpretation as control sequences. ∗/

if (quotedCharacters .find first of (c) 6= string ::npos) {
o += ’\\’;

}
if (¬inmath ∧ (quotedTextCharacters .find first of (c) 6= string ::npos)) {

o += ’\\’;
}
o += c;

}
This code is used in section 77.

§90 ETSET LATEX GENERATION 57

90. Special commands which define text substitutions are recognised by this method, parsed, and added
to the substitution list.
〈Class definitions 8 〉 +≡

bool LaTeXGenerationFilter :: isSubstitution (string cmd)
{

string s = etextBodyParserFilter ::specialCommand (cmd);
bool isSub = false , bogus = true ;
unsigned int n, m, l;
char delim ;
if (s.find ("Substitute ") ≡ 0) {

isSub = true ;
s = s.substr (11);
n = s.find first not of (’ ’);
if (n 6= string ::npos) {

delim = s[n];
m = s.find (delim , n + 1);
if (m 6= string ::npos) {

l = s.find (delim ,m + 1);
if (l 6= string ::npos) {

bogus = false ;
transformer .addSubstitution (s.substr (n + 1, (m− n)− 1), s.substr (m + 1, (l −m)− 1));

}
}

}
if (bogus) {

issueMessage ("Invalid LaTeX Substitute special", cerr);
issueMessage (auditFilter ::quoteArbitraryString (cmd), cerr);

}
}
return isSub ;

}

58 HTML GENERATION ETSET §91

91. HTML Generation.
This sink translates parsed body copy (emitted by etextBodyParser) into HTML. An index document is

written, which contains links to the individual chapters which, in turn, link to one another and an additional
document containing any footnotes. When the sink is created, it must be passed the basename used to
generate the names for these files; the basename may not be “−” denoting standard output.

HTML generation is a sink (or, more precisely, a variable-tentacled squid with built-in sinks for each)
because, unless instantiated with the singleFile option, it generates an index file, a file for each chapter, and
a footnote file if needed. Since there’s no way to know which files will be needed prior to processing
the text, higher level code can’t be expected to create a forked pipeline to write all these files. So,
HTMLGenerationSink simply consumes the parsed document body it receives and creates whatever files
are required to build an HTML document from the text on the fly.
〈Class definitions 8 〉 +≡

class HTMLGenerationSink : public textSink {
private:

static const int defaultFootnotePad = 60; /∗ Default blank lines between footnotes ∗/
bool italics , inmath , infoot , firstchap , hastitle , hasauthor ;
string basename ; /∗ Document base name ∗/
string stime ; /∗ Processing date and time for comment ∗/
string indexFileName ; /∗ Index (or main document if singleFile name ∗/
ofstream ∗index ; /∗ Index output stream ∗/
ofstream ∗chap ; /∗ Chapter output stream ∗/
ofstream ∗foot ; /∗ Footnote output stream ∗/
string htitle ; /∗ HTML <title> of document ∗/
string hauthor ; /∗ Author of document ∗/
int chapno ; /∗ Chapter index (1 · · ·n) ∗/
string chapnumber ; /∗ Chapter number from text ∗/
string chapname ; /∗ Chapter name ∗/
string qchapnumber , qchapname ; /∗ Chapter number and name in queue ∗/
string chtitle ; /∗ Generated HTML title for chapter document ∗/
bool singleFile ; /∗ Make one HTML file for entire document ∗/
string footdocname ; /∗ Footnote document name ∗/
int footnum ; /∗ Footnote number ∗/
int footnest ; /∗ Footnote nesting level ∗/
bool fitalics ; /∗ Save italic mode while processing footnote ∗/
bool breakPending ; /∗ Float-clearing break pending ? ∗/
int footnotePad ; /∗ Footnote pad lines ∗/
queue〈string〉 chapterCache ; /∗ Pending chapter cache ∗/
int indexline , chapline , footline ; /∗ Index, chapter, and footnote line counters ∗/
deque〈string〉 declarationsQueue ; /∗ HTML special declarations ∗/
string quoteHTMLString (string s);
string translateHTMLString (string t);
void emitq (string s)
{

emit (translateHTMLString (s));
}
void generateAlignedParagraph (string alignment , char bracket , string text , string

terminator = "
");
void writeHTMLDocumentPreamble (ostream &os , string title , int ∗lineCounter);
void writeHTMLDocumentBodyStart (ostream &os , string title , int ∗lineCounter);
void writeHTMLDocumentPostamble (ostream &os , int ∗lineCounter);
static void createNavButton (string button , const unsigned char source [], int length);

§91 ETSET HTML GENERATION 59

static void createNavButtons (void);
void createNavigationPanel (int prev , int next ,bool inParagraph = true);
virtual void emit (string s, textComponent ∗destination = Λ)
{

if (singleFile) {
∗index � s � "\n";
indexline ++;

}
else {

if (infoot ∨ (chap ≡ Λ)) {
∗(infoot ? foot : index) � s � "\n";
if (infoot) {

footline ++;
}
else {

indexline ++;
}

}
else {

chapterCache .push (s + "\n");
}

}
lineNumber ++;

}
static string pruneIndent (string s)
{

assert (s 6= "");
return s.substr (s.find first not of (’ ’));

}
static string elideNewLines (string s)
{

string o = s;
unsigned int i;
while ((i = o.find (’\n’)) 6= string ::npos) {

o.replace (i, 1, " ");
}
while ((o.length () > 0) ∧ (o[o.length ()− 1] ≡ ’ ’)) {

o = o.substr (0, o.length ()− 1);
}
return o;

}
static unsigned int linesIn (string s)
{ /∗ Count lines in string ∗/

return count (s.begin (), s.end (), ’\n’);
}
void flushBreak (void)
{

if (breakPending) {
emit ("<br clear=\"all\" />");
breakPending = false ;

}

60 HTML GENERATION ETSET §91

}
public:

void setFootnotePad (int fp = defaultFootnotePad)
{

footnotePad = fp ;
}
int getFootnotePad (void)
{

return footnotePad ;
}
HTMLGenerationSink(string bname ,bool make one file = false)
{

time t t = time (Λ);
stime = ctime (&t);
stime = stime .substr (0, stime .length ()− 1);
italics = inmath = infoot = false ;
hastitle = hasauthor = false ;
firstchap = false ;
if (bname ≡ "−") {

cerr � "Cannot write HTML document set to standard output.\n";
exit (1);

}
basename = bname ;
singleFile = make one file ;
index = chap = foot = Λ;
footnum = footnest = 0;
footdocname = "";
setFootnotePad ();
breakPending = false ;
chapno = 0;
indexline = chapline = footline = 0;

}
virtual ∼HTMLGenerationSink()
{ }
string componentName (void)
{

return "HTMLGenerationSink";
}
string getBaseName (void)
{

return basename ;
}
void put (string s);

};

§92 ETSET HTML GENERATION 61

92. The put method of the HTMLGenerationSink wraps HTML tags around the line-level structure
of the text to achieve the desired formatting. Since almost all of the real work is done upstream (by
etextBodyParserFilter) and downstream (by translateHTMLString) there is actually little that needs
doing here.
〈Class definitions 8 〉 +≡

void HTMLGenerationSink ::put (string s)
{

bodyState state = DecodeBodyState (s[0]);
char bracket = s[1];
string text = s.substr (2);
ostringstream efn ;
switch (state) {
case BeginText : indexFileName = basename + ".html";

index = new ofstream(indexFileName .c str (), ios ::out);
break;

case Declarations : 〈Process declarations in HTML 93 〉;
case DocumentTitle : 〈Process document title in HTML 94 〉;
case Author : 〈Process author in HTML 95 〉;
case ChapterNumber : 〈Process chapter number in HTML 97 〉;
case ChapterName : 〈Process chapter name in HTML 98 〉;
case InTextParagraph : generateAlignedParagraph ("justify", bracket , text , "");

break;
case InBlockQuote : generateAlignedParagraph ("quote", bracket , text , "");

break;
case InRaggedRight : generateAlignedParagraph ("left", bracket , text);

break;
case InRaggedLeft : generateAlignedParagraph ("right", bracket , text);

break;
case InPreformattedTable : generateAlignedParagraph ("table", bracket , text , "");

break;
case InCentred : generateAlignedParagraph ("center", bracket , text);

break;
case EndOfText :

if (¬singleFile) {
∗index � "</table>\n";
indexline ++;

}
∗index � "</div>\n";
indexline ++;
writeHTMLDocumentPostamble (∗index ,&indexline);
index~close ();
〈Complete chapter file generation in HTML 101 〉;
if (foot 6= Λ) {
∗foot � "</div>\n";
footline ++;
writeHTMLDocumentPostamble (∗foot ,&footline);
foot~close ();
if (verbose) {

cerr � footdocname � ": " � footline � " lines.\n";
}

}
if (verbose) {

62 HTML GENERATION ETSET §92

cerr � indexFileName � ": " � indexline � " lines.\n";
}
break;

default: cerr � "*** State " � stateNames [state] � " " � bracket �
" not handled in HTMLGenerationSink ***\n";

exit (1);
}

}

93. HTML-specific declarations are saved in declarationsQueue whence they are emitted in the <head>

section of each HTML file generated.
〈Process declarations in HTML 93 〉 ≡

if (bracket ≡ Body) {
assert (etextBodyParserFilter :: isLineSpecial (text));
declarationsQueue .push back (etextBodyParserFilter ::specialCommand (text));

}
break;

This code is used in section 92.

94. When we see the title, we save it in htitle for use in the <title> tag of each of the HTML documents
we generate. Titles may span multiple lines; we concatenate them into a single line in htitle .
〈Process document title in HTML 94 〉 ≡

switch (bracket) {
case Begin : htitle = "";

break;
case Body :

if (htitle 6= "") {
htitle += " ";

}
htitle += quoteHTMLString (pruneIndent (text));
hastitle = true ;
break;

case Void : hastitle = false ;
htitle = "";
break;

}
break;

This code is used in section 92.

§95 ETSET HTML GENERATION 63

95. Once we’ve seen the author or received the Void notification that no author was given, we’re ready to
generate the header for the index document. The author specification may also span multiple lines, which
are concatenated into hauthor .
〈Process author in HTML 95 〉 ≡

switch (bracket) {
case Begin : hauthor = "";

break;
case Body :

if (hauthor 6= "") {
hauthor += " ";

}
hauthor += quoteHTMLString (pruneIndent (text));
break;

case End : hasauthor = true ;
/∗ Note fall-through ∗/

case Void : 〈Generate index document header in HTML 96 〉;
break;

}
break;

This code is used in section 92.

96. The HTML index document is a list of links to the individual chapter documents. Generate the
canned HTML header, the title and author information (if any), and begin the list of chapters.
〈Generate index document header in HTML 96 〉 ≡

writeHTMLDocumentPreamble (∗index , htitle ,&indexline);
writeHTMLDocumentBodyStart (∗index , htitle ,&indexline);
∗index � "<div class=\"bodycopy\">\n";
indexline ++;
if (hastitle) {
∗index � "<h1 align=\"center\">" � translateHTMLString (htitle) � "</h1>\n";
indexline ++;

}
if (hasauthor) {
∗index � "<h2 align=\"center\">" � translateHTMLString (hauthor) � "</h2>\n";
indexline ++;

}
This code is used in section 95.

64 HTML GENERATION ETSET §97

97. We save the chapter number for later use in the index document or chapter titles written in singleFile
mode.
〈Process chapter number in HTML 97 〉 ≡

switch (bracket) {
case Begin : chapnumber = "";

break;
case Body : chapnumber += quoteHTMLString (pruneIndent (text)) + "\n";

break;
case Void : chapnumber = "";

/∗ Note fall-through ∗/
case End : break;
}
break;

This code is used in section 92.

98. Unless singleFile is set, each chapter is written into its own HTML document named basename_chapn.html,
linked to the index document. In singleFile we simply generate a chapter break within the unified document
file.
〈Process chapter name in HTML 98 〉 ≡

switch (bracket) {
case Begin : chapname = "";

break;
case Body : chapname += quoteHTMLString (pruneIndent (text)) + "\n";

break;
case Void : chapname = "";

/∗ Note fall-through ∗/
case End : flushBreak ();

if (singleFile) {
〈Generate chapter title for single file output in HTML 99 〉;

}
else {
〈Generate chapter title for document tree output in HTML 100 〉;

}
break;

}
break;

This code is used in section 92.

§99 ETSET HTML GENERATION 65

99. When a single HTML document is being generated containing all chapters, the chapter break simply
causes the generation of a title within the output document. The title contains the chapter number and
chapter name given in the chapter break sequence with, if both are given, a horizontal rule separating them.
If a chapter break specifies neither a chapter number nor title, only the horizontal rule is generated, while if
only a number or title appear, no rule is output.
〈Generate chapter title for single file output in HTML 99 〉 ≡
∗index � "<h2 align=\"center\" style=\"margin−left: 5%; margin−right: 5%;\">\n";
indexline ++;
if (chapnumber 6= "") {
∗index � translateHTMLString (chapnumber);
indexline += linesIn (chapnumber);

}
if (((chapname 6= "") ∨ (chapname 6= "")) ∨ ((chapname ≡ "") ∧ (chapname ≡ ""))) {
∗index � "</h2>\n";
∗index � "<hr width=\"25%\" size=\"2\" noshade=\"noshade\" />\n";
∗index � "<h2 align=\"center\" style=\"margin−left: 5%; margin−right: 5%;\">\n";
indexline ++;

}
if (chapname 6= "") {
∗index � translateHTMLString (chapname);
indexline += linesIn (chapname);

}
∗index � "</h2>\n";
indexline ++;

This code is used in section 98.

66 HTML GENERATION ETSET §100

100. When generating a multiple-file HTML document tree from an Etext, one chapter per file, a chapter
break is understandably more of an event. We need to close out the last chapter (if any), open a new HTML
document for the new chapter, add an index entry pointing to it in the index document, and crank out
the HTML preamble boilerplate and chapter title for the next chapter. If this is the first chapter mark, we
create the GIF files used as the navigation buttons in the chapter documents.
〈Generate chapter title for document tree output in HTML 100 〉 ≡
〈Complete chapter file generation in HTML 101 〉;
if (chapno ≡ 0) {

createNavButtons (); /∗ Create GIF navigation buttons ∗/
∗index � "<table width=\"80%\" align=\"center\">\n"; /∗ Begin chapter table ∗/
indexline ++;

}
chapno ++;
chapline = 0;
efn � basename � "_chap" � chapno � ".html";
chap = new ofstream(efn .str ().c str (), ios ::out);
chtitle = htitle ;
if (chapnumber 6= "") {

chtitle += ": ";
chtitle += chapnumber ;

}
qchapnumber = chapnumber ;
qchapname = chapname ; /∗ Create link to chapter in index document ∗/
∗index � "<tr><th align=\"right\" width=\"15%\">";
if (chapnumber ≡ "") {
∗index � chapno � ".";

}
else {
∗index � elideNewLines (chapnumber);
indexline += linesIn (elideNewLines (chapnumber));

}
∗index � "</th> <td width=\"5%\"> </td> <td width=\"80%\"><a href=\"" �

efn .str () � "\">" � translateHTMLString (elideNewLines (chapname)) � "</td></tr>\n";
indexline += linesIn (elideNewLines (chapname)) + 1;

This code is used in section 98.

§101 ETSET HTML GENERATION 67

101. Complete generation of the current chapter document and close the file. This may be called even
if no chapter document is open, for example, when a single file document is being written. <link> tags
are included in the header to indicate the order of the chapters and their relationship to the parent index
document.
〈Complete chapter file generation in HTML 101 〉 ≡

if (chap 6= Λ) {
string s;
writeHTMLDocumentPreamble (∗chap , chtitle ,&chapline);
∗chap � "<link href=\"" � indexFileName � "\" rel=\"parent\" rev=\"child\" />\n";
chapline ++;
if (chapno > 1) {
∗chap � "<link href=\"" � basename � "_chap" � (chapno − 1) � ".html" �

"\" rel=\"prev\" rev=\"next\" />\n";
chapline ++;

}
if (state 6= EndOfText) {
∗chap � "<link href=\"" � basename � "_chap" � (chapno + 1) � ".html" �

"\" rel=\"next\" rev=\"prev\" />\n";
chapline ++;

}
writeHTMLDocumentBodyStart (∗chap , chtitle ,&chapline);
if (hastitle) {
∗chap � "<table width=\"100%\">\n";
∗chap � "<tr><td width=\"25%\" valign=\"top\"> </td>\n";
∗chap � "<td width=\"50%\" align=\"center\"><h1>" � htitle � "</h1></td>\n";
∗chap � "<td width=\"25%\" align=\"right\">\n";
createNavigationPanel (chapno − 1, (state ≡ EndOfText) ? 0 : (chapno + 1), false);
∗chap � "</td></tr></table>\n";
chapline += 5;

}
else {

createNavigationPanel (chapno − 1, (state ≡ EndOfText) ? 0 : (chapno + 1));
}
∗chap � "<div class=\"bodycopy\">\n";
∗chap � "<h1 align=\"center\" style=\"margin−left: 5%; margin−right: 5%;\">\n";
chapline += 2;
if (qchapnumber 6= "") {
∗chap � translateHTMLString (qchapnumber);
chapline += linesIn (qchapnumber);

}
if (((qchapname 6= "") ∨ (qchapname 6= "")) ∨ ((qchapname ≡ "") ∧ (qchapname ≡ ""))) {
∗chap � "</h1>\n<hr width=\"25%\" size=\"2\" noshade=\"noshade\" />\n" �

"<h1 align=\"center\" style=\"margin−left: 5%; margin−right: 5%;\">\n";
chapline ++;

}
if (qchapname 6= "") {
∗chap � translateHTMLString (qchapname);
chapline += linesIn (qchapname);

}
∗chap � "</h1>\n";
∗chap � "\n";
chapline += 2;

68 HTML GENERATION ETSET §101

while (¬chapterCache .empty ()) {
∗chap � chapterCache .front ();
chapline ++;
chapterCache .pop();

}
∗chap � "</div>\n";
chapline += 2;
createNavigationPanel (chapno − 1, (state ≡ EndOfText) ? 0 : (chapno + 1));
writeHTMLDocumentPostamble (∗chap ,&chapline);
chap~close ();
if (verbose) {

cerr � basename � "_chap" � chapno � ".html: " � chapline � " lines.\n";
}

}
This code is used in sections 92 and 100.

§102 ETSET HTML GENERATION 69

102. This function handles the various kinds of aligned paragraphs we encounter in a document. It
precedes the body of the paragraph with a <p> tag with the specified alignment. Block quotes are also
handled here using the pseudo-alignment of “quote”—they are wrapped by a <blockquote> tag instead.
〈Class definitions 8 〉 +≡

void HTMLGenerationSink ::generateAlignedParagraph (string alignment , char bracket , string
text , string terminator)

{
string s;
switch (bracket) {
case Begin : emit (""); /∗ Purely for readability when hand-editing HTML ∗/

if (alignment ≡ "quote") {
emit ("<blockquote>");

}
else if (alignment ≡ "table") {

emit ("<pre>");
}
else {

emit ("<p align=\"" + alignment + "\">");
}
break;

case Body :
if (etextBodyParserFilter :: isLineSpecial (text)) {

emit (etextBodyParserFilter ::specialCommand (text));
}
else {

s = translateHTMLString (text);
if (¬infoot) {

s += terminator ;
}
emit (s);

}
break;

case End :
if (alignment ≡ "quote") {

emit ("</blockquote>");
}
else if (alignment ≡ "table") {

emit ("</pre>");
}
else {

emit ("</p>");
}
break;

case Void : break;
}

}

70 HTML GENERATION ETSET §103

103. Quote string s for output to HTML, replacing HTML metacharacters with their corresponding
“&” entities. With typical text it would probably be faster to first test for the presence of any of the
metacharacters in a line using find first of , returning the line unmodified if none were found. This would
only require character-by-character examination in the normally rare circumstance where the line contains a
character we need to quote. Given that this program is extremely unlikely to be run frequently, we’ll forego
such refinements in the interest of clarity.
〈Class definitions 8 〉 +≡

string HTMLGenerationSink ::quoteHTMLString (string s)
{

string :: iterator cp ;
string o = "";
for (cp = s.begin (); cp < s.end (); cp ++) {

int c = (∗cp) & #FF;
switch (c) {
case ’&’: o += "&";

break;
case ’<’: o += "<";

break;
case ’>’: o += ">";

break;
default:

if (c < ’ ’) {
〈Quote control character in HTML 104 〉;

}
else {

o += c;
}
break;

}
}
return o;

}

104. This is a control character. Emit as ^letter unless it is considered as white space (for example,
carriage return and line feed), in which case it’s sent directly to the output.
〈Quote control character in HTML 104 〉 ≡

if (isspace (c)) {
o += c;

}
else {

o += "^" + (’@’ + c);
}

This code is used in section 103.

§105 ETSET HTML GENERATION 71

105. Translate the text string argument into HTML, processing control sequences as required. Note that
metacharacters are expanded by the call on quoteHTMLString right at the top of the function, so the balance
of the code needn’t worry about quoting them. That leaves italic and math mode toggles, and footnotes to
be handled here.
〈Class definitions 8 〉 +≡

string HTMLGenerationSink ::translateHTMLString (string t)
{

string :: iterator cp ;
string o = "";
char c;
static const string punctuation = PUNCTUATION;
string s = quoteHTMLString (t);
for (cp = s.begin (); cp < s.end (); cp ++) {

c = ∗cp ;
if (¬inmath ∧ c ≡ ’_’) {
〈Toggle italic text mode in HTML 106 〉;

}
else if (c ≡ ’\\’ ∧ ((cp + 1) < s.end ()) ∧ ((cp [1] ≡ ’(’) ∨ (cp [1] ≡ ’)’))) {
〈Toggle math mode in HTML 107 〉;

}
else if (¬inmath ∧ ((cp + 2) < s.end ()) ∧ ((c ≡ ’[’) ∨ ((c ≡ ’ ’) ∧ (cp [1] ≡ ’[’)) ∨ ((c ≡

’ ’) ∧ (cp [1] ≡ ’ ’) ∧ (cp [2] ≡ ’[’)))) {
〈Begin footnote in HTML 108 〉;

}
else if (¬inmath ∧ c ≡ ’]’) {
〈End footnote in HTML 109 〉;

}
else {
〈Output text character in HTML 111 〉;

}
}
return o;

}

106. The underscore character, “_”, toggles text between the normal roman and italic fonts.
〈Toggle italic text mode in HTML 106 〉 ≡

italics = ¬italics ;
if (italics) {

o += "<i> ";
}
else {

o += "</i>";
}

This code is used in section 105.

72 HTML GENERATION ETSET §107

107. HTML doesn’t support mathematics, at least not without plug-ins or XML horrors few users at this
writing are likely to have installed. When we encounter mathematics in the text, we simply enclose it in
a <table> box, tinted pink to indicate it requires attention, and proceed. The editor of the document can
then use TEXtoGIF or an equivalent tool to render the equation for Web publication.
〈Toggle math mode in HTML 107 〉 ≡

inmath = cp [1] ≡ ’(’;
cp ++;
if (inmath) {

o += "<table bgcolor=\"#FFA0A0\"><tr><td>";
}
else {

o += "</td></tr></table>";
}

This code is cited in section 158.

This code is used in section 105.

§108 ETSET HTML GENERATION 73

108. Footnotes appear in-line, within [square brackets]. If we’re writing a single file, we simply output
them in-line, in square backets, using a small sans-serif font with a yellow background (assuming the browser
comprehends such things, naturally). When generating a multiple file document tree, footnotes are placed in
a dedicated file, with a link to that file and the fragment ID of the footnote in the body copy where the note
appeared. The footnote link is the footnote number as a superscript. We don’t support nested footnotes.
If the input document contains them, we render nested footnotes in-line in the same manner as outer level
footnotes in singleFile mode.

Browsers which support targeted windows will open the footnote document in a new window which will
be scrolled as subsequent footnote links are clicked.
〈Begin footnote in HTML 108 〉 ≡
#define NETSCRAPE_SUCKS /∗ Work around moronic style/table interaction in Netscrap ∗/

if (footnest > 0) {
issueMessage ("Cannot nest footnotes in HTML document output.");
o += "[<small>";
o += "";

}
else {

if (singleFile) {
#ifdef NETSCRAPE_SUCKS

o += "[<small>";
o += "";

#else
flushBreak ();
o += "[*]\n<table width=\"25%\" align=\"right\" hspace=\\

"6\" bgcolor=\"#FFFFD0\">\n";
o += "<tr><td>* <small>\n";

#endif
}
else {

ostringstream eflink ;
〈Create footnote file for first footnote in HTML 110 〉;
footnum ++;
eflink � "<a href=\"" � footdocname � "#" � footnum � "\" target=\"" � basename �

"_foot\">" � "^{" � footnum � "}";
o += eflink .str ();
emit (o);
o = "";
infoot = true ;
eflink .str ("");
eflink � "" � footnum � ". ";
o += eflink .str ();

}
fitalics = italics ;
italics = false ;

}
if ((c ≡ ’ ’) ∧ ((cp + 1) < s.end ())) {

if (cp [1] ≡ ’ ’) {
cp ++;

}
cp ++;

}
footnest ++;

74 HTML GENERATION ETSET §108

This code is used in section 105.

109. Close a footnote when the right bracket is encountered. When generating a separate footnote
document, we use a <pre> element with footnotePad blank lines following the footnote so the next one
won’t appear in the window for typical browser window sizes.
〈End footnote in HTML 109 〉 ≡

if (footnest ≡ 1) {
if (singleFile) {

#ifdef NETSCRAPE_SUCKS

o += "</small>]";
#else

o += "\n</small>\n</table>\n";
#endif

breakPending = true ;
}
else {

int l;
emit (o);
emit ("<p />");
emit ("<pre>");
for (l = 0; l < footnotePad ; l++) {

emit ("");
}
emit ("</pre>");
o = "";
infoot = false ;

}
italics = fitalics ;

}
else if (footnest > 1) {

o += "</small>]";
}
if (footnest ≡ 0) {

issueMessage ("Mismatched end of footnote (\"]\") bracket.");
}
else {

footnest −−;
}

This code is used in section 105.

§110 ETSET HTML GENERATION 75

110. Upon encountering a footnote while creating a multiple file HTML document, we check whether a
footnote document has already been created. If not, this is the first footnote; a footnote document is created
to receive it and any subsequent footnotes.
〈Create footnote file for first footnote in HTML 110 〉 ≡

if (foot ≡ Λ) {
footdocname = basename + "_foot" + ".html";
foot = new ofstream(footdocname .c str (), ios ::out);
writeHTMLDocumentPreamble (∗foot , htitle + ": Notes",&footline);
writeHTMLDocumentBodyStart (∗foot , htitle + ": Notes",&footline);
∗foot � "<div class=\"bodycopy\">\n";
footline ++;

}
This code is used in section 108.

111. Output a text character. Since we’ve already handled quoting of metacharacters, the only thing we
need to worry about here is adding a nonbreaking space around eligible punctuation if frenchPunct is set.
〈Output text character in HTML 111 〉 ≡

if (¬inmath ∧ frenchPunct ∧ ((c & #FF) ≡ C_LEFT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK) ∧ (cp 6=
s.end ()) ∧ (¬isspace (cp [1]))) {

o += c;
o += " ";

}
else if (¬inmath ∧ frenchPunct ∧ (punctuation .find first of (c) 6=

string ::npos) ∧ (((cp + 1) ≡ s.end ()) ∨ isspace (cp [1]) ∨ ((cp [1] & #FF) ≡
C_RIGHT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK) ∨ (cp [1] ≡ ’,’))) {

o += " ";
o += c;

}
else {

o += c;
}

This code is used in section 105.

76 HTML GENERATION ETSET §112

112. HTML documents have a stereotyped preamble. This function writes the preamble at the start of a
document we’re writing to a stream.
〈Class definitions 8 〉 +≡

void HTMLGenerationSink ::writeHTMLDocumentPreamble (ostream &os , string title , int
∗lineCounter)

{
const int preambleLines = 11;
deque〈string〉 :: iterator decl ;
os � "<?xml version=\"1.0\" encoding=\"iso−8859−1\"?>\n";
os � "<!DOCTYPE html PUBLIC \"−//W3C//DTD XHTML 1.0 Transitional//EN\"\n";
os � " \"http://www.w3.org/TR/xhtml1/DTD/xhtml1−transitional.dtd\">\n";
os � "<html xmlns=\"http://www.w3.org/1999/xhtml\">\n";
os � "<!−− Translated by " PRODUCT " " VERSION " (" REVDATE ") on " + stime + "−−>\n";
os � "<head>\n";
os � "<title>" � title � "</title>\n";
if (hastitle) {

os � "<meta name=\"description\" content=\"" � elideNewLines (title) � "\" />\n";
∗lineCounter += 1;

}
if (hasauthor) {

os � "<meta name=\"author\" content=\"" � elideNewLines (hauthor) � "\" />\n";
∗lineCounter += 1;

}
os � "<style type=\"text/css\">\n";
os � " DIV.bodycopy {\n";
os � " margin−left: 15%;\n";
os � " margin−right: 10%\n";
os � "}\n";
os � "</style>\n";
∗lineCounter += preambleLines ;
for (decl = declarationsQueue .begin (); decl 6= declarationsQueue .end (); decl ++) {

os � ∗decl � "\n";
∗lineCounter += 1;

}
}

113. After the HTML preamble comes the sequence which ends the header and begins the body of the
document. We write this in a separate function to allow declarations and links to be added before the end
of the header.
〈Class definitions 8 〉 +≡

void HTMLGenerationSink ::writeHTMLDocumentBodyStart (ostream &os , string title , int
∗lineCounter)

{
const int bodyStartLines = 3;
os � "</head>\n";
os � "\n";
os � "<body bgcolor=\"#FFFFFF\">\n";
∗lineCounter += bodyStartLines ;

}

§114 ETSET HTML GENERATION 77

114. HTML documents similarly close with a stereotyped postamble. This function appends the boiler-
plate to the end of a stream.
〈Class definitions 8 〉 +≡

void HTMLGenerationSink ::writeHTMLDocumentPostamble (ostream &os , int ∗lineCounter)
{

const int postambleLines = 2;
os � "</body>\n";
os � "</html>\n";
∗lineCounter += postambleLines ;

}

115. Each HTML chapter document contains a navigation panel consisting of “next”, “previous”, and
“up” buttons, the first two of which are replaced by greyed-out versions for the last and first chapters
respectively. These reference the GIF image buttons created by createNavButtons .

createNavigationPanel writes a navigation panel to the current chapter document, assumed open as output
stream chap . The numbers of the previous and next chapters are given by the prev and next arguments,
which are zero if no such chapter exists—in that case a disabled (greyed-out) button with no link appears
in the panel.
〈Class definitions 8 〉 +≡

void HTMLGenerationSink ::createNavigationPanel (int prev , int next ,bool inParagraph)
{ /∗ Previous chapter button. ∗/

if (inParagraph) {
∗chap � "<p align=\"right\">\n";

}
if (prev 6= 0) {
∗chap � "" �

"<img align=\"middle\" src=\"prev.png\" ""height=\"32\" width\
=\"32\" border=\"0\" alt=\"Previous\" /> \n";

}
else {
∗chap � "<img align=\"middle\" src=\"prev_gr.png\" ""height=\"32\" width\

=\"32\" border=\"0\" alt=\"\" /> \n";
} /∗ Up to table of contents button. ∗/
∗chap � " <img align=\"middle\" src=\"up\

.png\" ""height=\"32\" width=\"32\" border=\"0\" alt=\"Contents\" />\
 \n";

/∗ Next chapter button. ∗/
if (next 6= 0) {
∗chap � "" �

"<img align=\"middle\" src=\"next.png\" ""height=\"32\" width\
=\"32\" border=\"0\" alt=\"Next\" />\n";

}
else {
∗chap � "<img align=\"middle\" src=\"next_gr.png\" ""height=\"32\" width\

=\"32\" border=\"0\" alt=\"\" />\n";
}
if (inParagraph) {
∗chap � "</p>\n";

}
chapline += 3 + (inParagraph ? 2 : 0);

}

78 HTML GENERATION ETSET §116

116. This static function creates the GIF files for the buttons in the navigation panel. It is called when
we are creating a multi-file document tree and encounter the first chapter title.
〈Class definitions 8 〉 +≡

void HTMLGenerationSink ::createNavButtons (void)
{
〈Definition of navigation buttons in HTML 118 〉;

#ifdef FOOTNOTE_BUTTON_NEEDED

createNavButton ("foot", d foot , sizeof d foot); /∗ Footnote ∗/
#endif

createNavButton ("next", d next , sizeof d next); /∗ Next ∗/
createNavButton ("prev", d prev , sizeof d prev); /∗ Previous ∗/
createNavButton ("up", d up , sizeof d up); /∗ Up (to Table of Contents) ∗/
createNavButton ("next_gr", d next gr , sizeof d next gr);

/∗ Greyed out Next (for last chapter) ∗/
createNavButton ("prev_gr", d prev gr , sizeof d prev gr);

/∗ Greyed out Prev (for first chapter) ∗/
}

117. The GIF navigation buttons in the HTML chapter documents are created by calling createNavButton
for each button definition embedded by the #include in the following section. createNavButtons calls this
function for each button file. There’s actually nothing at all GIF-specific about this function—it just writes
out arbitrary binary data from memory to an ofstream.
〈Class definitions 8 〉 +≡

void HTMLGenerationSink ::createNavButton (string button , const unsigned char source [], int
length)

{
string buttonFile ;
ofstream ∗bf ;
buttonFile = button + ".png";
bf = new ofstream(buttonFile .c str (), ios ::out | ios ::binary);
bf~write (reinterpret cast〈const char ∗〉(source), length);
bf~close ();

}

118. When generating HTML output, we want to include language-neutral navigation buttons. These are
small GIF images, which present a problem if we wish to distribute this program in text form. To avoid the
need for system-specific text to binary and/or archive extraction utilities, we simply embed the GIF images
in this file as binary data definitions and write them into the HTML document directory.
〈Definition of navigation buttons in HTML 118 〉 ≡
#include "buttons.h"

This code is used in section 116.

§119 ETSET PALM MARKUP LANGUAGE GENERATION 79

119. Palm Markup Language Generation.
This filter translates parsed body copy (emitted by etextBodyParser) into Palm Markup Language source

code, which it passes down the pipeline.
〈Class definitions 8 〉 +≡

class PalmGenerationFilter : public textFilter {
private:

bool italics , inmath , quoth , hastitle , hasauthor , infoot , intable , firstchap ;
string htitle ; /∗ Title of document ∗/
string hauthor ; /∗ Author of document ∗/
string chapnumber ; /∗ Chapter number from text ∗/
string chapname ; /∗ Chapter name ∗/
string partext ; /∗ Paragraph accumulation string ∗/
int parline ; /∗ Paragraph line counter ∗/
int chapno ; /∗ Chapter number (for anonymous chapters) ∗/
int footnum ; /∗ Footnote number ∗/
int footnest ; /∗ Footnote nesting level ∗/
string footnotes ; /∗ Footnotes saved for output at end ∗/
string footpar ; /∗ Footnote paragraph accumulator ∗/
string footsave ; /∗ Save paragraph during footnote accumulation ∗/
bool fitalics , fquoth ; /∗ Text processing modes saved during footnote ∗/
textSubstituter transformer ; /∗ Text substituter for substitute specials ∗/
string quotePalmString (string s);
static string pruneIndent (string s)
{

assert (s 6= "");
return s.substr (s.find first not of (’ ’));

}
virtual void emit (string s, textComponent ∗destination = Λ)
{

if (infoot) {
footnotes += s + "\n";

}
else {

textFilter ::emit (s, destination);
}

}
void emitq (string s)
{

emit (quotePalmString (s));
}
void generateFilledParagraph (bodyState state , string envtype , char bracket , string text);
void generateAlignedParagraph (bodyState state , string envtype , char bracket , string text);
bool isSubstitution (string cmd);

public:
PalmGenerationFilter()
{

italics = inmath = quoth = false ;
hastitle = hasauthor = false ;
intable = firstchap = infoot = false ;
footnest = footnum = 0;
chapno = 0;

80 PALM MARKUP LANGUAGE GENERATION ETSET §119

}
virtual ∼PalmGenerationFilter()
{ }
string componentName (void)
{

return "PalmGenerationFilter";
}
void put (string s);

};

§120 ETSET PALM MARKUP LANGUAGE GENERATION 81

120. The put method of the PalmGenerationFilter wraps Palm Markup Language commands around the
line-level structure of the text to achieve the desired formatting. Since almost all of the real work is done
upstream (by etextBodyParserFilter) and downstream (by quotePalmString) there is relatively little that
needs doing here.
〈Class definitions 8 〉 +≡

void PalmGenerationFilter ::put (string s)
{

bodyState state = DecodeBodyState (s[0]);
char bracket = s[1];
string text = s.substr (2);
switch (state) {
case BeginText : 〈Generate start of document in Palm 121 〉;
case Declarations : 〈Process declarations in Palm 122 〉;
case DocumentTitle : 〈Process document title in Palm 123 〉;
case Author : 〈Process author in Palm 124 〉;
case ChapterNumber : 〈Process chapter number in Palm 125 〉;
case ChapterName : 〈Process chapter name in Palm 126 〉;
case InTextParagraph : generateFilledParagraph (state , "", bracket , text);

break;
case InBlockQuote : generateFilledParagraph (state , "\\t", bracket , text);

break;
case InRaggedRight : generateAlignedParagraph (state , "", bracket , text);

break;
case InRaggedLeft : generateAlignedParagraph (state , "\\r", bracket , text);

break;
case InPreformattedTable :

if (bracket ≡ Begin) {
intable = true ;

}
generateAlignedParagraph (state , "", bracket , text);
if (bracket ≡ End) {

intable = false ;
}
break;

case InCentred : generateAlignedParagraph (state , "\\c", bracket , text);
break;

case EndOfText :
if (footnum > 0) {

emit (footnotes); /∗ Append footnotes to document ∗/
}
if (verbose) {

cerr � "Palm: " � (getLineNumber () + count (footnotes .begin (), footnotes .end (),
’\n’)) � " lines output.\n";

}
break;

default: cerr � "*** State " � stateNames [state] � " " � bracket �
" not handled in PalmGenerationFilter ***\n";

exit (1);
}

}

82 PALM MARKUP LANGUAGE GENERATION ETSET §121

121. Generate the boilerplate at the start of a Palm Markup Language document.
〈Generate start of document in Palm 121 〉 ≡
{

time t t = time (Λ);
string stime = ctime (&t);
stime = stime .substr (0, stime .length ()− 1);
emit ("\\v Translated by "PRODUCT" "VERSION" ("REVDATE") on " + stime + "\\v");

}
break;

This code is used in section 120.

122. Declarations are output before the start of the body, allowing them to be used to special title
generation, if desired. Declarations are an excellent place to define any substitutions to be applied to the
subsequent text.
〈Process declarations in Palm 122 〉 ≡

if (bracket ≡ Body) {
assert (etextBodyParserFilter :: isLineSpecial (text));
if (¬isSubstitution (text)) {

emit (etextBodyParserFilter ::specialCommand (text));
}

}
break;

This code is used in section 120.

123. We save the document title, concatenating into a single line if it spans two or more in the input
text. It will eventually be used to declare the document database name and on the title page of the output
document.
〈Process document title in Palm 123 〉 ≡

switch (bracket) {
case Begin : htitle = "";

break;
case Body :

if (htitle 6= "") {
htitle += " ";

}
htitle += quotePalmString (pruneIndent (text));
hastitle = true ;
break;

case Void : hastitle = false ;
htitle = "";
break;

}
break;

This code is used in section 120.

§124 ETSET PALM MARKUP LANGUAGE GENERATION 83

124. The author name is accumulated, concatenating multiple lines as required. When we see the End
bracket for the author specification (or the Void bracket if no author is given), we write the document header.
If no document title was specified, the user will have to supply the name of the Palm database when the
PML file is compiled into a Palm Reader book.
〈Process author in Palm 124 〉 ≡

switch (bracket) {
case Begin : hauthor = "";

break;
case Body :

if (hauthor 6= "") {
hauthor += " ";

}
hauthor += quotePalmString (pruneIndent (text));
break;

case End : hasauthor = true ;
/∗ Note fall-through ∗/

case Void :
if (hastitle) {

emit ("\\vTITLE=\"" + htitle + "\"\\v");
emit ("\\c\\b" + htitle + "\\b");
emit ("\\c");

}
if (hasauthor) {

emit ("\\c" + hauthor);
emit ("\\c");

}
break;

}
break;

This code is used in section 120.

125. We save the chapter number for output after the chapter name is received. The chapter number
may span multiple lines.
〈Process chapter number in Palm 125 〉 ≡

switch (bracket) {
case Begin : chapnumber = "";

break;
case Body :

if (chapnumber 6= "") {
chapnumber += " ";

}
chapnumber += quotePalmString (pruneIndent (text));
break;

case Void : chapnumber = "";
/∗ Note fall-through ∗/

case End : break;
}
break;

This code is used in section 120.

84 PALM MARKUP LANGUAGE GENERATION ETSET §126

126. Chapter names cause \x chapter tags to be generated with the chapter title as its argument. If only
a chapter number is given, it is used as the chapter title. If both a number and name are specified, they
are concatenated with a colon after the number and the resulting string is used as the chapter title. Void
chapter names generate chapters numbered 1, 2, . . . n.
〈Process chapter name in Palm 126 〉 ≡

switch (bracket) {
case Begin : chapname = "";

break;
case Body :

if (chapname 6= "") {
chapname += " ";

}
chapname += quotePalmString (pruneIndent (text));
break;

case Void : chapname = "";
/∗ Note fall-through ∗/

case End : chapno ++;
emit ("");
if ((chapname 6= "") ∨ (chapnumber 6= "")) {

string s = "\\x\\b";
if (chapnumber 6= "") {

s += chapnumber ;
if (chapname 6= "") {

s += ": ";
}

}
emit (s + chapname + "\\b\\x");

}
else {

ostringstream numchap ;
numchap � "\\x\\b\\a151 " � chapno � "\\a151\\b\\x";
emit (numchap .str ());

}
break;

}
break;

This code is used in section 120.

§127 ETSET PALM MARKUP LANGUAGE GENERATION 85

127. The generateFilledParagraph function handles paragraphs with text which flows from line to line to
fill the page. It is used for normal body copy and indented block quotations, which differ only in that the
latter are wrapped by \t markup tags, passed as the envtype argument. Existing indentation on argument
lines is discarded, and lines of the paragraph are joined into one line per paragraph as required in PML.
〈Class definitions 8 〉 +≡

void PalmGenerationFilter ::generateFilledParagraph (bodyState state , string envtype , char
bracket , string text)

{
string s;
switch (bracket) {
case Begin : emit ("");

quoth = false ;
partext = "";
break;

case Body :
if (etextBodyParserFilter :: isLineSpecial (text)) {

if (¬isSubstitution (text)) {
partext += etextBodyParserFilter ::specialCommand (text);

}
}
else {

s = quotePalmString (pruneIndent (text));
if (infoot) {

if (footpar 6= "") {
footpar += ’ ’;

}
footpar += s;

}
else {

if (partext ≡ "") {
partext = envtype ;

}
else {

partext += ’ ’;
}
partext += s;

}
}
break;

case End : emit (partext + envtype);
break;

case Void : break;
}

}

86 PALM MARKUP LANGUAGE GENERATION ETSET §128

128. This function handles the various kinds of aligned paragraphs we encounter in a document. It wraps
the contents of the paragraph in a Palm Markup Language environment of the type specified by envtype .
The indentation used in the input text to identify the alignment of the copy is removed, as indentation is
significant in PML. Preformatted tables are a special case; to make the most of limited screen space, we
normally strip the two leading spaces present on lines of such tables. If for some strange reason the input
document introduces a table with a line which begins in column 3 but a subsequent line of the table contains
a nonblank in columns 1 or 2, that line will be output in its entirety. This will misalign the table, but it’s
better than discarding characters in the input text.
〈Class definitions 8 〉 +≡

void PalmGenerationFilter ::generateAlignedParagraph (bodyState state , string envtype , char
bracket , string text)

{
string s, l;
switch (bracket) {
case Begin : emit ("");

quoth = false ;
parline = 0;
break;

case Body : s = "";
if (parline ≡ 0) {

s = envtype ;
}
if (etextBodyParserFilter :: isLineSpecial (text)) {

if (¬isSubstitution (text)) {
s += etextBodyParserFilter ::specialCommand (text);

}
else {

break;
}

}
else {

if (state ≡ InPreformattedTable) {
l = quotePalmString (text .substr ((text .substr (0, 2) ≡ " ") ? 2 : 0));

}
else {

l = quotePalmString (pruneIndent (text));
}
if (infoot) {

if (footpar 6= "") {
footpar += ’ ’;

}
footpar += l;
break;

}
else {

s += l;
}

}
emit (s);
parline ++;
break;

case End : emit (envtype);

§128 ETSET PALM MARKUP LANGUAGE GENERATION 87

break;
case Void : break;
}

}

88 PALM MARKUP LANGUAGE GENERATION ETSET §129

129. Translate text string s into PML, quoting metacharacters and expanding Latin-1 characters to
decimal escapes. Italic mode, conversion of ASCII quotes to open and close quotes, ellipsis and em-dash
translation, mathematics mode, and footnote processing are performed at this level. The handling of
footnotes which span multiple lines in the input text interacts in subtle ways with generateFilledParagraph
and generateAlignedParagraph—don’t make any structural changes in footnote handling here unless you
completely grasp the implications for callers of this function.
〈Class definitions 8 〉 +≡

string PalmGenerationFilter ::quotePalmString (string s)
{

string :: iterator cp ;
string o = "";
int c;
static const string punctuation = "?!:;"; /∗ Punctuation set after space for frenchPunct ∗/
for (cp = s.begin (); cp < s.end (); cp ++) {

c = (∗cp) & #FF;
if (c < ’ ’) {
〈Quote control character in Palm 130 〉;

}
else if ((c ≥ 160) ∧ (c ≤ 255)) {
〈Quote ISO 8859-1 character in Palm 131 〉;

}
else if (c ≥ ’ ’ ∧ c ≤ ’~’) {

if (¬inmath ∧ ¬intable ∧ c ≡ ’_’) {
〈Toggle italic text mode in Palm 132 〉;

}
else if (¬intable ∧ c ≡ ’\\’ ∧ ((cp + 1) < s.end ()) ∧ ((cp [1] ≡ ’(’) ∨ (cp [1] ≡ ’)’))) {
〈Toggle math mode in Palm 133 〉;

}
else if (c ≡ ’\\’) {

o += "\\\\";
}
else if (¬inmath ∧ ¬intable ∧ ((cp + 2) < s.end ()) ∧ ((c ≡ ’[’) ∨ ((c ≡ ’ ’) ∧ (cp [1] ≡

’[’)) ∨ ((c ≡ ’ ’) ∧ (cp [1] ≡ ’ ’) ∧ (cp [2] ≡ ’[’)))) {
〈Begin footnote in Palm 134 〉;

}
else if (¬inmath ∧ ¬intable ∧ c ≡ ’]’) {
〈End footnote in Palm 135 〉;

}
else if (¬inmath ∧ ¬intable ∧ (c ≡ ’−’) ∧ ((cp + 1) < s.end ()) ∧ (cp [1] ≡ ’−’)) {
〈Translate em-dash in Palm 136 〉;

}
else if (¬inmath ∧ ¬intable ∧ (c ≡ ’.’) ∧ ((cp + 2) < s.end ()) ∧ (cp [1] ≡ ’.’) ∧ (cp [2] ≡ ’.’)) {
〈Translate ellipsis in Palm 137 〉;

}
else if (¬inmath ∧ ¬intable ∧ c ≡ ’"’) {
〈Convert ASCII quotes to open and close quotes in Palm 138 〉;

}
else {
〈Output ASCII text character in Palm 139 〉;

}
} /∗ Note that other characters, specifically those in the range from 127 through 160, get

dropped. ∗/

§129 ETSET PALM MARKUP LANGUAGE GENERATION 89

}
o = transformer .substitute (o); /∗ Apply substitutions, if any ∗/
return o;

}

130. This is a control character. Emit as ^letter unless it is considered as white space (for example,
carriage return and line feed), in which case it’s sent directly to the output.
〈Quote control character in Palm 130 〉 ≡

if (isspace (c)) {
o += c;

}
else {

o += "^";
o += (’@’ + c);

}
This code is used in section 129.

131. Palm Markup Language requires that all non-ASCII characters, even those part of the ISO 8859-1
character set, be quoted using the \axxx escape sequence. We handle this here. In addition, if frenchPunct
is enabled, we must check for guillemets and insert the requisite non-breaking spaces to set them off from
the text.
〈Quote ISO 8859-1 character in Palm 131 〉 ≡

ostringstream isochar ;
isochar � "\\a" � setw (3) � setfill (’0’) � c;
if (¬inmath ∧ frenchPunct ∧ (c ≡ C_LEFT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK) ∧ (cp 6=

s.end ()) ∧ (¬isspace ((cp [1] & #FF)))) {
o += isochar .str ();
o += "\\a160";

}
else if (¬inmath ∧ frenchPunct ∧ (c ≡ C_RIGHT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK) ∧ (cp 6=

s.begin ())) {
o += "\\a160";
o += isochar .str ();

}
else {

o += isochar .str ();
}

This code is cited in section 158.

This code is used in section 129.

132. The underscore character, “_”, toggles text between the normal roman and italic fonts.
〈Toggle italic text mode in Palm 132 〉 ≡

italics = ¬italics ;
if (italics) {

o += "\\i";
}
else {

o += "\\i";
}

This code is used in section 129.

90 PALM MARKUP LANGUAGE GENERATION ETSET §133

133. PML doesn’t support mathematics. When we encounter mathematics in the text, we simply output
it as text. The user can, afterward, convert the equation to an image with use TEXtoGIF or an equivalent
tool and insert an image. In the meanwhile, we simply encode the LATEX equation to text, quoting special
characters as required. Even though we don’t directly support mathematics, we need to know when we’re
in it, since characters such as “_” and “[” are regular text characters, not markup, in math mode.
〈Toggle math mode in Palm 133 〉 ≡

inmath = cp [1] ≡ ’(’;
o += "\\\\";

This code is used in section 129.

134. Footnotes are represented by a number enclosed in square brackets, linked to the footnote at the end
of the document, which has a link back to the text. At the start of a footnote we append the footnote mark
to the output accumulation string o, then save it in footsave , setting infoot to indicate we’re accumulating
a footnote. While infoot is set, emit diverts output to the string footnotes , where it is simply concatenated
at the end. This string will eventually be appended to the end of the output document when we reach the
end of the input text.

We don’t allow footnotes to be nested. If the user attempts to nest footnotes, we issue a warning and
simply emit the nested footnote in-line (within the outer footnote), enclosed in square brackets.
〈Begin footnote in Palm 134 〉 ≡

footnest ++;
if (footnest > 1) {

issueMessage ("Cannot nest footnotes in Palm Markup Language output.");
o += "[";

}
else {

ostringstream flink ;
footnum ++;
flink � "\\Q=\"b" � footnum � "\"\\q=\"#f" � footnum � "\"[" � footnum � "]\\q";
o += flink .str ();
footsave = o;
infoot = true ;
fitalics = italics ;
fquoth = quoth ;
italics = quoth = false ;
o = "";
footpar = "";
if (footnum ≡ 1) {

emit ("\\x\\a185 \\a178 \\a179 \\a133\\x"); /∗ Footnote chapter: “1 2 3 . . .” ∗/
}
flink .str ("");
flink � "\\p\\Q=\"f" � footnum � "\"";
emit (flink .str ());

}
if ((c ≡ ’ ’) ∧ ((cp + 1) < s.end ())) {

if (cp [1] ≡ ’ ’) {
cp ++;

}
cp ++;

}
This code is used in section 129.

§135 ETSET PALM MARKUP LANGUAGE GENERATION 91

135. Close a footnote when the right bracket is encountered. The footnote paragraph, assembled in footpar
with the cooperation of the caller of quotePalmString if the footnote spans multiple lines, is appended to
the footnotes array by calling emit while infoot remains set. Following the footnote a back link to the body
copy where the footnote appeared is generated.
〈End footnote in Palm 135 〉 ≡

if (footnest ≡ 0) {
issueMessage ("Mismatched end of footnote (\"]\") bracket.");

}
else {

footnest −−;
if (footnest > 0) {

o += ’]’; /∗ Nested footnote—just emit closing bracket ∗/
}
else {

ostringstream blink ;
if (o 6= "") {

if (footpar 6= "") {
footpar += ’ ’;

}
footpar += o;

}
blink � "\\b" � footnum � ".\\b ";
emit (blink .str () + footpar);
blink .str ("");
blink � "\\c\\l\\q=\"#b" � footnum � "\"<<<\\q\\l";
emit (blink .str ());
emit ("\\c");
infoot = false ;
italics = fitalics ;
quoth = fquoth ;
o = footsave ;

}
}

This code is used in section 129.

136. Two adjacent hyphens, “−−” denote an em dash in an ASCII Etext. Translate this sequence into
the em-dash symbol used by PML.
〈Translate em-dash in Palm 136 〉 ≡

o += "\\a151";
cp ++;

This code is used in section 129.

137. Three consecutive periods are translated into a Palm ellipsis character.
〈Translate ellipsis in Palm 137 〉 ≡

o += "\\a133";
cp += 2;

This code is used in section 129.

92 PALM MARKUP LANGUAGE GENERATION ETSET §138

138. ASCII quote characters are translated into open and close quote symbols. Note that the flag quoth
is unconditionally reset at the end of a paragraph so that mismatched quotes won’t propagate beyond one
paragraph. This allows continued quotes in multiple paragraphs to work properly. We also save and restore
quoth around footnotes so quote matching works when a footnote appears within quotes.
〈Convert ASCII quotes to open and close quotes in Palm 138 〉 ≡

o += quoth ? "\\a148" : "\\a147";
quoth = ¬quoth ;

This code is used in section 129.

139. Output a text character. Some Palm Markup Language metacharacters require backslash quoting
in any mode, others only when not in math mode. PML specifies that only a single space appear after
punctuation; we suppress multiple spaces here except when generating a preformatted table.
〈Output ASCII text character in Palm 139 〉 ≡

if (¬inmath ∧frenchPunct ∧(punctuation .find first of (c) 6= string ::npos)∧(((cp +1) ≡ s.end ())∨(cp [1] ≡
’ ’) ∨ ((cp [1] & #FF) ≡ C_RIGHT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK) ∨ (cp [1] ≡ ’,’))) {

o += "\\a160";
o += c;

}
else {

if (intable ∨ (c 6= ’ ’) ∨ (o ≡ "") ∨ (o[o.length ()− 1] 6= ’ ’)) {
o += c;

}
}

This code is cited in section 158.

This code is used in section 129.

§140 ETSET PALM MARKUP LANGUAGE GENERATION 93

140. Special commands which define text substitutions are recognised by this method, parsed, and added
to the substitution list.
〈Class definitions 8 〉 +≡

bool PalmGenerationFilter :: isSubstitution (string cmd)
{

string s = etextBodyParserFilter ::specialCommand (cmd);
bool isSub = false , bogus = true ;
unsigned int n, m, l;
char delim ;
if (s.find ("Substitute ") ≡ 0) {

isSub = true ;
s = s.substr (11);
n = s.find first not of (’ ’);
if (n 6= string ::npos) {

delim = s[n];
m = s.find (delim , n + 1);
if (m 6= string ::npos) {

l = s.find (delim ,m + 1);
if (l 6= string ::npos) {

bogus = false ;
transformer .addSubstitution (s.substr (n + 1, (m− n)− 1), s.substr (m + 1, (l −m)− 1));

}
}

}
if (bogus) {

issueMessage ("Invalid Palm Substitute special", cerr);
issueMessage (auditFilter ::quoteArbitraryString (cmd), cerr);

}
}
return isSub ;

}

94 MAIN PROGRAM ETSET §141

141. Main program.
The etset program is a filter which processes both its input and output in a strictly serial fashion,

permitting it to be used as part of a pipeline. (The program does need to look ahead, but handles this
internally.)
〈Main program 141 〉 ≡

int main (int argc , char ∗argv []){ int i, f = 0, opt ;
char ∗cp ;
〈Process command-line options 148 〉;
〈Parse command-line file arguments 150 〉;
streamSource insource ;
trimFilter tfilt ;
tabExpanderFilter tabf (8);
flattenISOCharactersFilter ∗fiso ;
convertForeignCharacterSetToISOFilter ∗dosconv ;
auditFilter afilt (FormatWidth);
sectionSeparatorSquid squiddley ;
etextBodyParserFilter bodyParser ;
stripSpecialCommandsFilter ∗ssc ;
LaTeXGenerationFilter ∗lf ;
PalmGenerationFilter ∗pf ;
streamSink ∗os ;
heatSink ∗hs ;
HTMLGenerationSink ∗hgs ;

#define Plumb(component) ∗ pipeEnd | component ; pipeEnd = &component
try {

insource .openFile (infile);
}
catch(invalid argument &e)
{

cerr � e.what () � "\n";
return 2;

}
textComponent ∗pipeEnd = &insource ; /∗ Pipeline begins with input file source ∗/
if (dosCharacters) {

insource .setStripEOL(true);
dosconv = new convertForeignCharacterSetToISOFilter(cp850 to ISO);
Plumb(∗dosconv);

}
if (¬checkText) {

Plumb(tfilt); /∗ Trim trailing white space... ∗/
Plumb(tabf); /∗ ...and expand tabs to spaces. ∗/

}
if (specialStrip) {

ssc = new stripSpecialCommandsFilter;
Plumb(∗ssc);

}
if (flattenISOchars) {

fiso = new flattenISOCharactersFilter;
Plumb(∗fiso);

}
if (cleanText ∨ checkText) {

§141 ETSET MAIN PROGRAM 95

afilt .setAuditCriteria (auditFilter ::trailing blanks | auditFilter ::embedded tabs |
auditFilter ::exceeds maximum length | auditFilter :: invalid characters |
auditFilter ::special commands present | (asciiOnly ? 0 :
auditFilter ::permit 8 bit ISO characters));

Plumb(afilt);
if (checkText) {

hs = new heatSink;
Plumb(∗hs);

}
else {

os = new streamSink(outfile);
Plumb(∗os);

}
}
else {

Plumb(squiddley); /∗ ...and split the input file into sections. ∗/
〈Configure prologue and epilogue processing 142 〉;
if (asciiOnly) {

afilt .disableAuditCriteria (auditFilter ::permit 8 bit ISO characters);
}
Plumb(afilt); /∗ The Etext body section is audited for errors, ∗/
afilt .disableAuditCriteria (auditFilter ::special commands present);

/∗ permitting special commands, ∗/
Plumb(bodyParser); /∗ then fed to the body parser. ∗/
〈Set up parser debugging if requested 143 〉;
if (ofmt ≡ LaTeX) {

lf = new LaTeXGenerationFilter;
os = new streamSink(outfile);
bodyParser .setSpecialFilter ("LaTeX");
Plumb(∗lf);
Plumb(∗os);

}
else if (ofmt ≡ HTML) {

hgs = new HTMLGenerationSink(outfile , singleFileHTML);
bodyParser .setSpecialFilter ("HTML");
Plumb(∗hgs);

}
else if (ofmt ≡ Palm) {

pf = new PalmGenerationFilter;
os = new streamSink(outfile);
bodyParser .setSpecialFilter ("Palm");
Plumb(∗pf);
Plumb(∗os);

}
}
insource .send ();
if (verbose) {

cerr � insource .getSourceLineNumber () � " input lines processed.\n";
}
return 0; }

This code is used in section 6.

96 MAIN PROGRAM ETSET §142

142. The prologue and epilogue of the input file are usually discarded, with only the body of the Etext
being processed. The user can, by specifying the −−save−prologue and/or −−save−epilogue options, each
of which takes a file name argument, direct these portions of the input to the designated file. The same file
name may be specified for both the prologue and epilogue: the sectionSeparatorSquid goes to great pains
to ensure this will work.
〈Configure prologue and epilogue processing 142 〉 ≡

textComponent ∗prodest = Λ;
if (savePrologueFile 6= "") {

squiddley .setPrologueProcessor (prodest = new streamSink(savePrologueFile));
}
if (saveEpilogueFile 6= "") {

if (savePrologueFile ≡ saveEpilogueFile) {
squiddley .setEpilogueProcessor (prodest);

}
else {

squiddley .setEpilogueProcessor (new streamSink(saveEpilogueFile));
}

}
This code is used in section 141.

143. If the −−debug−parser option is set, we insert a teeSquid into the pipeline after the etextBodyParserFilter
with its secondary output directed to a parserDiagnosticFilter which is in turn plumbed to a streamSink
which writes the parser diagnostic information on the debugParserFile given as the argument to the option.
〈Set up parser debugging if requested 143 〉 ≡

if (debugParser) {
parserDiagnosticFilter ∗pd = new parserDiagnosticFilter;
streamSink ∗pdsink = new streamSink(debugParserFile);
teeSquid ∗pdtsq = new teeSquid(pd);
∗pd | ∗pdsink ;
Plumb(∗pdtsq);

}
This code is used in section 141.

§144 ETSET APPLICATION PLUMBING 97

144. Application plumbing.
Every application needs a modicum of clanking machinery beneath the waterline to get its job done and

conform to contemporary community standards. I’ve relegated these gory and boring details to the end,
where you’re most sincerely encouraged to ignore them.

145. The following include files provide access to system and library components.
〈System include files 145 〉 ≡
#include "config.h"

#include <iostream>

#include <iomanip>

#include <fstream>

#include <sstream>

#include <cstdlib>

#include <exception>

#include <stdexcept>

#include <string>

#include <vector>

#include <queue>

#include <map>

#include <algorithm>

using namespace std;
#include <stdio.h>

#include <ctype.h>

#include <string.h>

#include <time.h>

#include <assert.h> /∗ Twiddle definitions if building on WIN32 to avoid need to reconfigure ∗/
#ifdef WIN32

#ifdef HAVE_UNISTD_H

#undef HAVE_UNISTD_H

#endif
#ifdef HAVE_STAT

#undef HAVE_STAT

#endif
#define __GNU_LIBRARY__ 1
#define __STDC__ 1
#endif
#ifdef HAVE_STAT

#include <sys/stat.h>

#endif
#ifdef HAVE_UNISTD_H

#include <unistd.h>

#endif
#include "getopt.h" /∗ Use our own getopt , which supports getopt long ∗/
This code is cited in section 158.

This code is used in section 5.

98 APPLICATION PLUMBING ETSET §146

146. Here are the global variables we use to keep track of command line options.
〈Global variables 48 〉 +≡

typedef enum {
LaTeX , HTML,Palm

} outputFormat;
static outputFormat ofmt = LaTeX ; /∗ Output format ∗/
static bool asciiOnly = false ; /∗ Permit only 7-bit ASCII in input ∗/
static bool babelon = false ; /∗ Use LATEX babel package ∗/
static string babelang ; /∗ Language specification for babel ∗/
static bool singleFileHTML = false ; /∗ Generate single file for HTML output ∗/
static bool debugParser = false ; /∗ Generate debug output from body parser ? ∗/
static bool dosCharacters = false ; /∗ Translate MS-DOS characters to ISO ? ∗/
static string debugParserFile = ""; /∗ Log file for parser debugging output ∗/
static bool flattenISOchars = false ; /∗ Flatten ISO 8859-1 8-bit codes to ASCII ∗/
static bool frenchPunct = false ; /∗ Use nonbreaking spaces for French punctuation ∗/
static string savePrologueFile = ""; /∗ File to save prologue ∗/
static string saveEpilogueFile = ""; /∗ File to save epilogue ∗/
static bool specialStrip = false ; /∗ Strip special commands ∗/
static bool cleanText = false ; /∗ Clean text for shipment (de-tab, trim trailing spaces) ∗/
static bool checkText = false ; /∗ Check text for shipment ∗/
static bool verbose = false ; /∗ Print verbose processing information ∗/

§147 ETSET APPLICATION PLUMBING 99

147. Procedure usage prints how-to-call information. This serves as a reference for the option processing
code which follows. Don’t forget to update usage when you add an option!
〈Global functions 147 〉 ≡

static void usage (void)
{

cout � PRODUCT � " −− Typeset ISO 8859 Latin−1 Etext. Call\n";
cout � " with " � PRODUCT � " [input [output]]\n";
cout � "\n";
cout � "Options:\n";
cout � " −−ascii−only Permit only 7−bit ASCII characters in input\n";
cout � " −−babel lang Use LaTeX babel package for lang\n";
cout � " −−check Check text for publication\n";
cout � " −−clean Clean: expand tabs, remove trailing white space\n";
cout � " −−copyright Print copyright information\n";
cout � " −−debug−parser file Write parser debugging log to file\n";
cout � " −−dos−characters Translate MS−DOS characters to ISO 8859\n";
cout � " −−flatten−iso Flatten ISO 8859−1 8−bit codes to ASCII\n";
cout � " −−french−punctuation Use nonbreaking spaces for French punctuation\n";
cout � " −−help, −u Print this message\n";
cout � " −−html, −h Generate HTML\n";
cout � " −−latex, −l Generate LaTeX\n";
cout � " −−palm, −p Generate Palm" REGISTERED_SIGN " Reader document\n";
cout � " −−save−epilogue file Save epilogue in file\n";
cout � " −−save−prologue file Save prologue in file\n";
cout � " −−single−file Single file for HTML output\n";
cout � " −−special−strip Strip format−specific special commands\n";
cout � " −−verbose, −v Print processing information\n";
cout � " −−version Print version number\n";
cout � "\n";
cout � "by John Walker\n";
cout � "http://www.fourmilab.ch/\n";

}
This code is used in section 6.

100 APPLICATION PLUMBING ETSET §148

148. We use getopt long to process command line options. This permits aggregation of single letter
options without arguments and both −darg and −d arg syntax. Long options, preceded by −−, are provided
as alternatives for all single letter options and are used exclusively for less frequently used facilities.
〈Process command-line options 148 〉 ≡

static const struct option long options [] = {
{"ascii−only", 0,Λ, 210},
{"babel", 1,Λ, 202},
{"check", 0,Λ, 209},
{"clean", 0,Λ, 208},
{"copyright", 0,Λ, 200},
{"debug−parser", 1,Λ, 205},
{"dos−characters", 0,Λ, 213},
{"flatten−iso", 0,Λ, 212},
{"french−punctuation", 0,Λ, 203},
{"help", 0,Λ, ’u’},
{"html", 0,Λ, ’h’},
{"latex", 0,Λ, ’l’},
{"palm", 0,Λ, ’p’},
{"save−epilogue", 1,Λ, 206},
{"save−prologue", 1,Λ, 207},
{"single−file", 0,Λ, 204},
{"special−strip", 0,Λ, 211},
{"verbose", 0,Λ, ’v’},
{"version", 0,Λ, 201},
{0, 0, 0, 0}
};
int option index = 0;
while ((opt = getopt long (argc , argv , "hlpuv", long options ,&option index)) 6= −1) {

switch (opt) {
case 210: /∗ −−ascii−only Permit only 7-bit ASCII characters in input ∗/

asciiOnly = true ;
break;

case 202: /∗ −−babel language Use babel package with LATEX ∗/
babelon = true ;
babelang = optarg ;
break;

case 209: /∗ −−check Check complete text ready for publication ∗/
checkText = true ;
break;

case 208: /∗ −−clean Expand tabs, trim trailing white space ∗/
cleanText = true ;
break;

case 200: /∗ −−copyright Print copyright information ∗/
cout � "This program is in the public domain.\n";
return 0;

case 205: /∗ −−debug−parser file Write parser debug output file ∗/
debugParser = true ;
debugParserFile = optarg ;
break;

case 213: /∗ −−dos−characters Translate MS-DOS character set to ISO 8859-1 ∗/
dosCharacters = true ;
break;

§148 ETSET APPLICATION PLUMBING 101

case 212: /∗ −−flatten−iso Flatten ISO 8859-1 8-bit codes to ASCII ∗/
flattenISOchars = true ;
break;

case 203: /∗ −−french−punctuation French-style spacing for punctuation ∗/
frenchPunct = true ;
break;

case ’h’: /∗ −h, −−html Generate HTML output ∗/
ofmt = HTML;
break;

case ’l’: /∗ −l, −−latex Generate LATEX output ∗/
ofmt = LaTeX ;
break;

case ’p’: /∗ −p, −−palm Generate Palm Reader document ∗/
ofmt = Palm ;
break;

case 206: /∗ −−save−epilogue file Save epilogue in file ∗/
saveEpilogueFile = optarg ;
break;

case 207: /∗ −−save−prologue file Save prologue in file ∗/
savePrologueFile = optarg ;
break;

case 204: /∗ −−single−file Single file HTML output ∗/
singleFileHTML = true ;
break;

case 211: /∗ −−special−strip Strip special commands ∗/
specialStrip = true ;
break;

case ’u’: /∗ −u, −−help Print how-to-call information ∗/
case ’?’: usage ();
return 0;

case ’v’: /∗ −v, −−verbose Print processing information ∗/
verbose = true ;
break;

case 201: /∗ −−version Print version information ∗/
cout � PRODUCT " " VERSION "\n";
cout � "Last revised: " REVDATE "\n";
cout � "The latest version is always available\n";
cout � "at http://www.fourmilab.ch/etexts/etset\n";
cout � "Please report bugs to bugs@fourmilab.ch\n";
return 0;

default:
cerr � "***Internal error: unhandled case " � opt � " in option processing.\n";
return 1;

}
}

This code is used in section 141.

149. Some more global variables to keep track of file name arguments on the command line. . ..
〈Global variables 48 〉 +≡

static string infile = "−", /∗ ”-” means standard input or output ∗/
outfile = "−";

102 APPLICATION PLUMBING ETSET §150

150. If no file names are specified on the command line, we act as a filter from standard input to standard
output. An input and output file name may be specified. For HTML format output, both input and output
file names must be given.
〈Parse command-line file arguments 150 〉 ≡

for (i = optind ; i < argc ; i++) {
cp = argv [i];
switch (f) {
case 0: infile = cp ;

f ++;
break;

case 1: outfile = cp ;
f ++;
break;

default: cerr � "Too many file names arguments specified.\n";
return 2;

}
}
if ((ofmt ≡ HTML) ∧ ((f < 2) ∨ (outfile ≡ "−"))) {

cerr � "Must specify output file name for HTML.\n";
return 2;

}
〈Check for input and output files the same 151 〉;

This code is used in section 141.

§151 ETSET APPLICATION PLUMBING 103

151. One of the most common (and disastrous) fat-fingers in invoking this program is specifying the same
name for the input and output file. If undetected, the open of the output file will truncate the input file,
destroying it. Here we check for this condition and, if it obtains, bail before doing any damage. We don’t
perform this check for HTML format output, since HTML generates its own file names based on the specified
basename, and it’s implausible that the input file would have the extension .html. Obviously, if input or
output is standard I/O, we needn’t perform this check.

On systems with a Unix-like stat function, if the input and output files both exist, we compare the device
and inode numbers to check for aliased file names (due to hard or symbolic links, or a specification such as
“./zot.txt”.
〈Check for input and output files the same 151 〉 ≡

if ((ofmt 6= HTML) ∧ (f ≡ 2) ∧ (infile 6= "−") ∧ (outfile 6= "−")) {
bool io dup = false ;
if (infile ≡ outfile) {

io dup = true ; /∗ File names lexically equal ∗/
#ifdef HAVE_STAT

}
else {

struct stat instat , outstat ;
if ((stat (infile .c str (),&instat) ≡ 0) ∧ (stat (outfile .c str (),

&outstat) ≡ 0) ∧ (instat .st dev ≡ outstat .st dev) ∧ (instat .st ino ≡ outstat .st ino)) {
io dup = true ;

}
#endif

}
if (io dup) {

cerr � "Input and output may not be the same file.\n";
return 2;

}
}

This code is used in section 150.

104 CHARACTER SET DEFINITIONS AND TRANSLATION TABLES ETSET §152

152. Character set definitions and translation tables.
The following sections define the character set used in the program and provide translation tables among

various representations used in formats we emit.

§153 ETSET ISO 8859-1 SPECIAL CHARACTERS 105

153. ISO 8859-1 special characters.
We use the following definitions where ISO 8859-1 characters are required as strings in the program. Most

modern compilers have no difficulty with such characters embedded in string literals, but it’s surprisingly
difficult to arrange for Plain TEX (as opposed to LATEX) to render them correctly. Since CWEB produces
Plain TEX, the path of least resistance is to use escapes for these characters, which also guarantess the
generated documentation will work on even the most basic TEX installation. Characters are given their
Unicode names with spaces and hyphens replaced by underscores. Character defined with single quotes as
char have named beginning with C_.
#define REGISTERED_SIGN "\xAE"

#define C_LEFT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK #AB
#define C_RIGHT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK #BB
#define RIGHT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK "\xBB"

106 LATEX REPRESENTATION OF ISO GRAPHIC CHARACTERS ETSET §154

154. LaTeX representation of ISO graphic characters.
The following table is indexed by ISO codes 161 to 255, and gives the LATEX rendering of the ISO character.

Using this table permits compatibility with even the oldest LATEX versions but, if you’re preparing documents
in languages which extensively use the ISO character set, it’s much wiser to use the −b language option to
enable the babel package for the specified language.
〈Global variables 48 〉 +≡

static const char ∗const texform [] = {"!‘", "\\makebox{\\rm\\rlap/c}", "\\pounds", "$\\otimes$",
"\\makebox{\\rm\\rlap Y{\\hspace*{0.07em}\\scriptsize =}}", "$|$", "{\\S}", "\\\"{}",
"{\\copyright}", "\\b{a}", "{\\raisebox{0.3ex}{\\tiny$\\ll$~}}", "$\\neg$", "$−$",
"{\\ooalign{\\hfil\\raise.07ex\\hbox{\\sc r}\\hfil\\crcr\\mathhexbox20D}}", "−",
"$^{\\circ}$", "$\\pm$", "2", "3", "\\’{}", "$\\mu$", "{\\P}", "$\\cdot$", "\\c{}",
"1", "\\b{o}", "{\\raisebox{0.3ex}{\\tiny~$\\gg$}}", "{\\small $1/4$}",
"{\\small $1/2$}", "{\\small $3/4$}", "?‘", "\\‘{A}", "\\’{A}", "\\^{A}", "\\~{A}",
"\\\"{A}", "{\\AA}", "{\\AE}", "\\c{C}", "\\‘{E}", "\\’{E}", "\\^{E}", "\\\"{E}", "\\‘{I}",
"\\’{I}", "\\^{I}", "\\\"{I}", "Eth", "\\~{N}", "\\‘{O}", "\\’{O}", "\\^{O}", "\\~{O}",
"\\\"{O}", "$\\times$", "{\\O}", "\\‘{U}", "\\’{U}", "\\^{U}", "\\\"{U}", "\\’{Y}", "Thorn",
"{\\ss}", "\\‘{a}", "\\’{a}", "\\^{a}", "\\~{a}", "\\\"{a}", "{\\aa}", "{\\ae}", "\\c{c}",
"\\‘{e}", "\\’{e}", "\\^{e}", "\\\"{e}", "\\‘{\\i}", "\\’{\\i}", "\\^{\\i}", "\\\"{\\i}",
"eth", "\\~{n}", "\\‘{o}", "\\’{o}", "\\^{o}", "\\~{o}", "\\\"{o}", "$\\div$", "{\\o}",
"\\‘{u}", "\\’{u}", "\\^{u}", "\\\"{u}", "\\’{y}", "thorn", "\\\"{y}"};

§155 ETSET MS-DOS CODE PAGE 850 TO ISO TRANSLATION TABLE 107

155. MS-DOS code page 850 to ISO translation table.
The following table translates characters in the MS-DOS code page 850 set to the ISO 8859-1 set we

work with. This table is included from an external file because its comments use ISO characters which are
painful to express in Plain TEX and, in any case, the translation table is of interest only to historians, geeks,
and folks chasing bugs therein. The include file defines the array cp850 to ISO which may be used as a
translation table with convertForeignCharacterSetToISOFilter.
〈Global variables 48 〉 +≡
#include "cp850.h"

108 FLAT 7-BIT ASCII APPROXIMATION OF ISO CHARACTERS ETSET §156

156. Flat 7-bit ASCII approximation of ISO characters.
The following table is indexed by ISO codes 160 to 255, (#A0–#FF) and gives the flat ASCII rendering of

each ISO character. For accented characters, these are simply the characters with the accents removed; for
more esoteric characters the translations may be rather eccentric.
〈Global variables 48 〉 +≡ /∗ Latin 1/Unicode Hex Description ∗/

static const char ∗const flattenISO [] = {" ", /∗ #A0 Non-breaking space ∗/
"!", /∗ #A1 Spanish open exclamation ∗/
"cents", /∗ #A2 Cent sign ∗/
"GBP", /∗ #A3 Pounds Sterling ∗/
"$", /∗ #A4 Universal currency symbol ∗/
"JPY", /∗ #A5 Japanese Yen ∗/
"|", /∗ #A6 Broken vertical bar ∗/
"Sec.", /∗ #A7 Section sign ∗/
"’’", /∗ #A8 diaeresis ∗/
"(C)", /∗ #A9 Copyright ∗/
"a", /∗ #AA Spanish feminine ordinal indicator ∗/
"<<", /∗ #AB Left pointing guillemet ∗/
"NOT", /∗ #AC Logical not ∗/
"", /∗ #AD Soft (discretionary) hyphen ∗/
"(R)", /∗ #AE Registered trademark ∗/
"−", /∗ #AF Overbar ∗/
"o", /∗ #B0 Degree sign ∗/
"+/−", /∗ #B1 Plus or minus ∗/
"^2", /∗ #B2 Superscript 2 ∗/
"^3", /∗ #B3 Superscript 3 ∗/
"’", /∗ #B4 Acute accent ∗/
"mu", /∗ #B5 Micro sign ∗/
"PP.", /∗ #B6 Paragraph sign ∗/
".", /∗ #B7 Middle dot ∗/
",", /∗ #B8 Spacing cedilla ∗/
"^1", /∗ #B9 Superscript 1 ∗/
"o", /∗ #BA Spanish masculine ordinal indicator ∗/
">>", /∗ #BB Right pointing guillemet ∗/
"1/4", /∗ #BC Fraction one quarter ∗/
"1/2", /∗ #BD Fraction one half ∗/
"3/4", /∗ #BE Fraction three quarters ∗/
"?", /∗ #BF Spanish open question ∗/
"A", /∗ #C0 Accented capital A grave ∗/
"A", /∗ #C1 acute ∗/
"A", /∗ #C2 circumflex ∗/
"A", /∗ #C3 tilde ∗/
"A", /∗ #C4 diaeresis ∗/
"A", /∗ #C5 Capital A ring / Angstrom symbol ∗/
"Ae", /∗ #C6 Capital Ae ∗/
"C", /∗ #C7 Capital C cedilla ∗/
"E", /∗ #C8 Accented capital E grave ∗/
"E", /∗ #C9 acute ∗/
"E", /∗ #CA circumflex ∗/
"E", /∗ #CB diaeresis ∗/
"I", /∗ #CC Accented capital I grave ∗/
"I", /∗ #CD acute ∗/
"I", /∗ #CE circumflex ∗/

§156 ETSET FLAT 7-BIT ASCII APPROXIMATION OF ISO CHARACTERS 109

"I", /∗ #CF diaeresis ∗/
"Th", /∗ #D0 Capital Eth ∗/
"N", /∗ #D1 Capital N tilde ∗/
"O", /∗ #D2 Accented capital O grave ∗/
"O", /∗ #D3 acute ∗/
"O", /∗ #D4 circumflex ∗/
"O", /∗ #D5 tilde ∗/
"O", /∗ #D6 diaeresis ∗/
"x", /∗ #D7 Multiplication sign ∗/
"O", /∗ #D8 Capital O slash ∗/
"U", /∗ #D9 Accented capital U grave ∗/
"U", /∗ #DA acute ∗/
"U", /∗ #DB circumflex ∗/
"U", /∗ #DC diaeresis ∗/
"Y", /∗ #DD Capital Y acute ∗/
"Th", /∗ #DE Capital thorn ∗/
"ss", /∗ #DF German small sharp s ∗/
"a", /∗ #E0 Accented small a grave ∗/
"a", /∗ #E1 acute ∗/
"a", /∗ #E2 circumflex ∗/
"a", /∗ #E3 tilde ∗/
"a", /∗ #E4 diaeresis ∗/
"a", /∗ #E5 Small a ring ∗/
"ae", /∗ #E6 Small ae ∗/
"c", /∗ #E7 Small c cedilla ∗/
"e", /∗ #E8 Accented small e grave ∗/
"e", /∗ #E9 acute ∗/
"e", /∗ #EA circumflex ∗/
"e", /∗ #EB diaeresis ∗/
"i", /∗ #EC Accented small i grave ∗/
"i", /∗ #ED acute ∗/
"i", /∗ #EE circumflex ∗/
"i", /∗ #EF diaeresis ∗/
"th", /∗ #F0 Small eth ∗/
"n", /∗ #F1 Small n tilde ∗/
"o", /∗ #F2 Accented small o grave ∗/
"o", /∗ #F3 acute ∗/
"o", /∗ #F4 circumflex ∗/
"o", /∗ #F5 tilde ∗/
"o", /∗ #F6 diaeresis ∗/
"/", /∗ #F7 Division sign ∗/
"o", /∗ #F8 Small o slash ∗/
"u", /∗ #F9 Accented small u grave ∗/
"u", /∗ #FA acute ∗/
"u", /∗ #FB circumflex ∗/
"u", /∗ #FC diaeresis ∗/
"y", /∗ #FD Small y acute ∗/
"th", /∗ #FE Small thorn ∗/
"y" /∗ #FF Small y diaeresis ∗/
};

110 RELEASE HISTORY ETSET §157

157. Release history.

Release 1: August 1993

Initial release, accompanied De la Terre à la Lune. Supported LATEX output only. The program was called
ETLATEX in this release.

Release 2: December 1996

Added support for HTML, generating a document tree consisting of an index and one document per chapter
with navigation links. Added support for French-style punctuation. This release accompanied the Etext of
Le Tour du Monde en 80 Jours. The program was renamed ETSET as of this release.

Release 2.1: December 1996

Added the ability to “flatten” 8-bit ISO characters to their closest 7-bit ASCII representation for dumb
terminals which cannot display accented characters and an option to warn if the Etext contains any non-ISO
characters.

Release 3: September 2001

Essentially rewritten as a C++/STL application in Knuth’s “Literate Programming” paradigm.

Added support for Palm Markup Language (PML) output.

HTML output may now be written as a single file containing all chapters as well as a document tree with
one chapter per file.

LATEX output may now invoke the babel package for language-specific formatting and use ISO 8859-1
characters in the LATEX input.

Each output format now permits “special” format-specific commands to be embedded in a master Etext. The
interpretation of these commands is up to the code which generates each output format; common applications
are passing commands transparently through to the output to include images, etc., and substituting strings
in the Etext for format-specific encodings which better represent the original document.

Tools for preparers of Etexts are provided including facilities to syntax check documents, strip format-
specific special commands, prologues, and epilogues, convert text to canonical form by expanding tab stops
and deleting trailing white space, and more.

This release was coincident with, but not embedded in, the Etext of Autour de la Lune.

Release 3.1: May 2005

Revised HTML generation to be compliant with XHTML 1.0 and replace GIF navigation images with PNG
files.

Migrated the WIN32 version from DJGpp to Microsoft Visual C++.NET.

§158 ETSET DEVELOPMENT LOG 111

158. Development log.

2001 August 30

What with commencing the cleanup and debug phase, particularly in the output format specific parts where
it’s easy to fix something in one format and forget to make corresponding changes in the other, time has
come to start a development log. So here goes.

Renamed the flag which controls French-style spacing around punctuation as the more appropriate frenchPunct
(this is enabled by the −f command line option) and fixed numerous bugs in handling it on both the LATEX
and HTML sides. LATEX now uses a smaller font for the nonbreaking space before punctuation. Note that
with the new guillemets there is no need for a special case for spacing after an open guillemet in LATEX, but
HTML must still test for this condition.

Added support for chapter numbers in HTML single file output. Chapter separators may contain a chapter
number, chapter name, or neither. If the separator contains only a number or a name, no rule is generated.
Otherwise, a rule separates the chapter number and name or suffices as the entire chapter separator.

Added code to handle multi-line title, author, chapter number, and chapter name specifications for HTML
format output. This was already implicitly handled for LATEX since all of these items wrap the body in a
declaration which may span multiple lines.

We don’t permit nested [footnotes] and, although they actually happen to work in LATEX, they don’t in
HTML. Added a check for this in HTML output which issues a warning for nested footnotes or end footnote
brackets when no footnote is open.

Added a check for close footnote bracket with no footnote open in LATEX output as well.

Installed a very nice rendering of footnotes in single file HTML as right aligned tables the text which
contained the footnote flowed around, then immediately ripped it right out again (actually, disabled on
“#ifdef NETSCRAPE_SUCKS” because of the old bugeroo which bit us way back in “Guns in Space”—any
floating object causes Netscrape to forget about a running style, with the result that the page margins are
lost at the end of the floating object and thereafter. I know of no work-around for this, so I replaced the
nice code with ugly code which simply renders the footnote in-line in a smaller sans-serif font with a light
yellow background. Even that Netscrape can’t completely cope with; when it’s adding space to justify a
line of text, it forgets about the background-color of the font and adds the justification space in the page
background colour instead.

2001 August 31

Moved code which creates the GIF navigation buttons into static methods of HTMLGenerationSink.
createNavButton creates a single button, and createNavButtons writes the lot. The embedded definitions of
the buttons are now static variables local to createNavButtons .

Changed definition of button embedded file arrays to “const”, occasioning the usual C++ hoo-rah all around
the program.

Added buttons.h,.config.h, and getopt.h to the dependencies of etset.c in Makefile.in.

Added a createNavigationPanel method to HTMLGenerationSink to generate the nevigation panel for a
chapter. It’s called with the numbers of the previous and next chapters (zero if none exist and a greyed-out
button should be generated). Note that the look-ahead required to grey out the next button in the last
chapter is not yet implemented—at the moment it blindly makes a bad link to a nonexistent chapter.

Integrated the GNU Getopt (getopt.c, getopt.h, getopt1.c) from the fileutils−4.1 distribution (lib
directory). This version supports long options with automatic disambiguation. Since it’s covered by the
GPL, I included a copy of the GPL as COPYING.GNU and added a mention of the status of these files to the
main COPYING statement. Updated the Makefile.in to add the new files to the build and release targets.

112 DEVELOPMENT LOG ETSET §158

(The release target is almost certainly out of date in other ways and will need to be reviewed when we’re
closer to releasing the thing.)

Replaced explicit 8-bit ISO 8859-1 characters in string literals with references to defined constants based on
their Unicode name which express them as escaped hexadecimal characters or strings. While most compilers
have no problems with such characters in character or string constants, getting Plain TEX to display them
is quite a challenge and won’t necessarily work on an old or very basic TEX installation. Since the case only
comes up a few times, the path of least resistance is to quote them and be safe.

Cleaned up some unreferenced variables and signed/unsigned natters identified by a −Wall build.

In multi-file HTML documents, the HTML <title> of the chapter documents is now the title of the work
with the chapter number (if any) appended following a colon. The earlier practice of using the chapter title
looked dumb.

Modified chapter title generation for multi-file HTML to use the chapter number, rule, and chapter name
logic as used for single file documents. I kept the code separate because it uses a different level of heading
and we’ll probably want to tweak it further when aesthetical fine tuning is in order.

Output of the document title, author, and chapter numbers and names in HTML documents was not
applying HTML translation, only quoting. This caused markup such as italics not to be honoured. I
added translateHTMLString calls where these items are output to the documents as text. Note that we
don’t want to store these items in memory in translated form as there are circumstances in which we need
them free of HTML mark-up, for example in the <title> section of the <head> and as arguments in <meta>

items.

Got rid of the last old-style C I/O in the command line option handler; it’s all C++ streams now.

Generation of the document preamble in LATEX was getting a tad long to be embedded in the main case
statement. I broke it out into its own section.

2001 September 1

Implemented prejustified tables. A prejustified table begins with a line which begins in column 3 and contains
at least one sequence of three or more spaces between two nonblank substrings. This, and subsequent lines
until the next blank line are to be rendered as-is, in a fixed width font to preserve alignment. Added
documentation for this to etsetfmt.w and the adlune.txt test Etext, and supported it with a verbatim

environment in LATEX and <pre> in HTML. Interpretation of control codes within the text are to be
suppressed in tables. I think this is correct now in LATEX, but it needs more testing in HTML.

Fixed a nasty bug in alignment classification where isspace () was considering ISO characters as blank. We
need to eliminate all isspace () calls and replace with explicit tests for blank (once we know white space has
been expanded) or for ASCII white space, being careful not to be fooled by sign-extended characters on
machines where char is signed.

Changed Makefile.in build commands for “configurator” to assume a standard installation of autoconf
as opposed to the weird environment on Jura. There’s no need to specify an explicit path for the macro
library unless it’s somewhere other than where autoconf expects it to be (usually /usr/share/autoconf).

Deleted a bunch of excess baggage from configure.in.

The Makefile.in did not previously distinguish between C and C++ source files. This was no problem until
we integrated the GNU getopt , which will not build with a C++ compiler as it contains KR style function
declarations. I added logic to Makefile.in to consider files with an extension of .cc as C++ and .c as C,
using the appropriate compiler, and a target to produce a .cc file from a CWEB .w file by processing it with
CTANGLE then renaming the resulting .c file as .cc. (Any additional files produced from the .w can specify
their extensions explicitly, but this allows using the default output of CTANGLE.)

Added logic to configure.in to set PAGER to less, more, or cat, in that order, depending on which are
present.

§158 ETSET DEVELOPMENT LOG 113

Converted command line option processing to use getopt long and provided long option alternatives for all
existing single letter options. Updated usage to document the new long options.

2001 September 2

Added logic to auditFilter to detect when lines belong to a preformatted table and permit embedded spaces
in them.

Added a check to auditFilter which warns when a line judged to be centred by etextBodyParserFilter ::
classifyLine has a discrepancy of more than 2 between the number of spaces at the left and the right
(considering the line to extend to maxLineLength characters). In addition to ugly centring in the Etext, this
will catch many errors in aligning block quotes and ragged left and right text.

Installed logic to dynamically assemble the processing pipeline with dynamically allocated components where
required. A Plumb() macro in the main program now attaches each component to the end of the pipe,
advancing a pipeEnd pointer as it goes. You can, of course, still create static pipelines but this approach
provides the flexibility we’ll need to support all the various task options soon to be provided. For the first
time it’s actually possible to choose LATEX or HTML format output via the command line options!

Added a −−single−file option to enable single file HTML output. The default remains a document tree
with one file per chapter.

Added a −−debug−parser file option to enable parser debugging without any compile-time conditionals. If
set, a tee is inserted in the pipeline after the body parser with the secondary output directed to a parser
diagnostic filter whose output in turn goes to a streamSink which writes the parser debug log to the
specified file.

Added the ability to direct the prologue and epilogue of the input file to designated output files. The
−−save−prologue and −−save−epilogue options both take a file argument designating where that section
of the input is written. These may be the same file name, in which case the prologue and epilogue are
concatenated to the same file.

Added the ability to configure auditFilter for which tests should be performed on text it processes. A
new optional argument to the constructor (default is all tests enabled) accepts a bit map of enum type
audit criteria, defined public in the class definition. You may also set the criteria with setAuditCriteria
and return them with getAuditCriteria .

Implemented footnote support in multi-file HTML output. When the first footnote is encountered, a footnote
document named basename foot.html is created. Each footnote in the document is given an ascending
number, which is used as a link in the main document (as a superscript number) which points to a fragment
tag in the footnote document. Footnotes are separated by blank lines in a <pre> tag so the selected footnote
will appear at the top of the page. The footnote document is opened with a target window of basename foot ,
so the main document continues to be displayed in browsers which support targeted links.

2001 September 3

Added a “−−clean” option to perform final cleanup and canonicalisation of a complete Etext prior to
publication. This processes the entire input, ignoring section breaks, and expands tabs to spaces, removes
trailing white space, and audits the result for trailing blanks and embedded tabs (as an internal sanity
check), lines which exceed the maximum length, and invalid characters. The higher-level body-only auditing
is not done since the prologue and epilogue need not and usually will not conform to the specifications for
the body. Output is to the second argument on the command line or standard output if it is omitted (just
like LATEX output), and error messages are directed to standard error.

Added a “−−check” option which assumes the input is in the canonical ready-to-publish form produced
and verified by the “−−clean” option; any text produced by −−clean with no warnings should produce no
warnings when run with −−check. The text is examined for trailing space, embedded tabs, lines which exceed
the maximum length, and invalid characters. There is no output other any warning message, if any, which

114 DEVELOPMENT LOG ETSET §158

are written to standard output. Before publishing a text, it’s always a good idea to verify it with −−check,
since it’s only too easy when making last minute edits to embed a tab which may mess up formatting on a
reader’s system with different assumptions about tab stops.

Modified auditFilter so lines containing embedded tabs diagnosed when embedded tabs is set in the auditing
criteria are not double reported as having invalid characters. Also, all embedded tabs are now reported, not
just the first one in the line.

Added a quoteArbitraryString function to auditFilter, used when printing lines which merit diagnostic
messages. This function expands all characters which fail the isCharacterPermissible test to their C \xNN
escape form so non-graphic characters are rendered visible and nondestructive. In addition, blanks appearing
at the end of lines are quoted as \x20 so they’re apparent.

Added logic to HTMLGenerationSink to cache lines of a chapter in a queue until either the start of
the next chapter is encountered or the end of document is reached. Only after we know whether a chapter
actually follows the current chapter do we generate the chapter’s HTML file. This permits disabling the
“next” button for the last chapter, as opposed to allowing the user to click it only to receive a broken link
as a reward.

2001 September 4

Added “const” to declarations of several read-only tables.

Disabled generation of the footnote navigation button on “#ifdef FOOTNOTE_BUTTON_NEEDED”. At the
moment we use a superscript footnote number instead of this button.

Implemented support for “special commands”. A special command appears in the document body like a
regular line of text and obeys the same justification rules. Only one special command may appear on a line,
and each as the format:

<><><>Special:FORMAT ...Format-specific text...<><><>

where FORMAT identifies which output format this special command pertains to, for example “HTML” or
“LaTeX”. By default, etextBodyParserFilter strips all special commands from text before passing it
downstream. To receive special commands for a given format FMT, the setSpecialFilter method of the body
parser should be used to specify the format desired; special commands for other formats will continue to be
elided. To receive all special commands, set the special filter to “*”.

Implemented a special command handler in HTMLGenerationSink which simply passes through the
body of the special to the output HTML file unquoted (this will be the way most format handlers implement
specials). This permits including figures in a document with a special like:
<><><>Special:HTML <><><>

Note that the figure will form part of a paragraph with whatever alignment is specified by the justification
of the special. You can, of course, override this by including explicit HTML tags within the body of the
special.

Added code to command line parsing to verify that the input and output files aren’t the same, which would
disastrously truncate the input file before it was even read. If the output format is not HTML, two names
are given, and neither is standard I/O, we first test if they’re lexically equal and, if not and we’re running
on a system which supports Unix stat (), we test for identical device and Inode numbers to protect against
aliased files.

Added the concept of a “Declarations” section consisting entirely of special commands which appear before
the title (or first chapter, or whatever—at the top of the document). Declarations begin with the first special
command encountered prior to the title and continue until a non-special is encountered. (Note that specials
not pertaining to the downstream components are already filtered out before this processing is performed.)
The block of declarations is emitted between Begin and End brackets with each declaration bearing a Body

bracket in the same manner as any other text block. If multiple sequences of consecutive specials appear,

§158 ETSET DEVELOPMENT LOG 115

separated by blank lines, they will be output as multiple declaration blocks, each with its own Begin and
End brackets.

Added support for declarations in LaTeXGenerationFilter. Declarations are output in the document
preamble, prior to the \begin{document} statement. This allows declarations to include packages and make
declarations in the global document context. For example:

<><><>Special:LaTeX \usepackage{graphics}<><><>
<><><>Special:LaTeX \newcommand{\fig}[1]{\resizebox{8cm}{!}<><><>
<><><>Special:LaTeX {\includegraphics{figures/#1.epsf}}}<><><>

Note how long specials may be split onto multiple lines as long as the target language permits such syntax.

2001 September 5

Added enableAuditCriteria and disableAuditCriteria methods to auditFilter to set and clear bit masks in
the audit criteria mask.

Exempted special commands from line length and improper centring checks in auditFilter.

Configured auditFilter to permit special commands in texts being translated to LATEX and HTML.

Added a −−verbose (or −v) option to enable gabby chatter about what’s going on to standard output.

Added −−verbose mode output to show the number of lines written to a LATEX file and each HTML file
generated.

Added a permit 8 bit ISO characters mode to the audit criteria of auditFilter (so-phrased so it’s enabled
if you use the default of “everything”), and a new command line option “−−ascii−only” which clears this
mode when building the pipeline. If you require the text to be exclusively 7-bit, you can verify it using
this option. The option works in conjunction with the −−check and −−clean options as well as those which
translate the text.

Added a stripSpecialCommandsFilter which removes all special commands from the stream. If elision
of special commands would result in two consecutive blank lines, the blank line following the special(s) is
deleted as well. A new “−−special−strip” option interposes this filter after the trailing white space and
tab expansion filters (or directly after the input source if these filters are suppressed by the −−check option).
The stripping of specials may then be applied when producing a text for publication with the −−clean

option, or when formatting the text.

2001 September 6

Added <link> tags to the header of chapter documents in multiple file HTML to indicate the parent/child
relationship between the chapters and the index document and the next/previous relationships among
chapters.

Added <meta> “description” and “author” tags to header section of all HTML documents for which a
title and author were specified.

Implemented declarations in HTML. Special declarations which appear before the title are saved in a
dqueue “declarationsQueue” and then output prior to the </head> tag by writeHTMLDocumentPreamble .
Declarations are transcribed verbatim to each HTML file generated. You may include as many lines as you
wish in the header simply by providing as many consecutive declaration lines.

The check for extra embedded spaces in auditFilter should have been suppressed for special commands. It
is now.

2001 September 7

Added a –flatten-iso option which interposes a flattenISOCharactersFilter in the pipeline. This filter
translates 8-bit ISO characters to the nearest 7-bit ASCII equivalent, stripping accents from letters and

116 DEVELOPMENT LOG ETSET §158

representing punctuation as best as possible. This filter may be used to extract a flattened Etext with the
−−check option, or to flatten input prior to formatting.

If a document title is specified, it will now appear centred at the top of each HTML chapter document, with
the navigation buttons at the right.

If chapter numbers are specified, they will be used to identify chapters in the index document created for
multiple file HTML output as the terms in a definition list. Both the terms and the definitions (chapter
titles) are linked to the chapter documents. If no chapter number is given, its chapter number (1 · · ·n) is
used, followed by a period.

The incompatibility brigade having set its sights on the humble <DL COMPACT> tag (why would you need a
list user-supplied items and descriptions appearing on the same line, after all?), I gave up and made the
chapter table in the muultiple file HTML index document a <TABLE>. After sufficient tweaking, it appears
to behave reasonably in Netscrape and Mozilla. I have yet to subject it to the tender embrace of Exploder.

When generating multiple file HTML, if a special appeared between the title/author and the first chapter
number/name item, it would be placed within the table of chapters. This isn’t what you want—such specials
are likely to be figures at the start of the document or some such, and shouldn’t have to conform to the
constraints of being embedded in the chapter table. I deferred generating the start of the chapter table until
the first chapter title is encountered (at the same time the navigation buttons are written), shifting specials
to before the start of the table.

Added a bogus column to the chapter table in the multiple file HTML index document to separate the
chapter number from the chapter title.

2001 September 8

Converted this development log into TEX in a log.w file which is included in etset.w so it’s automatically
formatted when the program is printed. I added log.w and etsetfmt.w as dependencies of etset.tex in
Makefile.in.

2001 September 9

Added documentation of the command line and options to the top of etset.w.

Deleted code conditional on OLD_GUILLEMETS—the new ones are so much prettier.

Implemented a “Substitution” special command for LATEX. A text line of the form:
<><><>Special:LaTeX Substitute /oeil/\oe il/<><><>

will substitute the text within the second set of delimiters (which may be any character) for the text within the
first, wherever it may occur. Substitution is not recursive—substituted text is not re-scanned for occurrences
of the same substitution. Note that substitutions are applied in quoteLaTeXString after all transformations
from the original text to LATEX are applied; this provides the maximum flexibility for overriding the default
translation of text.

Absent any widely-available rendering engine for mathematics, we don’t translate mathematics into HTML—
it is simply output in its LATEX representation. Since editors of HTML documents will usually wish to replace
this gnarl with images of the typeset equation produced with tools such as

TEXtoGIF

I added code to typeset mathematics in pink <table> boxes to make them more apparent when proofreading
the document.

2001 September 16

Added code to PalmGenerationFilter ::quotePalmString to quote all non-ASCII characters as \axxx
escapes; the documentation doesn’t make this clear, but it is required unless you fancy a warning message
for each and every ISO character.

http://www.fourmilab.ch/webtools/textogif/

§158 ETSET DEVELOPMENT LOG 117

Fixed an error in generating ellipses for Palm Reader documents; a little left-over code from LATEX generation
was resulting in the pesky “Illegal control code: \” messages.

Added code to re-format paragraphs in Palm Markup Language in “one line per paragraph” as it expects.
At the moment only justified paragraphs are so-formatted.

Removed pre-existing indentation before title, author, and chapter titles. Multi-line chapter titles are
aggregated onto a single line.

2001 September 17

Palm output wasn’t properly keeping track of math mode, which resulted in TEX subscript symbols being
treated as italic toggles, completely messing up subsequent text. Even though we don’t do anything with
math mode, we need to keep track of whether or not we’re in it, as it affects quoting of characters therein.

Added a blank line before chapter breaks in Palm Markup Language output. It doesn’t affect the generated
Palm document, but it makes it a lot easier to scan through the PML text when looking for problems.

Pruned existing indentation when generating an aligned paragraph for PML. PML treats indentation as
text characters when justifying the line, which messes up the intended alignment. A special case is required
for preformatted tables, since we cannot blindly strip significant indentation which follows the two character
indentation which marks the table; for tables only the first two blanks are stripped. Note that this behaviour
is slightly different from that of LATEX and HTML output where the table indentation is preserved and it
would be possible to have a table containing lines with nonblank characters in the first or second columns of
lines subsequent to the first. While this might be nice, two lost characters are a horrible price to pay on the
cramped Palm screen which has difficulty fitting aligned tables of any kind, so as a compromise I strip the
first two characters of any line so long as they are blank, but preserve the leading two characters if either is
nonblank. Yes, this may misalign a table, but in the vast majority of cases it will provide the best rendering
of the author’s intent. Since Palm Reader doesn’t presently support a monospaced font option, there’s no
hope of properly aligning preformatted tables in any case—the author is going to have to do it by hand with
the \T= tag after the PML is generated.

Tweaked generateAlignedParagraph for Palm output to cope with an eccentricity of PML paragraph justifi-
cation tags. The tags ending centred and right justified paragraphs must appear at the start of a line, but
the tag ending an intended block quote must be at the end of the last line. If you place it at the start of a
new line, you end up with an extra line after the paragraph. We now cope with this, buffering text one line
ahead in the case of a block quote so the closing tag may be appended when the End bracket is encountered.

Note: Palm MakeBook and DropBook don’t like chapter titles which exceed 80 characters, and issue a warning
(or “error” in the case of MakeBook) which suggests that chapter markers may be unpaired. The chapter
title is, nonetheless, properly rendered in the document and truncated with an ellipsis in the go to chapter
form. (Note that chapter titles much shorter than 80 character will usually be truncated in this form as
well.) I leave such titles intact, since it’s better to put up with a warning than lop them off or include some
kind of kludge which would render poorly when the document is read.

One more little twist with block quotes: naturally they too should be output one paragraph per line with a
\t before and after; I diddled the code to accomplish this, which actually simplified it. I may make this a
special case of generating a justified text paragraph rather than generateAlignedParagraph , since the logic
now more closely resembles the former.

Made the pruneIndent , elideNewLines , and linesIn private helper methods of HTMLGenerationSink
static; they don’t need no steenkin instance variables.

Implemented special commands and declarations for Palm output, including “Substitute” specials. Non-
substitution specials emit their text directly into the text being assembled and hence will be embedded in
the middle of a paragraph if they appear in regular text or a block quote. Declarations are output before
the start of the text and may be used for special titling.

118 DEVELOPMENT LOG ETSET §158

Spacing around guillemets in frenchPunct mode was broken due to yet another signed/unsigned char prob-
lem with the ISO guillemets which are, of course, negative when treated as a signed char. I changed the
definition to hexadecimal constants and anded char quantities which may be signed with #FF where appro-
priate to guarantee the comparison will be valid. This required corresponding changes in the frenchPunct
handling of LATEX and HTML generation as well. Since we need to quote all ISO characters for the Palm,
spacing around guillemets had to be handled separately in the 〈Quote ISO 8859-1 character in Palm 131 〉
handler. This actually simplified the code, since the case of punctuation followed by a right guillemet is
more clearly distinguished from guillemet handling itself.

Palm markup language prescribes a single space after punctuation, not two. I modified accrual in 〈Output
ASCII text character in Palm 139 〉 to check whether the last character in the string being assembled is
blank, if so the space is discarded. Note that this occurs when quoting document text, so you can still insert
multiple spaces in a special, should you need to. Naturally, we don’t do this within a preformatted table.

Ripped out the terminator argument from generateAlignedParagraph for the Palm—it was no longer used.

Replaced the old logic for generating body paragraphs with a new generateFilledParagraph method which
takes the same arguments and works in the same fashion as generateAlignedParagraph , but joins the lines
of the paragraph into a single line with optional markup tags at the start and end. This is now used to
generate body paragraphs (with null markup tags) and indented block quotes with \t tags. This allowed me
to eliminate all the special cases for block quotes from generateAlignedParagraph , dramatically simplifying
it.

2001 September 18

Modified Makefile.in’s clean target to delete *.pml files left around from testing.

Added a “reconfigure” target to Makefile.in to facilitate testing on multiple platforms. It deletes
config.cache, re-runs ./configure, then does a “make clean” using the newly-generated Makefile.

Split LATEX, HTML, and Palm generation into separate latex.w, html.w, and palm.w CWEB files, all included
in the main etset.w with the @i control code. This facilitates comparing code among formats since each
can be opened in a separate window as opposed to forever scrolling back and forth.

Had another go at persuading the Makefile to comprehend the fact that while CTANGLE writes a .c file, we
want to compile it as a .cc file. The last attempt would fail in a bizarre way if CTANGLE detected an error
and exited, leaving a .c file around, which the next make would attempt to compile with the C compiler
instead of C++.

Added a check to auditFilter, governed by audit criterion trailing hyphen , which checks for the common
sin in scanned documents of a hyphenated word which the editor has forgotten to join in the Etext. (Note
that each occurrence of a hyphen at the end of a line must be reviewed by the editor to determine whether
the hyphen was inserted between syllables or existed before the word was broken, as for example in “Franco-
Prussian”.) A trailing hyphen is reported only if it is preceded by a letter, including ISO accented letters. A
public static function, isISOletter is provided by auditFilter to other code which may need to determine
if a character is an ISO letter.

2001 September 19

Spent all day implementing footnotes in Palm Markup Language output. Well. . .to be more precise, I spent
about 15 minutes designing, implementing, and debugging how I intended footnotes to work, then the rest
of the day psychoanalysing DropBook (version 1.1.1) and bugs in Palm Reader (version 1.0.6), both versions
being the latest released as of this writing.

Footnotes in PML documents, like those in HTML, may not be nested—if nested footnotes appear in the
input text a warning is issued and the nested footnotes are simply included in the outermost footnote
surrounded by square brackets, just as in the input. When a footnote appears, a link is placed in the output
string being assembled by quotePalmString and a link is inserted, consisting of the footnote number enclosed

§158 ETSET DEVELOPMENT LOG 119

in square brackets, with link destination “fn” where n is the footnote number. An anchor named ‘bn” is
placed before the footnote link in the text; this permits returning from the footnote to the text in which it
appears.

Footnotes are placed in a pseudo-chapter added to the end of the document; to avoid language-specific
nomenclature, this chapter is named “1 2 3 . . .”. A page break appears before each footnote in this chapter,
and each footnote begins with its number and a period in bold type. At the end of the footnote text is a link
back to the body where the footnote appeared; the target of this link is the bold string “<<<”, once again
avoiding language-specificity. In case the clever notion of using guillemets for such a link pops into your
head, invite it to pop right back out—Palm Reader goes into gibber gibber land if it sees an ISO character
in a link target and starts scribbling all over system and unallocated memory. Maybe they’ll fix that some
day.

When the opening bracket of a footnote is encountered, the current encoded string being assembled by
quotePalmString is saved in footsave and the flag infoot is set. The text processing modes quoth and italics
are also saved and reset to their defaults at the start of a paragraph.

You’ll recall that generateFilledParagraph must concatenate lines into one monster line per paragraph or
else Palm Reader will faithfully start a new paragraph at each end of line, resulting in horrid looking text.
Consequently, it can’t call emit for each line of the body it receives, but must assemble lines into the
single line paragraph. As a result, it must also handle strings returned by quotePalmString with infoot set,
concatenating them itself into the footpar being assembled. Even though generateAlignedParagraph usually
emits quoted lines as they are completed, it still must assemble footnotes into a single line per footnote (we
assume each footnote is a single paragraph) so that lines will flow when it is displayed. Thus, when infoot
is set it concatenates footnote text returned by quotePalmString to footpar .

When the right bracket delimiting the end of a footnote (only the outermost, if they are nested) is encoun-
tered, the text assembled so far for this line is concatenated to that from earlier lines, if any, and the result,
with footnote number, anchor, and link back to the text where the footnote appeared is output, using emit
to append it to the master footnotes string. The partial translated string saved at the start of the footnote
is then restored, along with the text modes in effect at that time, and processing of normal text resumes.

2001 September 20

Bugged out last night without ever describing how footnotes actually make it into the PML output file.
When the closing bracket of a footnote is processed, the anchor and text accumulated in footpar is output
by calling the class-local version of emit which, with infoot set, appends its argument plus a new line to the
string footnotes rather than passing it down the pipeline. The back link from the footnote to the text is
similarly appended by calling emit . Finally, when the end of input is reached and we receive the EndOfText
item, all that need be done is to call emit (footnotes) with infoot false , which passes all the accumulated
footnotes down the pipeline.

Document title and author specifications which spanned multiple lines did not work in PML. Integrated
code from HTMLGenerationSink to collect them into a single line as required in PML.

Added logic to HTMLGenerationSink to push the current italic text state when a footnote is encountered
and pop it at the end of the footnote (if footnotes are [improperly] nested, this applies only to the outermost
footnote). Also, nested footnotes are now output like in-line footnotes in single file HTML, rather than
simply being merged with the text.

A footnote which appeared in a centred, ragged right, or ragged left paragraph in multiple file HTML output
would preserve the line breaks in the input text in the footnote document. I modified HTMLGenerationSink ::
generateAlignedParagraph to skip appending the terminator when infoot is set upon return from translateHTMLString .

C++ “mountain range” identifiers like:
pneumaticJackHammer::diggaDiggadig

can wreak havoc with TEX line filling, and the CWEB macros don’t honour either a “@|” optional line break
in the middle of one or even two adjacent “|” constructs separated by a space. I defined a TEX macro

120 DEVELOPMENT LOG ETSET §158

“\breakOK” to use within such items (usually after the double colon, between two adjacent C items), to
permit them to be broken more æsthetically.

Defined TEX macros \atsign “@”, \bslash “\”, \caret “^”, \uline “_”, and \vbar “|” to make it easier
to talk about such characters in this document without clever special-case quoting.

Here are some things to watch out for when creating PML documents with embedded images. First of all,
the images must be created in PNG format and placed in a subdirectory of the directory containing the .pml
file you’re compiling. If your PML file is /home/elvis/palmdoc/hounddog.pml then the images must be
placed in a directory named /home/elvis/palmdoc/hounddog_img. The PNG files for these images must
be of the “palette” type. As of DropBook 1.1.1, grey scale and other types of PNG files do not work. To
determine which kind of PNG file and how big it is, if you have the NETPBM and PNG utilities on your
system, use the command:

pngtopnm name.png | pnmfile

This will produce output like:
pngtopnm: reading a 112 x 158 image, 8 bits palette
pngtopnm: writing a PGM file (maxval=255)
stdin: PGM raw, 112 by 158 maxval 255

If the first line does not indicate “8 bits palette”, you’re probably in for trouble; you’ll need to load the
image with an image editing program and convert it to an 8-bit palette image. Take note of the image size
as well. An image of 158 × 148 pixels will display in-line in the document, while a larger image will be
represented by an icon the user must tap to display the actual image. If the image is larger than 158× 158
pixels the user will be required to scroll the screen to see the complete image. Finally, the actual PNG file
embedded in the document may be no larger than 65505 bytes, as this is the maximum size of the Palm
database records in which they are stored. If your image is larger than this, you’ll need to reduce resolution
and/or select compression modes which reduce it to 65505 bytes or smaller. None of these constraints have
anything to do with this program proper; I mention them here in the interest of sparing you some of the
frustrations I experienced trying to make illustrated PML documents while testing it.

2001 September 21

Palm output didn’t show the number of lines of PML generated when the “−−verbose” option was specified;
fixed. One subtlety is that when the footnotes are appended to the end of the document, emit is called with
a line which may contain one or more embedded end-of-line characters. This is a little shoddy, but it works
just fine and saves us from all the complexity of a line queue and separate calls on emit whose only benefit
would be purity of essence. It does mean, however, that in order to accurately count the line written to the
PML file we need to count the number of new line characters in the aggregate footnote string and add that
to the number of lines counted by emit ; this is easily accomplished.

Cleaned up formatting of the input syntax documentation in etsetfmt.w.

Plain C++ iterator was not defined in cweb/c++lib.w as a type name; I added it.

2001 September 22

To make it easier to cope with Project Gutenberg source documents which are perversely published in MS-
DOS Code Page 850 8-bit characters, I added a convertForeignCharacterSetToISOFilter which, driven
by a translation table, converts characters in the lines it passes through. I defined a Code Page 850 to
ISO translation table in the file cp850.h, which is included in etset.w. (Keeping the conversion table in a
separate file allows me to use ISO characters in comments without gnarly encoding for CWEB in a table which
nobody will ever look at anyway.)

2001 September 23

§158 ETSET DEVELOPMENT LOG 121

Added a −−dos−characters command line option to place a convertForeignCharacterSetToISOFilter
immediately after the stream source at the head of the pipeline. The filter uses the cp850 to ISO translation
table to convert DOS characters to ISO 8859.

Added the ability to strip DOS carriage returns from the ends of lines in streamSource. A new setStripEOL
method, called with an argument of true , enables carriage return stripping. Only a single carriage return
will be stripped from the end of lines, and lines which do not contain a trailing carrage return will not
be modified. This mode is activated by the −−dos−characters option. There’s a getStripEOL method to
inquire if stripping is enabled in case you need to know.

Added cp850.h to dependencies of etset.cc in Makefile.in.

Fixed a few more instances of awkward grammar in etsetfmt.w in the process of integrating the text into
the latest version of Autour de la Lune.

Brought the README up to date.

2001 September 24

Integrated current description of command line options and input syntax into the manual page etset.1.

Placed the Web document for the program in subdirectory webdoc and updated.

Added a check target to Makefile.in and a reference target to rebuild the check_master.txt.gz file
which the output of the check run is compared against.

Made a makew32.bat file to build the Win32 executable with DJGpp (compiling getopt.c and getopt1.c

with gcc). Added a testw32.bat file to semi-automate testing on Win32. You still have to do the diff by
hand, since there aren’t stock utilities to perform this step on Win32.

2001 September 25

Cleaned up some signed/unsigned natters from a −Wall build in code related to special command parsing
and processing.

Added null destructors declared virtual to LaTeXGenerationFilter and PalmGenerationFilter to get
rid of natters about “class has virtual functions but non-virtual destructor”.

Fixed a rather subtle signed/unsigned problem which has bedeviling me on the Win32 build for the last day.
Consider code of the form:

string s;
unsigned int i;
for (i = s.length() - 1; i >= 0; i--) {

where you wish to scan a string in reverse order for something or other. If s is the null string, the expression
s.length()-1 will go negative, which will be treated as a huge positive value since i is unsigned. What this
does is architecture- and compiler-dependent; on the Win32 build with DJGpp, it appears to have indexed
off the start of the string, which caused the code in 〈Check for line with trailing white space 53 〉 to randomly
(actually non-repeatably) report trailing blanks on lines which were actually empty. I changed the iteration
variable to a regular int and the problem went away.

Modified the dist target in Makefile.in to handle subdirectories (such as cweb and webdoc) included in
the distribution.

Added dependencies to the dist target to ensure the PDF documentation and C++ source are current.

How embarrassing! In testing distribution archives, I discovered that the program did not detect if its
input file did not exist. To handle this in a thoroughly clean manner, I broke out the file open code in
streamSource into a separate openFile method which throws an invalid argument argument if the file
does not exist. If you wish to catch this exception, construct the streamSource with no arguments (initially

122 DEVELOPMENT LOG ETSET §158

binding it to cin), then perform the openFile within a try block which handles the exception that results if
the input file does not exist.

2001 September 26

Added test.txt to the distribution. It was its absence which provoked yesterday’s alarums. Also needed
to include check_master.txt.gz in the archive to run check tests on builds.

Corrected dependencies in Makefile.in so generation of config.h by configure won’t require etset.cc

to be regenerated from the .w files; etset.o depends on config.h, but etset.cc doesn’t.

2001 September 28

Corrected an error advancing past the opening backet of a footnote in quotePalmString ; a footnote which
followed the two spaces at the end of the sentence would incorrectly be reported as nested.

Release 3.0.1.

2005 April 25

Fixed two places, one in latex.w, the other in html.w, where I offended the gcc priesthood (version 3.2.3) by
declaring a default value for a function argument in both the class definition and the implementtion. How re-
moving this documentation from where the argument is actually used is supposed to improve maintainability
of code escapes me, but I suppose my head is insufficiently pointed to comprehend.

Fixed a compile error in HTMLGenerationSink::createNavButton where I committed the mortal sin of pass-
ing an unsigned char to write , which expects a char. I just hit it over the head with a reinterpret cast.

Somehow a backslash had crept into a line in 〈Toggle math mode in HTML 107 〉 in html.w which didn’t
bother the C++ compiler but torpedoed TEX when attempting to typeset the program. I removed it.

Confirmed that with these “fixes”, the program compiles without problems and passes the self-test on gcc

3.4.3 as well.

The −Wall option on gcc now natters if you don’t either handle all possible values of an enumeration in a
switch statement on an enumeration type or else include a default: case to catch them. I added a default
to 〈BetweenParagraphs state 36 〉 in etset.w to get rid of this warning.

Converted the image definitions in buttons.h to PNG file format, then modified HTMLGenerationSink ::createNavButtons
and HTMLGenerationSink ::createNavigationPanel in html.w accordingly. I also added attribute quotes
and a close slash to the image tags to be XHTML compliant.

Added closing table data and row tags to the table generated for mathematics in the interest of XHTML
compliance.

XHTML doesn’t allow one to include a horizontal rule within a heading. I modified the chapter heading
generation for single file HTML mode to close the h2 item, emit the rule, then re-open it with the same
modes. The same change was required for the h1 tags used in chapter titles in multiple file HTML output
as well.

Added quotes and a closure slash for the <link> tags included in multiple file HTML output.

Added closure tags for table markup in the header and table of contents of multiple file HTML output.

Added self-closure to the blank paragraphs which separate footnotes in multiple file HTML output.

2005 May 6

In order to build a WIN32 binary with Microsoft Visual C++.NET, I added preprocessor logic in 〈System
include files 145 〉 which, conditional on WIN32, modifies the configuration to permit a build with the standard

§158 ETSET DEVELOPMENT LOG 123

Unix config.h without modifications. I also added similar code to getopt.h to avoid a conflict with
string.h.

Deleted the makew32.bat files used to build with DJgpp.

If you use the ctype.h macros with the standard C++ string data type, any ISO character with the sign
bit set will cause an assertion failure in debug builds. To avoid this idiocy, you have to compile with the
“char type is unsigned”, which I therefore enabled.

Added the etset.sln and etset.vcproj solution and project files to the source archive. These files are
used to build with Visual C++.

Added a macro to the testw32.bat WIN32 regression test script to allow specification of the directory path
to the etset.exe executable and documention on how to verify the result from running the script.

Release 3.1.

124 INDEX ETSET §159

159. Index. The following is a cross-reference table for etset. Single-character identifiers are not
indexed, nor are reserved words. Underlined entries indicate where an identifier was declared.

__GNU_LIBRARY__: 145.
__STDC__: 145.
addSubstitution : 66, 90, 140.
afilt : 141.
alignment : 91, 102.
argc : 141, 148, 150.
argv : 141, 148, 150.
asciiOnly : 141, 146, 148.
assert : 8, 19, 24, 45, 52, 71, 91, 93, 119, 122.
audit criteria: 52, 158.
auditFilter: 16, 52, 62, 63, 90, 140, 141, 158.
Author : 31, 33, 34, 35, 48, 69, 92, 120.
babelang : 70, 146, 148.
babelon : 70, 79, 146, 148.
basename : 91, 92, 98, 100, 101, 108, 110, 115.
BeforeTitle : 30, 31, 32, 48.
Begin : 31, 34, 36, 40, 47, 49, 69, 72, 73, 74,

75, 76, 94, 95, 97, 98, 102, 120, 123, 124,
125, 126, 127, 128.

begin : 20, 22, 23, 63, 67, 77, 91, 103, 105, 112,
120, 129, 131.

BeginText : 28, 30, 31, 48, 69, 92, 120.
BetweenParagraphs : 31, 33, 34, 35, 36, 37, 38,

39, 40, 41, 42, 48, 59.
bf : 117.
binary : 117.
blink : 135.
bname : 91.
Body : 32, 34, 35, 36, 37, 38, 40, 41, 47, 49, 71,

72, 73, 74, 75, 76, 93, 94, 95, 97, 98, 102, 122,
123, 124, 125, 126, 127, 128.

bodyParser : 141.
bodyStartLines : 113.
bodyState: 28, 42, 47, 48, 50, 52, 64, 69, 92,

119, 120, 127, 128.
bogus : 90, 140.
bracket : 28, 68, 69, 71, 72, 73, 74, 75, 76, 91,

92, 93, 94, 95, 97, 98, 102, 119, 120, 122, 123,
124, 125, 126, 127, 128.

bracks : 28.
breakPending : 91, 109.
button : 91, 117.
buttonFile : 117.
c: 22, 52, 62, 63, 77, 103, 105, 129.
C_: 153.
C_LEFT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK: 111,

131, 153.
C_RIGHT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK: 89,

111, 131, 139, 153.
c str : 13, 15, 92, 100, 110, 117, 151.

centringTolerance : 52, 59.
cerr : 8, 29, 52, 69, 90, 91, 92, 101, 120, 140,

141, 148, 150, 151.
chap : 91, 100, 101, 115.
chapline : 91, 100, 101, 115.
chapname : 91, 98, 99, 100, 119, 126.
chapno : 91, 100, 101, 119, 126.
chapnumber : 91, 97, 99, 100, 119, 125, 126.
chapterCache : 91, 101.
ChapterMarker : 33, 36, 39, 40, 43, 48.
ChapterMarkerCharacter : 7, 43.
ChapterName : 40, 41, 48, 69, 92, 120.
ChapterNumber : 33, 36, 39, 48, 69, 92, 120.
check : 52, 53, 54, 55, 56, 57, 58, 59, 60, 61.
check for : 52.
checkText : 141, 146, 148.
chtitle : 91, 100, 101.
cin : 13, 158.
classification : 42, 43.
classifyLine : 28, 37, 42, 48, 59, 158.
cleanText : 141, 146, 148.
close : 92, 101, 117.
cmd : 90, 119, 140.
compare : 24.
component : 141.
componentName : 8, 13, 15, 16, 18, 19, 21, 23, 24,

27, 28, 51, 52, 64, 68, 91, 119.
consecutive blank lines : 52, 60.
conversionTable : 23.
convert : 23.
convertForeignCharacterSetToISOFilter: 23,

141, 155, 158.
count : 91, 120.
cout : 15, 147, 148.
cp : 63, 77, 81, 82, 84, 85, 89, 103, 105, 107, 108,

111, 129, 131, 133, 134, 136, 137, 139, 141, 150.
cp850 to ISO : 141, 155, 158.
createNavButton : 91, 116, 117, 158.
createNavButtons : 91, 100, 115, 116, 117, 158.
createNavigationPanel : 91, 101, 115, 158.
ct : 52.
ctime : 70, 91, 121.
currentOutput : 24, 25, 26.
d foot : 116.
d next : 116.
d next gr : 116.
d prev : 116.
d prev gr : 116.
d up : 116.
debugParser : 143, 146, 148.

§159 ETSET INDEX 125

debugParserFile : 143, 146, 148.
dec : 58.
decl : 112.
Declarations : 31, 32, 48, 69, 92, 120.
declarationsQueue : 91, 93, 112, 158.
DecodeBodyState : 48, 64, 69, 92, 120.
DefaultCentringTolerance : 52.
defaultFootnotePad : 91.
delim : 90, 140.
deque: 66, 67, 91, 112.
dest : 9.
destination : 10, 13, 91, 119.
disableAuditCriteria : 52, 141, 158.
DocumentTitle : 31, 33, 48, 69, 92, 120.
dosCharacters : 141, 146, 148.
dosconv : 141.
dostrip : 13.
dqueue : 158.
dubious justification : 52, 59.
e: 141.
eflink : 108.
efn : 92, 100.
eh : 63.
elideNewLines : 91, 100, 112, 158.
em : 53, 54, 55, 56, 57, 58, 59.
embedded tabs : 52, 55, 58, 141, 158.
emit : 10, 12, 13, 18, 19, 21, 23, 24, 27, 28, 51,

52, 64, 68, 69, 70, 71, 72, 73, 74, 75, 76, 91,
102, 108, 109, 119, 120, 121, 122, 124, 126,
127, 128, 134, 135, 158.

emitq : 68, 72, 73, 74, 75, 91, 119.
emitQueuedLines : 28, 33, 39, 47.
emits : 28, 30, 31, 32, 33, 34, 35, 36, 37, 38,

40, 41, 47.
empty : 47, 101.
enableAuditCriteria : 52, 158.
EncodeBodyState : 28, 48.
end : 18, 20, 22, 23, 63, 67, 77, 82, 89, 91, 103,

105, 108, 111, 112, 120, 129, 131, 134, 139.
End : 32, 35, 37, 38, 41, 47, 49, 69, 72, 73, 74,

75, 76, 95, 97, 98, 102, 120, 124, 125, 126,
127, 128, 158.

EndOfParagraph : 48.
EndOfText : 28, 48, 69, 92, 101, 120, 158.
envtype : 68, 76, 119, 127, 128.
eof : 11, 12, 14, 25, 26, 27, 28.
epilogueProcessor : 24, 25, 26.
epiP : 24.
erase : 13, 18.
err : 52, 53, 54, 55, 56, 57, 58, 59, 60, 61.
etextBodyParser : 68, 91, 119.

etextBodyParserFilter: 28, 42, 44, 45, 46, 47,
51, 52, 59, 69, 71, 75, 76, 90, 92, 93, 102, 120,
122, 127, 128, 140, 141, 143, 158.

everything : 52, 158.
exceeds maximum length : 52, 57, 141.
exit : 29, 69, 91, 92, 120.
f : 28, 67, 141.
false : 13, 44, 51, 52, 59, 60, 62, 68, 69, 72, 75, 76,

90, 91, 94, 101, 108, 109, 119, 120, 123, 127,
128, 134, 135, 140, 146, 151, 158.

fchar : 43.
filterType: 8.
FilterType : 8, 9, 17.
find : 19, 44, 45, 46, 55, 56, 67, 90, 91, 140.
find first not of : 42, 43, 44, 56, 59, 60, 63, 90,

91, 119, 140.
find first of : 42, 77, 89, 103, 111, 139.
first : 44, 45, 46.
firstchap : 68, 74, 91, 119.
fiso : 141.
fitalics : 91, 108, 109, 119, 134, 135.
flattenISO : 22, 156.
flattenISOCharactersFilter: 21, 141, 158.
flattenISOchars : 141, 146, 148.
flink : 134.
flushBreak : 91, 98, 108.
foot : 91, 92, 110.
footdocname : 91, 92, 108, 110.
footline : 91, 92, 110.
footnest : 68, 82, 83, 91, 108, 109, 119, 134, 135.
FOOTNOTE_BUTTON_NEEDED: 116.
footnotePad : 91, 109.
footnotes : 119, 120, 134, 135, 158.
footnum : 91, 108, 119, 120, 134, 135.
footpar : 119, 127, 128, 134, 135, 158.
footsave : 119, 134, 135, 158.
FormatWidth : 7, 42, 52, 141.
fp : 91.
fquoth : 119, 134, 135.
frenchPunct : 70, 77, 89, 111, 129, 131, 139,

146, 148, 158.
from : 23, 66.
fromString : 66, 67.
front : 47, 101.
fType : 8, 9, 12, 14, 17.
fTypeName : 8.
generateAlignedParagraph : 68, 69, 76, 91, 92, 102,

119, 120, 128, 129, 158.
generateFilledParagraph : 119, 120, 127, 129, 158.
get : 10, 12, 13.
getAuditCriteria : 52, 158.
getBaseName : 91.

126 INDEX ETSET §159

getCentringTolerance : 52.
getFootnotePad : 91.
getline : 13.
getLineNumber : 8, 69, 120.
getopt : 145, 158.
getopt long : 145, 148, 158.
getSource : 8, 9.
getSourceLineNumber : 8, 9, 141.
getSpecialFilter : 28.
getStripEOL: 13, 158.
hasauthor : 68, 73, 91, 95, 96, 112, 119, 124.
hastitle : 68, 72, 73, 91, 94, 96, 101, 112, 119,

123, 124.
hauthor : 91, 95, 96, 112, 119, 124.
HAVE_STAT: 145, 151.
HAVE_UNISTD_H: 145.
heatSink: 16, 141.
hex : 58, 63.
hgs : 141.
hs : 141.
htitle : 91, 94, 96, 100, 101, 110, 119, 123, 124.
HTML: 141, 146, 148, 150, 151.
HTMLGenerationSink: 91, 92, 102, 103, 105,

112, 113, 114, 115, 116, 117, 141, 158.
i: 13, 23, 42, 52, 67, 91, 141.
Iabs : 7, 59.
identityTransform : 23.
ifstream: 13.
improper embedded blanks : 52, 56.
in : 13.
InBlockQuote : 36, 37, 42, 48, 69, 92, 120.
InCentred : 31, 33, 34, 35, 36, 39, 40, 41, 43,

48, 59, 69, 92, 120.
index : 91, 92, 95, 96, 98, 99, 100.
indexFileName : 91, 92, 101.
indexline : 91, 92, 96, 99, 100.
infile : 141, 149, 150, 151.
infoot : 91, 102, 108, 109, 119, 127, 128, 134,

135, 158.
inmath : 68, 77, 81, 89, 91, 105, 107, 111, 119,

129, 131, 133, 139.
inParagraph : 91, 115.
InPreformattedTable : 36, 38, 42, 48, 59, 69,

92, 120, 128.
InRaggedLeft : 36, 37, 42, 48, 69, 92, 120.
InRaggedRight : 36, 37, 42, 48, 69, 92, 120.
insource : 141.
instat : 151.
inTable : 52, 56, 59.
intable : 68, 69, 77, 119, 120, 129, 139.
interval : 19.
InTextParagraph : 36, 37, 42, 48, 69, 92, 120.

invalid argument: 10, 12, 13, 14, 141, 158.
invalid characters : 52, 58, 141.
io dup : 151.
ios : 13, 15, 92, 100, 110, 117.
is : 13.
isCharacterPermissible : 52, 58, 62, 63, 158.
isISOletter : 52, 54, 158.
isLineSpecial : 28, 31, 32, 44, 45, 51, 52, 71, 75,

76, 93, 102, 122, 127, 128.
isochar : 131.
isspace : 18, 53, 78, 89, 104, 111, 130, 131, 158.
isSub : 90, 140.
isSubstitution : 68, 71, 75, 76, 90, 119, 122,

127, 128, 140.
issueMessage : 8, 52, 53, 54, 55, 56, 57, 58, 59, 60,

61, 83, 90, 108, 109, 134, 135, 140.
istream: 13.
italics : 68, 80, 91, 106, 108, 109, 119, 132,

134, 135, 158.
iterator: 20, 22, 23, 63, 67, 77, 103, 105,

112, 129, 158.
j: 53.
l: 59, 90, 109, 128, 140.
last : 45, 46.
lastBlank : 51, 52, 60.
lastStripped : 51.
LaTeX : 141, 146, 148.
LaTeXGenerationFilter: 68, 69, 76, 77, 90,

141, 158.
lchar : 43.
lclass : 52, 59.
length : 13, 18, 42, 43, 44, 51, 53, 54, 55, 57, 58,

59, 64, 67, 70, 91, 117, 121, 139.
lf : 141.
lineClass : 28, 29, 31, 33, 34, 35, 36, 37, 38,

39, 40, 41.
lineCounter : 91, 112, 113, 114.
lineNumber : 8, 10, 14, 91.
linesIn : 91, 99, 100, 101, 158.
log : 52, 53, 54, 55, 56, 57, 58, 59, 60, 61.
long options : 148.
lq : 28, 31, 33, 36, 39, 47.
m: 90, 140.
main : 141.
make one file : 91.
MarkerMinimumLength : 7, 43.
mathModeQuoted : 77.
maxlen : 52.
maxLineLength : 52, 57, 59, 158.
msg : 8.
n: 20, 52, 67, 90, 140.
NETSCRAPE_SUCKS: 108, 109.

§159 ETSET INDEX 127

next : 91, 115.
npos : 19, 42, 43, 44, 45, 46, 55, 56, 60, 63, 67,

77, 89, 90, 91, 111, 139, 140.
nsep : 24, 25, 26.
numchap : 126.
o: 15, 45, 46, 63, 67, 77, 91, 103, 105, 129.
of : 8.
ofilt : 9, 14.
ofmt : 141, 146, 148, 150, 151.
ofstream: 15, 91, 92, 100, 110, 117.
openFile : 13, 141, 158.
opt : 141, 148.
optarg : 148.
optind : 150.
option : 148.
option index : 148.
os : 15, 20, 22, 52, 91, 112, 113, 114, 141.
ostream: 8, 15, 52, 91, 112, 113, 114.
ostringstream: 53, 54, 55, 56, 57, 58, 59, 63,

92, 108, 126, 131, 134, 135.
out : 15, 92, 100, 110, 117.
outfile : 141, 149, 150, 151.
output : 8, 9, 10, 11, 17, 24, 25, 26.
outputFormat: 146.
outstat : 151.
p: 20, 22, 23, 54.
Palm : 141, 146, 148.
PalmGenerationFilter: 119, 120, 127, 128,

129, 140, 141, 158.
parline : 119, 128.
parserDiagnosticFilter: 50, 64, 143.
partext : 119, 127.
pathName : 13, 15.
pd : 143.
pdsink : 143.
pdtsq : 143.
permit 8 bit ISO characters : 52, 58, 141, 158.
pf : 141.
pipeEnd : 141, 158.
Plumb : 141, 143, 158.
pop : 47, 101.
PossibleChapterNumber : 36, 39, 48.
PossibleTitle : 31, 33, 48.
postambleLines : 114.
preambleLines : 112.
PreformattedTableIndent : 7, 38, 42.
prev : 91, 115.
prodest : 142.
PRODUCT: 1, 70, 112, 121, 147, 148.
prologueProcessor : 24.
proP : 24.

pruneIndent : 91, 94, 95, 97, 98, 119, 123, 124,
125, 126, 127, 128, 158.

punctuation : 77, 89, 105, 111, 129, 139.
PUNCTUATION: 7, 105.
push : 31, 33, 36, 39, 91.
push back : 66, 93.
put : 8, 10, 12, 14, 15, 16, 17, 18, 19, 21, 23, 24,

27, 28, 29, 51, 52, 64, 68, 69, 91, 92, 119, 120.
qchapname : 91, 100, 101.
qchapnumber : 91, 100, 101.
queue: 28, 91.
quoteArbitraryString : 52, 63, 90, 140, 158.
quotedCharacters : 77, 89.
quotedTextCharacters : 77, 89.
quoteHTMLString : 91, 94, 95, 97, 98, 103, 105.
QuoteIndent : 7, 42, 43.
quoteLaTeXString : 68, 69, 76, 77, 158.
quotePalmString : 119, 120, 123, 124, 125, 126,

127, 128, 129, 135, 158.
quoth : 68, 75, 76, 88, 119, 127, 128, 134, 135,

138, 158.
r: 59.
RaggedRightIndent : 7, 42, 43.
REGISTERED_SIGN: 147, 153.
replace : 67, 91.
REVDATE: 1, 70, 112, 121, 148.
rfind : 44, 46.
RIGHT_POINTING_DOUBLE_ANGLE_QUOTATION_MARK: 7,

153.
rtype : 64.
s: 8, 10, 12, 13, 14, 15, 16, 18, 19, 21, 23, 24,

27, 28, 42, 44, 45, 46, 51, 52, 63, 64, 66, 67,
68, 69, 77, 90, 91, 92, 101, 102, 103, 105, 119,
120, 126, 127, 128, 129, 140.

saveEpilogueFile : 142, 146, 148.
savePrologueFile : 142, 146, 148.
secondDestination : 27.
secP : 27.
sectionSep : 24, 25.
sectionSeparatorSquid: 24, 26, 28, 64, 141, 142.
send : 12, 141.
sentenceEnd : 52, 56.
setAuditCriteria : 52, 141, 158.
setCentringTolerance : 52.
setConversionTable : 23.
setEpilogueProcessor : 24, 142.
setfill : 63, 131.
setFootnotePad : 91.
setLogStream : 52.
setMaxLength : 52.
setOutput : 9, 14.
setPrologueProcessor : 24, 142.

128 INDEX ETSET §159

setSpecialFilter : 28, 141, 158.
setStripEOL: 13, 141, 158.
setTabInterval : 19.
setTranslation : 23.
setw : 63, 131.
singleFile : 91, 92, 97, 98, 108, 109.
singleFileHTML: 141, 146, 148.
SinkType : 8, 9, 14.
source : 8, 9, 12, 91, 117.
SourceType : 8, 9, 12.
spaces : 64.
special : 52, 56, 57, 59, 61.
special commands present : 52, 61, 141.
specialCommand : 28, 46, 71, 75, 76, 90, 93, 102,

122, 127, 128, 140.
specialFilter : 28.
SpecialMarker : 7, 44, 46.
SpecialPrefix : 7, 44, 45, 46.
specialStrip : 141, 146, 148.
specialType : 28, 45.
squiddley : 141, 142.
ssc : 141.
st dev : 151.
st ino : 151.
stat : 151, 158.
state : 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,

40, 41, 69, 92, 101, 119, 120, 127, 128.
stateName : 64.
stateNames : 29, 50, 64, 69, 92, 120.
std: 145.
stime : 70, 91, 112, 121.
str : 53, 54, 55, 56, 57, 58, 59, 63, 100, 108,

126, 131, 134, 135.
streamSink: 15, 16, 141, 142, 143, 158.
streamSource: 13, 141, 158.
string: 8, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21,

22, 23, 24, 27, 28, 42, 43, 44, 45, 46, 50, 51,
52, 55, 56, 60, 63, 64, 66, 67, 68, 69, 70, 76,
77, 89, 90, 91, 92, 101, 102, 103, 105, 111,
112, 113, 117, 119, 120, 121, 126, 127, 128,
129, 139, 140, 146, 149, 158.

strip : 13.
stripSpecialCommandsFilter: 51, 61, 141, 158.
substitute : 66, 67, 77, 129.
substr : 45, 46, 56, 64, 69, 70, 90, 91, 92, 119,

120, 121, 128, 140.
t: 67, 70, 91, 105, 121.
tabExpanderFilter: 19, 62, 141.
tabf : 141.
tabInterval : 19, 20.
tbl : 23.
teeSquid: 27, 143.

terminator : 68, 76, 91, 102, 158.
texform : 79, 154.
text : 28, 68, 69, 71, 72, 73, 74, 75, 76, 91, 92,

93, 94, 95, 97, 98, 102, 119, 120, 122, 123,
124, 125, 126, 127, 128.

textComponent: 8, 9, 10, 12, 13, 14, 17, 24,
27, 52, 91, 119, 141, 142.

textFilter: 17, 18, 19, 21, 23, 24, 27, 28, 51,
52, 64, 68, 119.

textSink: 14, 15, 16, 91.
textSource: 10, 12, 13.
textSubstituter: 66, 67, 68, 119.
tfilt : 141.
time : 70, 91, 121.
title : 91, 112, 113.
TitleMarker : 31, 33, 34, 36, 43, 48.
TitleMarkerCharacter : 7, 43.
to : 23, 66.
toString : 66, 67.
trailing blanks : 52, 53, 141.
trailing hyphen : 52, 54, 158.
transformer : 68, 77, 90, 119, 129, 140.
translateHTMLString : 91, 92, 96, 99, 100, 101,

102, 105, 158.
trimFilter: 18, 62, 141.
true : 29, 44, 45, 51, 53, 54, 55, 56, 57, 58, 59, 60,

61, 62, 69, 72, 73, 74, 90, 91, 94, 95, 108, 109,
120, 123, 124, 134, 140, 141, 148, 151, 158.

UndefinedType : 8.
usage : 147, 148, 158.
verbose : 69, 92, 101, 120, 141, 146, 148.
VERSION: 1, 70, 112, 121, 148.
Void : 28, 30, 31, 33, 34, 36, 40, 49, 72, 73, 74,

75, 76, 94, 95, 97, 98, 102, 123, 124, 125,
126, 127, 128.

what : 141.
WIN32: 145.
write : 117, 158.
writeDescription : 8.
writeHTMLDocumentBodyStart : 91, 96, 101,

110, 113.
writeHTMLDocumentPostamble : 91, 92, 101, 114.
writeHTMLDocumentPreamble : 91, 96, 101,

110, 112, 158.

ETSET NAMES OF THE SECTIONS 129

〈Author state 35 〉 Used in section 29.

〈BeforeTitle state 31 〉 Used in section 29.

〈Begin footnote in HTML 108 〉 Used in section 105.

〈Begin footnote in LaTeX 82 〉 Used in section 77.

〈Begin footnote in Palm 134 〉 Used in section 129.

〈BeginText state 30 〉 Used in section 29.

〈BetweenParagraphs state 36 〉 Cited in section 158. Used in section 29.

〈ChapterMarker state 40 〉 Used in section 29.

〈ChapterName state 41 〉 Used in section 29.

〈Check for consecutive blank lines 60 〉 Used in section 52.

〈Check for input and output files the same 151 〉 Used in section 150.

〈Check for invalid characters in text 58 〉 Cited in section 55. Used in section 52.

〈Check for justification-related problems 59 〉 Used in section 52.

〈Check for line that exceeds maximum text length 57 〉 Used in section 52.

〈Check for line with embedded tab characters 55 〉 Used in section 52.

〈Check for line with improper embedded white space 56 〉 Used in section 52.

〈Check for line with trailing hyphen 54 〉 Used in section 52.

〈Check for line with trailing white space 53 〉 Cited in section 158. Used in section 52.

〈Check for special commands present 61 〉 Used in section 52.

〈Class definitions 8, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 27, 28, 42, 44, 45, 46, 47, 51, 52, 62, 63, 64, 66, 67, 68, 69, 76,

77, 90, 91, 92, 102, 103, 105, 112, 113, 114, 115, 116, 117, 119, 120, 127, 128, 129, 140 〉 Used in section 6.

〈Classify centred line 43 〉 Used in section 42.

〈Complete chapter file generation in HTML 101 〉 Used in sections 92 and 100.

〈Configure prologue and epilogue processing 142 〉 Used in section 141.

〈Connect components in pipeline 9 〉 Used in section 8.

〈Convert ASCII quotes to open and close quotes in LaTeX 88 〉 Used in section 77.

〈Convert ASCII quotes to open and close quotes in Palm 138 〉 Used in section 129.

〈Create footnote file for first footnote in HTML 110 〉 Used in section 108.

〈Declarations state 32 〉 Used in section 29.

〈Definition of navigation buttons in HTML 118 〉 Used in section 116.

〈Emit output to next component in pipeline 10 〉 Used in section 8.

〈End footnote in HTML 109 〉 Used in section 105.

〈End footnote in LaTeX 83 〉 Used in section 77.

〈End footnote in Palm 135 〉 Used in section 129.

〈Expand tabs in text line 20 〉 Used in section 19.

〈Flatten ISO 8859 characters to 7-bit ASCII 22 〉 Used in section 21.

〈Generate chapter title for document tree output in HTML 100 〉 Used in section 98.

〈Generate chapter title for single file output in HTML 99 〉 Used in section 98.

〈Generate index document header in HTML 96 〉 Used in section 95.

〈Generate justified text paragraph in LaTeX 75 〉 Used in section 69.

〈Generate start of document in LaTeX 70 〉 Used in section 69.

〈Generate start of document in Palm 121 〉 Used in section 120.

〈Global functions 147 〉 Used in section 6.

〈Global variables 48, 49, 50, 146, 149, 154, 155, 156 〉 Used in section 6.

〈Handle end of file notification 11 〉 Used in section 8.

〈Handle section separator 25 〉 Used in section 24.

〈Main program 141 〉 Used in section 6.

〈Output ASCII text character in LaTeX 89 〉 Used in section 77.

〈Output ASCII text character in Palm 139 〉 Cited in section 158. Used in section 129.

〈Output text character in HTML 111 〉 Used in section 105.

〈Parse command-line file arguments 150 〉 Used in section 141.

〈Parser state machine 29 〉 Used in section 28.

130 NAMES OF THE SECTIONS ETSET

〈PossibleChapterNumber state 39 〉 Used in section 29.

〈PossibleTitle state 33 〉 Used in section 29.

〈Process author in HTML 95 〉 Used in section 92.

〈Process author in LaTeX 73 〉 Used in section 69.

〈Process author in Palm 124 〉 Used in section 120.

〈Process chapter name in HTML 98 〉 Used in section 92.

〈Process chapter name in LaTeX 74 〉 Used in section 69.

〈Process chapter name in Palm 126 〉 Used in section 120.

〈Process chapter number in HTML 97 〉 Used in section 92.

〈Process chapter number in Palm 125 〉 Used in section 120.

〈Process command-line options 148 〉 Used in section 141.

〈Process declarations in HTML 93 〉 Used in section 92.

〈Process declarations in LaTeX 71 〉 Used in section 69.

〈Process declarations in Palm 122 〉 Used in section 120.

〈Process document title in HTML 94 〉 Used in section 92.

〈Process document title in LaTeX 72 〉 Used in section 69.

〈Process document title in Palm 123 〉 Used in section 120.

〈Program implementation 6 〉 Used in section 5.

〈Quote ASCII character as verbatim in LaTeX 86 〉 Used in section 77.

〈Quote ISO 8859-1 character in Palm 131 〉 Cited in section 158. Used in section 129.

〈Quote character as math mode in LaTeX 87 〉 Used in section 77.

〈Quote control character in HTML 104 〉 Used in section 103.

〈Quote control character in LaTeX 78 〉 Used in section 77.

〈Quote control character in Palm 130 〉 Used in section 129.

〈Section separator squid end of file handling 26 〉 Used in section 24.

〈Set up parser debugging if requested 143 〉 Used in section 141.

〈System include files 145 〉 Cited in section 158. Used in section 5.

〈TitleMarker state 34 〉 Used in section 29.

〈Toggle italic text mode in HTML 106 〉 Used in section 105.

〈Toggle italic text mode in LaTeX 80 〉 Used in section 77.

〈Toggle italic text mode in Palm 132 〉 Used in section 129.

〈Toggle math mode in HTML 107 〉 Cited in section 158. Used in section 105.

〈Toggle math mode in LaTeX 81 〉 Used in section 77.

〈Toggle math mode in Palm 133 〉 Used in section 129.

〈Translate ISO graphic character in LaTeX 79 〉 Used in section 77.

〈Translate ellipsis in LaTeX 85 〉 Used in section 77.

〈Translate ellipsis in Palm 137 〉 Used in section 129.

〈Translate em-dash in LaTeX 84 〉 Used in section 77.

〈Translate em-dash in Palm 136 〉 Used in section 129.

〈Within aligned paragraph state 37 〉 Used in section 29.

〈Within preformatted table state 38 〉 Used in section 29.

ETSET

Section Page
Introduction . 1 1

Command line . 2 2
Options . 3 3
Input format . 4 5

Program global context . 5 8
Text processing components . 8 9

Source components . 12 12
Stream source . 13 13

Sink components . 14 15
Stream sink . 15 16
Heat sink . 16 17

Filter components . 17 18
Trim filter . 18 18
Tab expander filter . 19 19
Flatten ISO characters filter . 21 20
Convert foreign character set to ISO filter . 23 21
Section separator squid . 24 22
Tee squid . 27 25
Etext body parser filter . 28 26
Strip special commands filter . 51 37
Audit filter . 52 38
Parser diagnostic filter . 64 45

Utilities . 65 46
Text substituter . 66 46

LaTeX Generation . 68 47
HTML Generation . 91 58
Palm Markup Language Generation . 119 79
Main program . 141 94
Application plumbing . 144 97
Character set definitions and translation tables . 152 104

ISO 8859-1 special characters . 153 105
LaTeX representation of ISO graphic characters . 154 106
MS-DOS code page 850 to ISO translation table . 155 107
Flat 7-bit ASCII approximation of ISO characters . 156 108

Release history . 157 110
Development log . 158 111
Index . 159 124

	Introduction
	Command line
	Options
	Input format
	Program global context
	Text processing components
	Source components
	Stream source

	Sink components
	Stream sink
	Heat sink

	Filter components
	Trim filter
	Tab expander filter
	Flatten ISO characters filter
	Convert foreign character set to ISO filter
	Section separator squid
	Tee squid
	Etext body parser filter
	Strip special commands filter
	Audit filter
	Parser diagnostic filter

	Utilities
	Text substituter

	LaTeX Generation
	HTML Generation
	Palm Markup Language Generation
	Main program
	Application plumbing
	Character set definitions and translation tables
	ISO 8859-1 special characters
	LaTeX representation of ISO graphic characters
	MS-DOS code page 850 to ISO translation table
	Flat 7-bit ASCII approximation of ISO characters
	Release history
	Development log
	Index
	Names of the sections
	Author state
	BeforeTitle state
	Begin footnote in HTML
	Begin footnote in LaTeX
	Begin footnote in Palm
	BeginText state
	BetweenParagraphs state
	ChapterMarker state
	ChapterName state
	Check for consecutive blank lines
	Check for input and output files the same
	Check for invalid characters in text
	Check for justification-related problems
	Check for line that exceeds maximum text length
	Check for line with embedded tab characters
	Check for line with improper embedded white space
	Check for line with trailing hyphen
	Check for line with trailing white space
	Check for special commands present
	Class definitions
	Classify centred line
	Complete chapter file generation in HTML
	Configure prologue and epilogue processing
	Connect components in pipeline
	Convert ASCII quotes to open and close quotes in LaTeX
	Convert ASCII quotes to open and close quotes in Palm
	Create footnote file for first footnote in HTML
	Declarations state
	Definition of navigation buttons in HTML
	Emit output to next component in pipeline
	End footnote in HTML
	End footnote in LaTeX
	End footnote in Palm
	Expand tabs in text line
	Flatten ISO 8859 characters to 7-bit ASCII
	Generate chapter title for document tree output in HTML
	Generate chapter title for single file output in HTML
	Generate index document header in HTML
	Generate justified text paragraph in LaTeX
	Generate start of document in LaTeX
	Generate start of document in Palm
	Global functions
	Global variables
	Handle end of file notification
	Handle section separator
	Main program
	Output ASCII text character in LaTeX
	Output ASCII text character in Palm
	Output text character in HTML
	Parse command-line file arguments
	Parser state machine
	PossibleChapterNumber state
	PossibleTitle state
	Process author in HTML
	Process author in LaTeX
	Process author in Palm
	Process chapter name in HTML
	Process chapter name in LaTeX
	Process chapter name in Palm
	Process chapter number in HTML
	Process chapter number in Palm
	Process command-line options
	Process declarations in HTML
	Process declarations in LaTeX
	Process declarations in Palm
	Process document title in HTML
	Process document title in LaTeX
	Process document title in Palm
	Program implementation
	Quote ASCII character as verbatim in LaTeX
	Quote ISO 8859-1 character in Palm
	Quote character as math mode in LaTeX
	Quote control character in HTML
	Quote control character in LaTeX
	Quote control character in Palm
	Section separator squid end of file handling
	Set up parser debugging if requested
	System include files
	TitleMarker state
	Toggle italic text mode in HTML
	Toggle italic text mode in LaTeX
	Toggle italic text mode in Palm
	Toggle math mode in HTML
	Toggle math mode in LaTeX
	Toggle math mode in Palm
	Translate ISO graphic character in LaTeX
	Translate ellipsis in LaTeX
	Translate ellipsis in Palm
	Translate em-dash in LaTeX
	Translate em-dash in Palm
	Within aligned paragraph state
	Within preformatted table state

