« October 2018 | Main

Monday, November 12, 2018

Reading List: People's Republic

Schlichter, Kurt. People's Republic. Seattle: CreateSpace, 2016. ISBN 978-1-5390-1895-7.
As the third decade of the twenty-first century progressed, the Cold Civil War which had been escalating in the United States since before the turn of the century turned hot when a Democrat administration decided to impose their full agenda—gun confiscation, amnesty for all illegal aliens, restrictions on fossil fuels—all at once by executive order. The heartland defied the power grab and militias of the left and right began to clash openly. Although the senior officer corps were largely converged to the leftist agenda, the military rank and file which hailed largely from the heartland defied them, and could not be trusted to act against their fellow citizens. Much the same was the case with police in the big cities: they began to ignore the orders of their political bosses and migrate to jobs in more congenial jurisdictions.

With a low-level shooting war breaking out, the opposing sides decided that the only way to avert general conflict was, if not the “amicable divorce” advocated by Jesse Kelly, then a more bitter and contentious end to a union which was not working. The Treaty of Saint Louis split the country in two, with the east and west coasts and upper midwest calling itself the “People's Republic of North America” (PRNA) and the remaining territory (including portions of some states like Washington, Oregon, and Indiana with a strong regional divide) continuing to call itself the United States, but with some changes: the capital was now Dallas, and the constitution had been amended to require any person not resident on its territory at the time of the Split (including children born thereafter) who wished full citizenship and voting rights to serve two years in the military with no “alternative service” for the privileged or connected.

The PRNA quickly implemented the complete progressive agenda wherever its rainbow flag (frequently revised as different victim groups clawed their way to the top of the grievance pyramid) flew. As police forces collapsed with good cops quitting and moving out, they were replaced by a national police force initially called the “People's Internal Security Squads” (later the “People's Security Force” when the acronym for the original name was deemed infelicitous), staffed with thugs and diversity hires attracted by the shakedown potential of carrying weapons among a disarmed population.

Life in the PRNA was pretty good for the coastal élites in their walled communities, but as with collectivism whenever and wherever it is tried, for most of the population life was a grey existence of collapsing services, food shortages, ration cards, abuse by the powerful, and constant fear of being denounced for violating the latest intellectual fad or using an incorrect pronoun. And, inevitably, it wasn't long before the PRNA slammed the door shut to keep the remaining competent people from fleeing to where they were free to use their skills and keep what they'd earned. Mexico built a “big, beautiful wall” to keep hordes of PRNA subjects from fleeing to freedom and opportunity south of the border.

Several years after the Split, Kelly Turnbull, retired military and veteran of the border conflicts around the Split paid the upkeep of his 500 acre non-working ranch by spiriting people out of the PRNA to liberty in the middle of the continent. After completing a harrowing mission which almost ended in disaster, he is approached by a wealthy and politically-connected Dallas businessman who offers him enough money to retire if he'll rescue his daughter who, indoctrinated by the leftist infestation still remaining at the university in Austin, defected to the PRNA and is being used in propaganda campaigns there at the behest of the regional boss of the secret police. In addition, a spymaster tasks him with bringing out evidence which will allow rolling up the PRNAs informer and spy networks. Against his self-preservation instinct which counsels laying low until the dust settles from the last mission, he opts for the money and prospect of early retirement and undertakes the mission.

As Turnbull covertly enters the People's Republic, makes his way to Los Angeles, and seeks his target, there is a superbly-sketched view of an America in which the progressive agenda has come to fruition, and one which people there may well be living at the end of the next two Democrat-dominated administrations. It is often funny, as the author skewers the hypocrisy of the slavers mouthing platitudes they don't believe for a femtosecond. (If you think it improper to make fun of human misery, recall the mordant humour in the Soviet Union as workers mocked the reality of the “workers' paradise”.) There's plenty of tension and action, and sometimes following Turnbull on his mission seems like looking over the shoulder of a first-person-shooter. He's big on countdowns and tends to view “blues” obstructing him as NPCs to be dealt with quickly and permanently: “I don't much like blues. You kill them or they kill you.”

This is a satisfying thriller which is probably a more realistic view of the situation in a former United States than an amicable divorce with both sides going their separate ways. The blue model is doomed to collapse, as it already has begun to in the big cites and states where it is in power, and with that inevitable collapse will come chaos and desperation which spreads beyond its borders. With Democrat politicians such as Occasional-Cortex who, a few years ago, hid behind such soothing labels as “liberal” or “progressive” now openly calling themselves “democratic socialists”, this is not just a page-turning adventure but a cautionary tale of the future should they win (or steal) power.

A prequel, Indian Country, which chronicles insurgency on the border immediately after the Split as guerrilla bands of the sane rise to resist the slavers, is now available.

Posted at 23:54 Permalink

Tuesday, November 6, 2018

Reading List: Blue Collar Space

Shoemaker, Martin L. Blue Collar Space. Seattle: CreateSpace [Old Town Press], 2018. ISBN 978-1-7170-5188-2.
This book is a collection of short stories, set in three different locales. The first part, “Old Town Tales”, are set on the Moon and revolve around yarns told at the best bar on Luna. The second part, “The Planet Next Door”, are stories set on Mars, while the third, “The Pournelle Settlements”, take place in mining settlements in the Jupiter system.

Most of the stories take place in established settlements; they are not tales of square-jawed pioneers opening up the frontier, but rather ordinary people doing the work that needs to be done in environments alien to humanity's home. On the Moon, we go on a mission with a rescue worker responding to a crash; hear a sanitation (“Eco Services”) technician regale a rookie with the story of “The Night We Flushed the Old Town”; accompany a father and daughter on a work day Outside that turns into a crisis; learn why breathing vacuum may not be the only thing that can go wrong on the Moon; and see how even for those in the most mundane of jobs, on the Moon wonders may await just over the nearby horizon.

At Mars, the greatest problem facing an ambitious international crewed landing mission may be…ambition, a doctor on a Mars-bound mission must deal with the technophobe boss's son while keeping him alive, and a schoolteacher taking her Mars survival class on a field trip finds that doing things by the book may pay off in discovering something which isn't in the book.

The Jupiter system is home to the Pournelle Settlements, a loosely affiliated group of settlers, many of whom came to escape the “government squeeze” and “corporate squeeze” that held the Inner System in their grip. And like the Wild West, it can be a bit wild. When sabotage disables the refinery that processes ore for the Settlements, its new boss must find a way to use the unique properties of the environment to keep his people fed and avoid the most hostile of takeovers. Where there are vast distances, long travel times, and cargoes with great value, there will be pirates, and the long journey from Jupiter to the Inner System is no exception. An investigator seeking evidence in a murder case must learn the ways of the Trust Economy in the Settlements and follow the trail far into the void.

These stories bring back the spirit of science fiction magazine stories in the decades before the dawn of the Big Government space age when we just assumed that before long space would be filled with people like ourselves living their lives and pursuing their careers where freedom was just a few steps away from any settlement and individual merit was rewarded. They are an excellent example of “hard” science fiction, not in being difficult but that the author makes a serious effort to get the facts right and make the plots plausible. (I am, however, dubious that the trick used in “Unrefined” would work.) All of the stories stand by themselves and can be read in any order. This is another example of how independent authors and publishing are making this a new golden age of science fiction.

The Kindle edition is free for Kindle Unlimited subscribers.

Posted at 22:34 Permalink

Saturday, November 3, 2018

Reading List: The Forgotten Genius of Oliver Heaviside

Mahon, Basil. The Forgotten Genius of Oliver Heaviside. Amherst, NY: Prometheus Books, 2017. ISBN 978-1-63388-331-4.
At age eleven, in 1861, young Oliver Heaviside's family, supported by his father's irregular income as an engraver of woodblock illustrations for publications (an art beginning to be threatened by the advent of photography) and a day school for girls operated by his mother in the family's house, received a small legacy which allowed them to move to a better part of London and enroll Oliver in the prestigious Camden House School, where he ranked among the top of his class, taking thirteen subjects including Latin, English, mathematics, French, physics, and chemistry. His independent nature and iconoclastic views had already begun to manifest themselves: despite being an excellent student he dismissed the teaching of Euclid's geometry in mathematics and English rules of grammar as worthless. He believed that both mathematics and language were best learned, as he wrote decades later, “observationally, descriptively, and experimentally.” These principles would guide his career throughout his life.

At age fifteen he took the College of Perceptors examination, the equivalent of today's A Levels. He was the youngest of the 538 candidates to take the examination and scored fifth overall and first in the natural sciences. This would easily have qualified him for admission to university, but family finances ruled that out. He decided to study on his own at home for two years and then seek a job, perhaps in the burgeoning telegraph industry. He would receive no further formal education after the age of fifteen.

His mother's elder sister had married Charles Wheatstone, a successful and wealthy scientist, inventor, and entrepreneur whose inventions include the concertina, the stereoscope, and the Playfair encryption cipher, and who made major contributions to the development of telegraphy. Wheatstone took an interest in his bright nephew, and guided his self-studies after leaving school, encouraging him to master the Morse code and the German and Danish languages. Oliver's favourite destination was the library, which he later described as “a journey into strange lands to go a book-tasting”. He read the original works of Newton, Laplace, and other “stupendous names” and discovered that with sufficient diligence he could figure them out on his own.

At age eighteen, he took a job as an assistant to his older brother Arthur, well-established as a telegraph engineer in Newcastle. Shortly thereafter, probably on the recommendation of Wheatstone, he was hired by the just-formed Danish-Norwegian-English Telegraph Company as a telegraph operator at a salary of £150 per year (around £12000 in today's money). The company was about to inaugurate a cable under the North Sea between England and Denmark, and Oliver set off to Jutland to take up his new post. Long distance telegraphy via undersea cables was the technological frontier at the time—the first successful transatlantic cable had only gone into service two years earlier, and connecting the continents into a world-wide web of rapid information transfer was the booming high-technology industry of the age. While the job of telegraph operator might seem a routine clerical task, the élite who operated the undersea cables worked in an environment akin to an electrical research laboratory, trying to wring the best performance (words per minute) from the finicky and unreliable technology.

Heaviside prospered in the new job, and after a merger was promoted to chief operator at a salary of £175 per year and transferred back to England, at Newcastle. At the time, undersea cables were unreliable. It was not uncommon for the signal on a cable to fade and then die completely, most often due to a short circuit caused by failure of the gutta-percha insulation between the copper conductor and the iron sheath surrounding it. When a cable failed, there was no alternative but to send out a ship which would find the cable with a grappling hook, haul it up to the surface, cut it, and test whether the short was to the east or west of the ship's position (the cable would work in the good direction but fail in that containing the short. Then the cable would be re-spliced, dropped back to the bottom, and the ship would set off in the direction of the short to repeat the exercise over and over until, by a process similar to binary search, the location of the fault was narrowed down and that section of the cable replaced. This was time consuming and potentially hazardous given the North Sea's propensity for storms, and while the cable remained out of service it made no money for the telegraph company.

Heaviside, who continued his self-study and frequented the library when not at work, realised that knowing the resistance and length of the functioning cable, which could be easily measured, it would be possible to estimate the location of the short simply by measuring the resistance of the cable from each end after the short appeared. He was able to cancel out the resistance of the fault, creating a quadratic equation which could be solved for its location. The first time he applied this technique his bosses were sceptical, but when the ship was sent out to the location he predicted, 114 miles from the English coast, they quickly found the short circuit.

At the time, most workers in electricity had little use for mathematics: their trade journal, The Electrician (which would later publish much of Heaviside's work) wrote in 1861, “In electricity there is seldom any need of mathematical or other abstractions; and although the use of formulæ may in some instances be a convenience, they may for all practical purpose be dispensed with.” Heaviside demurred: while sharing disdain for abstraction for its own sake, he valued mathematics as a powerful tool to understand the behaviour of electricity and attack problems of great practical importance, such as the ability to send multiple messages at once on the same telegraphic line and increase the transmission speed on long undersea cable links (while a skilled telegraph operator could send traffic at thirty words per minute on intercity land lines, the transatlantic cable could run no faster than eight words per minute). He plunged into calculus and differential equations, adding them to his intellectual armamentarium.

He began his own investigations and experiments and began to publish his results, first in English Mechanic, and then, in 1873, the prestigious Philosophical Magazine, where his work drew the attention of two of the most eminent workers in electricity: William Thomson (later Lord Kelvin) and James Clerk Maxwell. Maxwell would go on to cite Heaviside's paper on the Wheatstone Bridge in the second edition of his Treatise on Electricity and Magnetism, the foundation of the classical theory of electromagnetism, considered by many the greatest work of science since Newton's Principia, and still in print today. Heady stuff, indeed, for a twenty-two year old telegraph operator who had never set foot inside an institution of higher education.

Heaviside regarded Maxwell's Treatise as the path to understanding the mysteries of electricity he encountered in his practical work and vowed to master it. It would take him nine years and change his life. He would become one of the first and foremost of the “Maxwellians”, a small group including Heaviside, George FitzGerald, Heinrich Hertz, and Oliver Lodge, who fully grasped Maxwell's abstract and highly mathematical theory (which, like many subsequent milestones in theoretical physics, predicted the results of experiments without providing a mechanism to explain them, such as earlier concepts like an “electric fluid” or William Thomson's intricate mechanical models of the “luminiferous ether”) and built upon its foundations to discover and explain phenomena unknown to Maxwell (who would die in 1879 at the age of just 48).

While pursuing his theoretical explorations and publishing papers, Heaviside tackled some of the main practical problems in telegraphy. Foremost among these was “duplex telegraphy”: sending messages in each direction simultaneously on a single telegraph wire. He invented a new technique and was even able to send two messages at the same time in both directions as fast as the operators could send them. This had the potential to boost the revenue from a single installed line by a factor of four. Oliver published his invention, and in doing so made an enemy of William Preece, a senior engineer at the Post Office telegraph department, who had invented and previously published his own duplex system (which would not work), that was not acknowledged in Heaviside's paper. This would start a feud between Heaviside and Preece which would last the rest of their lives and, on several occasions, thwart Heaviside's ambition to have his work accepted by mainstream researchers. When he applied to join the Society of Telegraph Engineers, he was rejected on the grounds that membership was not open to “clerks”. He saw the hand of Preece and his cronies at the Post Office behind this and eventually turned to William Thomson to back his membership, which was finally granted.

By 1874, telegraphy had become a big business and the work was increasingly routine. In 1870, the Post Office had taken over all domestic telegraph service in Britain and, as government is wont to do, largely stifled innovation and experimentation. Even at privately-owned international carriers like Oliver's employer, operators were no longer concerned with the technical aspects of the work but rather tending automated sending and receiving equipment. There was little interest in the kind of work Oliver wanted to do: exploring the new horizons opened up by Maxwell's work. He decided it was time to move on. So, he quit his job, moved back in with his parents in London, and opted for a life as an independent, unaffiliated researcher, supporting himself purely by payments for his publications.

With the duplex problem solved, the largest problem that remained for telegraphy was the slow transmission speed on long lines, especially submarine cables. The advent of the telephone in the 1870s would increase the need to address this problem. While telegraphic transmission on a long line slowed down the speed at which a message could be sent, with the telephone voice became increasingly distorted the longer the line, to the point where, after around 100 miles, it was incomprehensible. Until this was understood and a solution found, telephone service would be restricted to local areas.

Many of the early workers in electricity thought of it as something like a fluid, where current flowed through a wire like water through a pipe. This approximation is more or less correct when current flow is constant, as in a direct current generator powering electric lights, but when current is varying a much more complex set of phenomena become manifest which require Maxwell's theory to fully describe. Pioneers of telegraphy thought of their wires as sending direct current which was simply switched off and on by the sender's key, but of course the transmission as a whole was a varying current, jumping back and forth between zero and full current at each make or break of the key contacts. When these transitions are modelled in Maxwell's theory, one finds that, depending upon the physical properties of the transmission line (its resistance, inductance, capacitance, and leakage between the conductors) different frequencies propagate along the line at different speeds. The sharp on/off transitions in telegraphy can be thought of, by Fourier transform, as the sum of a wide band of frequencies, with the result that, when each propagates at a different speed, a short, sharp pulse sent by the key will, at the other end of the long line, be “smeared out” into an extended bump with a slow rise to a peak and then decay back to zero. Above a certain speed, adjacent dots and dashes will run into one another and the message will be undecipherable at the receiving end. This is why operators on the transatlantic cables had to send at the painfully slow speed of eight words per minute.

In telephony, it's much worse because human speech is composed of a broad band of frequencies, and the frequencies involved (typically up to around 3400 cycles per second) are much higher than the off/on speeds in telegraphy. The smearing out or dispersion as frequencies are transmitted at different speeds results in distortion which renders the voice signal incomprehensible beyond a certain distance.

In the mid-1850s, during development of the first transatlantic cable, William Thomson had developed a theory called the “KR law” which predicted the transmission speed along a cable based upon its resistance and capacitance. Thomson was aware that other effects existed, but without Maxwell's theory (which would not be published in its final form until 1873), he lacked the mathematical tools to analyse them. The KR theory, which produced results that predicted the behaviour of the transatlantic cable reasonably well, held out little hope for improvement: decreasing the resistance and capacitance of the cable would dramatically increase its cost per unit length.

Heaviside undertook to analyse what is now called the transmission line problem using the full Maxwell theory and, in 1878, published the general theory of propagation of alternating current through transmission lines, what are now called the telegrapher's equations. Because he took resistance, capacitance, inductance, and leakage all into account and thus modelled both the electric and magnetic field created around the wire by the changing current, he showed that by balancing these four properties it was possible to design a transmission line which would transmit all frequencies at the same speed. In other words, this balanced transmission line would behave for alternating current (including the range of frequencies in a voice signal) just like a simple wire did for direct current: the signal would be attenuated (reduced in amplitude) with distance but not distorted.

In an 1887 paper, he further showed that existing telegraph and telephone lines could be made nearly distortionless by adding loading coils to increase the inductance at points along the line (as long as the distance between adjacent coils is small compared to the wavelength of the highest frequency carried by the line). This got him into another battle with William Preece, whose incorrect theory attributed distortion to inductance and advocated minimising self-inductance in long lines. Preece moved to block publication of Heaviside's work, with the result that the paper on distortionless telephony, published in The Electrician, was largely ignored. It was not until 1897 that AT&T in the United States commissioned a study of Heaviside's work, leading to patents eventually worth millions. The credit, and financial reward, went to Professor Michael Pupin of Columbia University, who became another of Heaviside's life-long enemies.

You might wonder why what seems such a simple result (which can be written in modern notation as the equation L/R = C/G) which had such immediate technological utlilty eluded so many people for so long (recall that the problem with slow transmission on the transatlantic cable had been observed since the 1850s). The reason is the complexity of Maxwell's theory and the formidably difficult notation in which it was expressed. Oliver Heaviside spent nine years fully internalising the theory and its implications, and he was one of only a handful of people who had done so and, perhaps, the only one grounded in practical applications such as telegraphy and telephony. Concurrent with his work on transmission line theory, he invented the mathematical field of vector calculus and, in 1884, reformulated Maxwell's original theory which, written in modern notation less cumbersome than that employed by Maxwell, looks like:

Maxwell's equations: original form

into the four famous vector equations we today think of as Maxwell's.

Maxwell's equations: original form

These are not only simpler, condensing twenty equations to just four, but provide (once you learn the notation and meanings of the variables) an intuitive sense for what is going on. This made, for the first time, Maxwell's theory accessible to working physicists and engineers interested in getting the answer out rather than spending years studying an arcane theory. (Vector calculus was independently invented at the same time by the American J. Willard Gibbs. Heaviside and Gibbs both acknowledged the work of the other and there was no priority dispute. The notation we use today is that of Gibbs, but the mathematical content of the two formulations is essentially identical.)

And, during the same decade of the 1880s, Heaviside invented the operational calculus, a method of calculation which reduces the solution of complicated problems involving differential equations to simple algebra. Heaviside was able to solve so many problems which others couldn't because he was using powerful computational tools they had not yet adopted. The situation was similar to that of Isaac Newton who was effortlessly solving problems such as the brachistochrone using the calculus he'd invented while his contemporaries struggled with more cumbersome methods. Some of the things Heaviside did in the operational calculus, such as cancel derivative signs in equations and take the square root of a derivative sign made rigorous mathematicians shudder but, hey, it worked and that was good enough for Heaviside and the many engineers and applied mathematicians who adopted his methods. (In the 1920s, pure mathematicians used the theory of Laplace transforms to reformulate the operational calculus in a rigorous manner, but this was decades after Heaviside's work and long after engineers were routinely using it in their calculations.)

Heaviside's intuitive grasp of electromagnetism and powerful computational techniques placed him in the forefront of exploration of the field. He calculated the electric field of a moving charged particle and found it contracted in the direction of motion, foreshadowing the Lorentz-FitzGerald contraction which would figure in Einstein's special relativity. In 1889 he computed the force on a point charge moving in an electromagnetic field, which is now called the Lorentz force after Hendrik Lorentz who independently discovered it six years later. He predicted that a charge moving faster than the speed of light in a medium (for example, glass or water) would emit a shock wave of electromagnetic radiation; in 1934 Pavel Cherenkov experimentally discovered the phenomenon, now called Cherenkov radiation, for which he won the Nobel Prize in 1958. In 1902, Heaviside applied his theory of transmission lines to the Earth as a whole and explained the propagation of radio waves over intercontinental distances as due to a transmission line formed by conductive seawater and a hypothetical conductive layer in the upper atmosphere dubbed the Heaviside layer. In 1924 Edward V. Appleton confirmed the existence of such a layer, the ionosphere, and won the Nobel prize in 1947 for the discovery.

Oliver Heaviside never won a Nobel Price, although he was nominated for the physics prize in 1912. He shouldn't have felt too bad, though, as other nominees passed over for the prize that year included Hendrik Lorentz, Ernst Mach, Max Planck, and Albert Einstein. (The winner that year was Gustaf Dalén, “for his invention of automatic regulators for use in conjunction with gas accumulators for illuminating lighthouses and buoys”—oh well.) He did receive Britain's highest recognition for scientific achievement, being named a Fellow of the Royal Society in 1891. In 1921 he was the first recipient of the Faraday Medal from the Institution of Electrical Engineers.

Having never held a job between 1874 and his death in 1925, Heaviside lived on his irregular income from writing, the generosity of his family, and, from 1896 onward a pension of £120 per year (less than his starting salary as a telegraph operator in 1868) from the Royal Society. He was a proud man and refused several other offers of money which he perceived as charity. He turned down an offer of compensation for his invention of loading coils from AT&T when they refused to acknowledge his sole responsibility for the invention. He never married, and in his elder years became somewhat of a recluse and, although he welcomed visits from other scientists, hardly ever left his home in Torquay in Devon.

His impact on the physics of electromagnetism and the craft of electrical engineering can be seen in the list of terms he coined which are in everyday use: “admittance”, “conductance”, “electret”, “impedance”, “inductance”, “permeability”, “permittance”, “reluctance”, and “susceptance”. His work has never been out of print, and sparkles with his intuition, mathematical prowess, and wicked wit directed at those he considered pompous or lost in needless abstraction and rigor. He never sought the limelight and among those upon whose work much of our present-day technology is founded, he is among the least known. But as long as electronic technology persists, it is a monument to the life and work of Oliver Heaviside.

Posted at 23:21 Permalink

Friday, November 2, 2018

ISBNiser 1.5 Update Released

I have just posted version 1.5 of ISBNiser, a utility for validating ISBN publication numbers in the ISBN-13 and ISBN-10 formats, converting between the formats, and generating Amazon associate links to purchase items with credit to a specified account.

Version 1.5 includes a feature added to support the new ISBNquest Web application. A new −d option selects “database” format output in which the result for every ISBN on the command line is a single-line comma-separated value record containing fields as follows. Fields which may contain non-alphanumeric characters are always enclosed in double quotes.

  1. Status: numeric status
    • 200   Normal, ISBN-13 and ISBN-10 returned
    • 201   Normal, ISBN-13 returned, 979- unmappable to ISBN-10
    • 300   Invalid registration group, unhyphenated ISBN-13 and ISBN-10 returned
    • 301   Invalid registration group, unhyphenated 979- ISBN-13 returned
    • 401   Incorrect length (not 10 or 13 characters)
    • 402   Illegal character
    • 403   “X” as other than last character of ISBN-10
    • 404   Checksum incorrect
    • 405   ISBN-13 prefix is not Bookland (978 or 979)
  2. ISBN-13, no delimiters
  3. ISBN-13, with delimiters (quoted)
  4. ISBN-10, no delimiters (“Unmappable” if 979- prefix)
  5. ISBN-10, with delimiters (“Unmappable” if 979- prefix) (quoted)
  6. Registration group name (quoted)
  7. Amazon associates URL (quoted)
  8. ISBN Registration group database date (quoted)

The ISBN Registration group range database was updated to the 2018-10-30 release by the International ISBN Agency, and contains revisions to the ISBN range tables for the French Language (978-2), Iran (978-622), Benin (978-99919), and Mongolia (978-99978) agencies.

An error in the handling of the −a command line option has been corrected.

The development log (log.txt) is now included in the distribution archive.

Posted at 13:51 Permalink

Thursday, November 1, 2018

New: ISBNquest

If you work with books, you'll frequently need to deal with International Standard Book Numbers (ISBNs), those 13 digit (or 10 character for older publications) codes which uniquely identify the precise edition of a work. (For example, a hardcover, paperback, and each electronic format of the same book will have its own ISBN.) ISBNs are central to the publishing industry and booksellers, both on-line and brick and mortar.

As I read and review lots of books, I find myself frequently dealing with ISBNs, needing to interconvert the 13 and 10 digit forms, correct punctuation of the parts of ISBNs (some publishers are sloppy about this, while others have completely abandoned punctuation of ISBNs on the copyright page of their books), look up information about the work on Amazon.com, and compose a link so readers can buy the book with credit to Fourmilab's Amazon Associates account.

In 2008, I wrote a command-line utility in Perl, ISBNiser, which automates some of these tasks and, over the years, I have extended it, adding features such as automatic punctuation of ISBNs based upon the official ISBN Range database. Still, many people aren't comfortable with downloading, installing, and running a Perl program from the command line, so I thought I'd make its facilities available in a Web page accessible from any browser and add capabilities a Web-based application enable.

The result is ISBNquest, which provides the following utilities for ISBNs.

To use ISBNquest simply enter the ISBN (both 13 and 10 character forms are accepted, with or without delimiters between the parts) and press “Query”. Optional specifications allow you to specify the delimiter used between parts of the ISBN, credit purchases through the link it generates to an Amazon Associates account, and direct the link to any of the Amazon national Web sites.

ISBNquest home page
Direct link to ISBNquest query

Posted at 16:26 Permalink