RetroPsychoKinesis Experiment Summary

Last updated: Friday 2024 September 13 6:01 UTC

This report is updated daily


Overall Summary

Total experiments: 582909
Number of subjects: 36448
Total tries: 596898816
Total hits: 298443850
Overall z: 0.4550 standard deviations

“Subjects” is the number of different E-mail addresses or “handles” in the log file; there is no assurance a given individual may not have entered a number of different identities, either intentionally or by accident. The number of experiments includes only “for the record” experiments, not those designated in advance by the subject as “practice”. Since each experiment involves 1024 bits, the total number of “Tries” in the next line is 582909×1024, or 596898816. Examination of the logged bit sequences sent to the subjects shows that 298443850 of the total of 596898816 bits were “Hits”—they agree with the subject's previously-chosen goal. There were, then, 5558 fewer bits among a total of 596898816 consistent with the subjects' intent to bias the generator. This is equivalent to changing one bit in every 107394 in the direction opposed to that chosen by the subject. The measured bias amounts to 0.4550 standard deviations.

Hit Histogram

The following chart summarises the results of all for-the-record experiments (excluding runs designated in advance as "practice" runs by the subject, which are logged for completeness, but do not figure in the statistical analysis) performed since the RPKP experiments were begun in January of 1997.

RPKP Experiment Hit Histogram vs. Expectation

The blue curve gives the normal distribution for a large number of trials of 1024 events with probability 0.5. (For a number of trials as large as 1024, the binomial and normal distributions are equal on the scale of this plot.) The red boxes show the actual number of experimental runs which resulted in the given number of hits. A “hit” is defined as the number of bits in the 1024 bit stream which agreed with the subject's previously chosen one-or-zero goal.

Cumulative Deviation from Expectation

Any experiment involving a random data source can be expected to, in the absence of perturbing influences, follow a random walk around the most probable value. As the number of experiments increases, overall divergences should decrease. When examining the results of such experiments, it's important to satisfy yourself that any non-chance effect you observe doesn't result from the experimenter choosing to show you results at a peak or trough of a series which is swinging to both sides of the chance expectation with a mean value equal to chance. The following is a deviation plot of the all 582909 RPKP experiments to date; it shows the absolute divergence of the experimental results in the direction of bias preselected by the subject compared to that expected by chance, and the divergence in terms of standard deviations for the cumulative number of trials for a probability of 0.5 on each trial.

RPKP Experiment Cumulative Deviation from Expectation

Cumulative Deviation by Intent from Expectation

Another way to evaluate the results of the experiments is to examine how frequently the result of an experiment (excess of one or zero bits) agrees with the subject's pre-declared goal, regardless of the magnitude of the deviation from the mean value. If the subject has chosen a goal corresponding to an excess of one bits, the experiment will be scored as a success if there is any excess of one bits at all (513 one bits out of 1024 is just as much a success as 527 one bits and, conversely, 511 one bits is as much a failure as a result of 497 one bits). If the subject chooses a goal corresponding to an excess of zero bits, the sense of the comparison is inverted: any excess of zero bits is deemed a success. To preserve symmetry, results with an equal number of zero and one bits (512 each in an experiment of 1024 bits) are considered neutral and do not change the cumulative result. Here we plot the cumulative deviation by intent as z: the number of standard deviations by which it differs from the expectation value of zero.

RPKP Experiment Cumulative Intent Deviation from Expectation

Runs by Subjects Histogram

The following table shows the number of experiments run by various subjects, and the cumulative results and standard deviation for each number of experiments. Individual subjects who have made a large number of runs appear show up at the bottom of the the table, and the results they obtained can be compared.

Experiments
Run
Number of
Subjects
Hits/Tries z
1 13621 6964307/13947904 5.1651
2 6161 6305028/12617728 2.1598
3 3858 5923762/11851776 1.2351
4 2324 4756667/9519104 1.8702
5 1670 4276716/8550400 1.0369
6 1156 3552260/7102464 0.7715
7 850 3044518/6092800 1.5249
8 642 2630305/5259264 0.5869
9 538 2479052/4958208 0.0467
10 583 2982985/5969920 1.6166
11 387 2179561/4359168 0.0220
12 327 2009475/4018176 0.3861
13 291 1936832/3873792 0.0650
14 250 1791680/3584000 0.3381
15 221 1696985/3394560 0.3202
16 182 1492055/2981888 1.2868
17 149 1297547/2593792 0.8084
18 131 1207095/2414592 0.2587
19 127 1235220/2470912 0.3003
20 193 1977061/3952640 0.7454
21 114 1225561/2451456 0.2133
22 96 1081125/2162688 0.2978
23 82 965542/1931264 0.1295
24 72 885581/1769472 1.2705
25 78 997721/1996800 0.9610
26 66 879711/1757184 1.6883
27 65 899328/1797120 1.1458
28 52 745544/1490944 0.1179
29 57 845275/1692672 1.6310
30 101 1549925/3102720 1.6293
31 43 683015/1364992 0.8884
32 55 902418/1802240 1.9337
33 42 710287/1419264 1.0996
34 40 696601/1392640 0.4762
35 41 734491/1469440 0.3778
36 41 756693/1511424 1.5959
37 39 737041/1477632 2.9204
38 42 816766/1634304 0.6039
39 27 538975/1078272 0.3101
40 71 1453989/2908160 0.1067
41 31 651087/1301504 0.5873
42 22 472912/946176 0.3619
43 23 506919/1012736 1.0950
44 23 518299/1036288 0.3045
45 20 459857/921600 1.9646
46 20 471054/942080 0.0288
47 19 458040/914432 1.7234
48 19 466612/933888 0.6871
49 15 376686/752640 0.8438
50 132 3377856/6758400 1.0340
51 26 678622/1357824 0.4977
52 21 560299/1118208 2.2601
53 13 352894/705536 0.3000
54 9 248803/497664 0.0822
55 22 620315/1239040 1.4284
56 15 430626/860160 1.1774
57 10 292299/583680 1.2016
58 11 326346/653312 0.7671
59 11 332369/664576 0.1987
60 68 2090001/4177920 1.0186
61 14 437534/874496 0.6117
62 16 507777/1015808 0.2520
63 16 516571/1032192 0.9351
64 13 425293/851968 1.4973
65 9 299885/599040 0.9432
66 11 371317/743424 0.9162
67 13 445539/891904 0.8746
68 9 313541/626688 0.4977
69 7 247444/494592 0.4209
70 21 752479/1505280 0.2625
71 9 327252/654336 0.2077
72 9 332142/663552 0.8986
73 4 149471/299008 0.1207
74 10 378027/757760 1.9598
75 8 306811/614400 0.9926
76 7 272289/544768 0.2574
77 5 196887/394240 0.7422
78 10 399183/798720 0.3961
79 4 162173/323584 1.3396
80 16 655019/1310720 0.5957
81 5 207292/414720 0.2112
82 10 420154/839680 0.6853
83 4 169722/339968 0.8987
84 3 129244/258048 0.8662
85 4 173988/348160 0.3118
86 7 308427/616448 0.5171
87 2 88863/178176 1.0661
88 8 360310/720896 0.3251
89 2 91526/182272 1.8270
90 17 783791/1566720 0.6887
91 3 139739/279552 0.1400
92 6 282565/565248 0.1570
93 3 143124/285696 1.0327
94 4 192869/385024 1.1507
95 5 242841/486400 1.0295
96 3 147863/294912 1.4989
97 4 199055/397312 1.2660
98 3 150549/301056 0.0765
99 7 354876/709632 0.1425
100 110 5631414/11264000 0.3492
101 9 465767/930816 0.7442
102 5 262196/522240 2.9779
103 2 105203/210944 1.1714
104 5 266274/532480 0.0932
105 1 53554/107520 1.2565
106 3 163047/325632 0.8096
107 2 109199/219136 1.5765
108 6 332114/663552 0.8299
109 2 111562/223232 0.2286
110 3 168540/337920 1.4450
111 5 284597/568320 1.1594
112 5 286784/573440 0.1690
113 2 115537/231424 0.7276
114 8 467438/933888 1.0224
115 4 235678/471040 0.4604
116 8 475162/950272 0.0533
117 2 120024/239616 0.8825
118 3 180782/362496 1.5480
119 2 122043/243712 0.7576
120 9 553068/1105920 0.2054
121 2 123893/247808 0.0442
122 5 312221/624640 0.2505
123 2 125473/251904 1.9087
124 1 63580/126976 0.5164
125 3 191514/384000 1.5686
126 3 193321/387072 0.6912
127 3 195004/390144 0.2177
128 2 131584/262144 2.0000
129 3 198940/396288 2.5289
130 6 399670/798720 0.6937
132 2 135184/270336 0.0615
133 2 135977/272384 0.8239
134 2 137337/274432 0.4620
135 3 207396/414720 0.1118
136 4 278764/557056 0.6324
137 1 70596/140288 2.4136
138 2 141170/282624 0.5342
139 2 142191/284672 0.5435
140 6 430240/860160 0.3450
141 2 144591/288768 0.7704
142 1 72469/145408 1.2325
143 3 219443/439296 0.6186
144 3 221019/442368 0.4962
145 4 296985/593920 0.0649
146 3 224706/448512 1.3439
148 2 151121/303104 1.5657
149 4 304741/610304 1.0522
150 16 1229265/2457600 0.5932
151 3 231833/463872 0.3025
152 1 77859/155648 0.1774
153 3 235312/470016 0.8868
154 3 236450/473088 0.2733
155 2 158985/317440 0.9407
157 1 80384/160768 0.0000
158 1 80734/161792 0.8055
159 4 325528/651264 0.2577
160 5 410414/819200 1.7987
161 4 329872/659456 0.3546
162 2 166230/331776 1.1875
164 1 83847/167936 0.5905
165 3 253355/506880 0.2388
166 2 170189/339968 0.7032
170 3 260817/522240 0.8386
171 2 174975/350208 0.4360
172 3 263736/528384 1.2546
174 2 178518/356352 1.1458
175 5 448034/896000 0.0718
176 2 180539/360448 1.0493
177 1 90903/181248 1.3107
178 1 90860/182272 1.2929
179 2 183226/366592 0.2312
180 1 92118/184320 0.1957
181 2 184938/370688 1.3337
182 1 93122/186368 0.2872
183 2 187416/374784 0.0784
186 2 190331/380928 0.4310
187 2 191467/382976 0.0679
188 1 96634/192512 1.7230
189 3 290190/580608 0.2992
191 2 195738/391168 0.4925
192 2 196641/393216 0.1053
194 1 99376/198656 0.2154
195 1 99196/199680 2.8824
196 1 100220/200704 0.5893
197 1 100895/201728 0.1380
199 1 101948/203776 0.2658
200 45 4608339/9216000 0.2233
201 6 617833/1234944 0.6497
202 1 103444/206848 0.0879
204 1 104945/208896 2.1748
205 1 105150/209920 0.8294
208 2 213287/425984 0.9040
210 3 322469/645120 0.2266
211 1 108318/216064 1.2306
212 3 325731/651264 0.2454
217 3 333076/666624 0.5781
219 1 112187/224256 0.2492
220 1 112486/225280 0.6489
224 1 114861/229376 0.7224
225 1 115213/230400 0.0542
227 2 232486/464896 0.1115
228 1 117097/233472 1.4942
229 1 117253/234496 0.0207
232 1 118732/237568 0.2134
234 1 120044/239616 0.9642
235 2 240535/481280 0.3027
236 1 120846/241664 0.0570
238 1 121802/243712 0.2188
240 1 122412/245760 1.8881
241 1 123381/246784 0.0443
245 1 125995/250880 2.2161
250 7 896246/1792000 0.3675
251 2 257311/514048 0.8006
252 2 258266/516096 0.6069
253 1 129800/259072 1.0373
258 2 264192/528384 0.0000
259 2 265473/530432 0.7057
262 1 134337/268288 0.7452
264 1 135174/270336 0.0231
268 1 137366/274432 0.5727
272 1 139725/278528 1.7470
277 1 141398/283648 1.5997
278 1 142232/284672 0.3898
279 1 143341/285696 1.8447
280 2 286386/573440 0.8821
283 1 144948/289792 0.1932
284 1 145732/290816 1.2016
286 1 146644/292864 0.7835
287 1 146960/293888 0.0590
291 1 149196/297984 0.7474
292 1 150030/299008 1.9239
293 1 150613/300032 2.1798
295 1 151495/302080 1.6557
296 2 303213/606208 0.2800
300 19 2917323/5836800 0.8916
301 2 308020/616448 0.5197
305 1 156334/312320 0.6227
306 2 312030/626688 3.3197
307 1 156831/314368 1.2592
310 1 158844/317440 0.4402
313 1 160538/320512 0.9962
315 1 160439/322560 2.9616
330 2 338556/675840 1.5473
332 1 169748/339968 0.8095
341 1 174797/349184 0.6938
342 1 175610/350208 1.7101
346 1 177270/354304 0.3965
348 1 178012/356352 0.5495
349 1 178566/357376 0.4082
350 1 179737/358400 1.7940
353 2 360856/722944 1.4490
354 1 181131/362496 0.3887
357 1 182946/365568 0.5359
370 1 189561/378880 0.3932
373 1 191331/381952 1.1488
375 1 192355/384000 1.1458
376 1 192815/385024 0.9766
380 1 194774/389120 0.6861
381 1 195222/390144 0.4803
382 1 195449/391168 0.4317
383 1 196677/392192 1.8555
391 1 200105/400384 0.2750
396 1 202099/405504 2.0509
400 13 2661164/5324800 1.0713
401 4 822368/1642496 1.7478
403 1 206361/412672 0.0778
404 1 206995/413696 0.4571
406 1 207603/415744 0.8344
416 1 213097/425984 0.3218
419 1 213944/429056 1.7831
420 2 431312/860160 2.6568
423 1 216977/433152 1.2186
435 1 222783/445440 0.1888
437 1 224495/447488 2.2453
438 1 223835/448512 1.2573
440 1 225551/450560 0.8075
445 1 228040/455680 0.5926
454 1 231895/464896 1.6221
456 2 466584/933888 0.7450
459 1 234371/470016 1.8583
460 1 235536/471040 0.0466
465 1 238314/476160 0.6782
475 1 243508/486400 0.8833
477 1 244153/488448 0.2032
483 1 248038/494592 2.1101
486 1 248975/497664 0.4054
500 25 6401512/12800000 0.8452
501 2 513812/1026048 1.5559
502 2 514247/1028096 0.3925
504 1 258187/516096 0.3870
505 1 258225/517120 0.9317
519 1 265215/531456 1.4074
521 1 267573/533504 2.2480
525 1 269535/537600 2.0049
527 1 270066/539648 0.6589
531 1 271399/543744 1.2829
539 1 275737/551936 0.6219
555 1 283962/568320 0.5253
557 1 285140/570368 0.1165
579 1 296000/592896 1.1636
597 1 305294/611328 0.9464
598 1 306822/612352 1.6511
600 1 307647/614400 1.1405
611 1 312942/625664 0.2781
617 1 315662/631808 0.6089
618 1 316245/632832 0.4299
622 1 319329/636928 2.1677
631 1 323423/646144 0.8733
659 1 337721/674816 0.7620
670 1 343489/686080 1.0841
672 1 344395/688128 0.7980
698 1 357541/714752 0.3903
700 1 357998/716800 0.9496
708 1 362383/724992 0.2654
724 1 371383/741376 1.6143
748 1 383207/765952 0.5279
765 1 390911/783360 1.7377
787 1 402579/805888 0.8132
792 1 405199/811008 0.6774
802 1 410228/821248 0.8740
846 1 433339/866304 0.4018
847 1 434412/867328 1.6063
862 1 440545/882688 1.7009
864 1 442760/884736 0.8335
869 1 445539/889856 1.2954
896 1 458582/917504 0.3550
900 1 461664/921600 1.8000
902 1 461910/923648 0.1790
959 1 491064/982016 0.1130
973 1 498360/996352 0.3687
992 2 1015929/2031616 0.1698
999 1 511917/1022976 0.8483
1000 19 9728065/19456000 0.0295
1001 1 512001/1025024 1.0094
1003 1 514237/1027072 1.3834
1005 1 514573/1029120 0.0256
1021 1 521791/1045504 1.8797
1024 1 523462/1048576 1.6133
1027 1 525719/1051648 0.2048
1101 2 1127274/2254848 0.1998
1103 1 564482/1129472 0.4780
1161 1 594397/1188864 0.0642
1165 1 596425/1192960 0.1007
1174 1 601216/1202176 0.2335
1234 1 631349/1263616 0.8166
1241 1 635287/1270784 0.1863
1261 1 645933/1291264 0.5298
1349 1 690715/1381376 0.0459
1360 1 695800/1392640 0.8813
1407 1 719699/1440768 1.1414
1440 1 737577/1474560 0.4892
1458 1 746586/1492992 0.1473
1481 1 758020/1516544 0.4093
1502 1 768954/1538048 0.1129
1624 1 830830/1662976 1.0205
1652 1 846016/1691648 0.2952
1666 1 853279/1705984 0.4395
1669 1 854091/1709056 0.6685
1742 1 891790/1783808 0.1707
1769 1 906121/1811456 0.5840
1933 1 988593/1979392 1.5680
1947 1 996742/1993728 0.1728
2000 3 3072447/6144000 0.3607
2001 1 1025239/2049024 1.0158
2097 1 1073355/2147328 0.4217
2198 1 1126814/2250752 1.9170
2257 1 1156265/2311168 0.8959
2296 1 1174949/2351104 0.7865
2327 1 1191080/2382848 0.4457
2591 1 1327380/2653184 0.9675
4210 1 2154581/4311040 0.9045
4223 1 2161820/4324352 0.3424
4261 1 2181516/4363264 0.1111
4601 1 2355712/4711424 0.0000
4731 1 2422549/4844544 0.2517
5250 1 2689581/5376000 1.3637
6371 1 3259087/6523904 2.2434
6565 1 3361825/6722560 0.4204
7649 1 3914348/7832576 1.3864
8116 1 4155091/8310784 0.2088
8325 1 4262913/8524800 0.3514
12950 1 6631971/13260800 0.8628
16895 1 8649549/17300480 0.3323
51920 1 26580614/53166080 0.6654

Results by Visual Feedback Program

Feedback Program Runs Hits/Tries z
bellcurve 322403 165066225/330140672 0.4525
clockface 145174 74327008/148658176 0.3412
experiment 1296 662897/1327104 1.1372
pendulum 114036 58387720/116772864 0.2384

The table at the right shows results obtained by all subjects, sorted by the visual feedback program they selected.

Results by Goal

Goal Runs Hits/Tries z
0 105166 53844223/107689984 0.1482
1 477743 244599627/489208832 0.4330

Each visual feedback program allows the user to choose a goal which corresponds to either an excess of zero or one bits in the data stream. The following table gives results by goal, indicating how many times each goal was chosen. The default goal is an excess of one bits.

Valid XHTML 1.0