Saturday, April 18, 2015

Reading List: Einstein's Unification

van Dongen, Jeroen. Einstein's Unification. Cambridge: Cambridge University Press, 2010. ISBN 978-0-521-88346-7.
In 1905 Albert Einstein published four papers which transformed the understanding of space, time, mass, and energy; provided physical evidence for the quantisation of energy; and observational confirmation of the existence of atoms. These publications are collectively called the Annus Mirabilis papers, and vaulted the largely unknown Einstein to the top rank of theoretical physicists. When Einstein was awarded the Nobel Prize in Physics in 1921, it was for one of these 1905 papers which explained the photoelectric effect. Einstein's 1905 papers are masterpieces of intuitive reasoning and clear exposition, and demonstrated Einstein's technique of constructing thought experiments based upon physical observations, then deriving testable mathematical models from them. Unlike so many present-day scientific publications, Einstein's papers on special relativity and the equivalence of mass and energy were accessible to anybody with a college-level understanding of mechanics and electrodynamics and used no special jargon or advanced mathematics. Being based on well-understood concepts, neither cited any other scientific paper.

While special relativity revolutionised our understanding of space and time, and has withstood every experimental test to which it has been subjected in the more than a century since it was formulated, it was known from inception that the theory was incomplete. It's called special relativity because it only describes the behaviour of bodies under the special case of uniform unaccelerated motion in the absence of gravity. To handle acceleration and gravitation would require extending the special theory into a general theory of relativity, and it is upon this quest that Einstein next embarked.

As before, Einstein began with a simple thought experiment. Just as in special relativity, where there is no experiment which can be done in a laboratory without the ability to observe the outside world that can determine its speed or direction of uniform (unaccelerated) motion, Einstein argued that there should be no experiment an observer could perform in a sufficiently small closed laboratory which could distinguish uniform acceleration from the effect of gravity. If one observed objects to fall with an acceleration equal to that on the surface of the Earth, the laboratory might be stationary on the Earth or in a space ship accelerating with a constant acceleration of one gravity, and no experiment could distinguish the two situations. (The reason for the “sufficiently small” qualification is that since gravity is produced by massive objects, the direction a test particle will fall depends upon its position with respect to the centre of gravity of the body. In a very large laboratory, objects dropped far apart would fall in different directions. This is what causes tides.)

Einstein called this observation the “equivalence principle”: that the effects of acceleration and gravity are indistinguishable, and that hence a theory which extended special relativity to incorporate accelerated motion would necessarily also be a theory of gravity. Einstein had originally hoped it would be straightforward to reconcile special relativity with acceleration and gravity, but the deeper he got into the problem, the more he appreciated how difficult a task he had undertaken. Thanks to the Einstein Papers Project, which is curating and publishing all of Einstein's extant work, including notebooks, letters, and other documents, the author (a participant in the project) has been able to reconstruct Einstein's ten-year search for a viable theory of general relativity.

Einstein pursued a two-track approach. The bottom up path started with Newtonian gravity and attempted to generalise it to make it compatible with special relativity. In this attempt, Einstein was guided by the correspondence principle, which requires that any new theory which explains behaviour under previously untested conditions must reproduce the tested results of existing theory under known conditions. For example, the equations of motion in special relativity reduce to those of Newtonian mechanics when velocities are small compared to the speed of light. Similarly, for gravity, any candidate theory must yield results identical to Newtonian gravitation when field strength is weak and velocities are low.

From the top down, Einstein concluded that any theory compatible with the principle of equivalence between acceleration and gravity must exhibit general covariance, which can be thought of as being equally valid regardless of the choice of co-ordinates (as long as they are varied without discontinuities). There are very few mathematical structures which have this property, and Einstein was drawn to Riemann's tensor geometry. Over years of work, Einstein pursued both paths, producing a bottom-up theory which was not generally covariant which he eventually rejected as in conflict with experiment. By November 1915 he had returned to the top-down mathematical approach and in four papers expounded a generally covariant theory which agreed with experiment. General relativity had arrived.

Einstein's 1915 theory correctly predicted the anomalous perihelion precession of Mercury and also predicted that starlight passing near the limb of the Sun would be deflected by twice the angle expected based on Newtonian gravitation. This was confirmed (within a rather large margin of error) in an eclipse expedition in 1919, which made Einstein's general relativity front page news around the world. Since then precision tests of general relativity have tested a variety of predictions of the theory with ever-increasing precision, with no experiment to date yielding results inconsistent with the theory.

Thus, by 1915, Einstein had produced theories of mechanics, electrodynamics, the equivalence of mass and energy, and the mechanics of bodies under acceleration and the influence of gravitational fields, and changed space and time from a fixed background in which physics occurs to a dynamical arena: “Matter and energy tell spacetime how to curve. Spacetime tells matter how to move.” What do you do, at age 36, having figured out, largely on your own, how a large part of the universe works?

Much of Einstein's work so far had consisted of unification. Special relativity unified space and time, matter and energy. General relativity unified acceleration and gravitation, gravitation and geometry. But much remained to be unified. In general relativity and classical electrodynamics there were two field theories, both defined on the continuum, both with unlimited range and an inverse square law, both exhibiting static and dynamic effects (although the details of gravitomagnetism would not be worked out until later). And yet the theories seemed entirely distinct: gravity was always attractive and worked by the bending of spacetime by matter-energy, while electromagnetism could be either attractive or repulsive, and seemed to be propagated by fields emitted by point charges—how messy.

Further, quantum theory, which Einstein's 1905 paper on the photoelectric effect had helped launch, seemed to point in a very different direction than the classical field theories in which Einstein had worked. Quantum mechanics, especially as elaborated in the “new” quantum theory of the 1920s, seemed to indicate that aspects of the universe such as electric charge were discrete, not continuous, and that physics could, even in principle, only predict the probability of the outcome of experiments, not calculate them definitively from known initial conditions. Einstein never disputed the successes of quantum theory in explaining experimental results, but suspected it was a theory based upon phenomena which did not explain what was going on at a deeper level. (For example, the physical theory of elasticity explains experimental results and makes predictions within its domain of applicability, but it is not fundamental. All of the effects of elasticity are ultimately due to electromagnetic forces between atoms in materials. But that doesn't mean that the theory of elasticity isn't useful to engineers, or that they should do their spring calculations at the molecular level.)

Einstein undertook the search for a unified field theory, which would unify gravity and electromagnetism, just as Maxwell had unified electrostatics and magnetism into a single theory. In addition, Einstein believed that a unified field theory would be antecedent to quantum theory, and that the probabilistic results of quantum theory could be deduced from the more fundamental theory, which would remain entirely deterministic. From 1915 until his death in 1955 Einstein's work concentrated mostly on the quest for a unified field theory. He was aided by numerous talented assistants, many of whom went on to do important work in their own right. He explored a variety of paths to such a theory, but ultimately rejected each one, in turn, as either inconsistent with experiment or unable to explain phenomena such as point particles or quantisation of charge.

As the author documents, Einstein's approach to doing physics changed in the years after 1915. While before he was guided both by physics and mathematics, in retrospect he recalled and described his search of the field equations of general relativity as having followed the path of discovering the simplest and most elegant mathematical structure which could explain the observed phenomena. He thus came, like Dirac, to argue that mathematical beauty was the best guide to correct physical theories.

In the last forty years of his life, Einstein made no progress whatsoever toward a unified field theory, apart from discarding numerous paths which did not work. He explored a variety of approaches: “semivectors” (which turned out just to be a reformulation of spinors), five-dimensional models including a cylindrically compactified dimension based on Kaluza-Klein theory, and attempts to deduce the properties of particles and their quantum behaviour from nonlinear continuum field theories.

In seeking to unify electromagnetism and gravity, he ignored the strong and weak nuclear forces which had been discovered over the years and merited being included in any grand scheme of unification. In the years after World War II, many physicists ceased to worry about the meaning of quantum mechanics and the seemingly inherent randomness in its predictions which so distressed Einstein, and adopted a “shut up and calculate” approach as their computations were confirmed to ever greater precision by experiments.

So great was the respect for Einstein's achievements that only rarely was a disparaging word said about his work on unified field theories, but toward the end of his life it was outside the mainstream of theoretical physics, which had moved on to elaboration of quantum theory and making quantum theory compatible with special relativity. It would be a decade after Einstein's death before astronomical discoveries would make general relativity once again a frontier in physics.

What can we learn from the latter half of Einstein's life and his pursuit of unification? The frontier of physics today remains unification among the forces and particles we have discovered. Now we have three forces to unify (counting electromagnetism and the weak nuclear force as already unified in the electroweak force), plus two seemingly incompatible kinds of particles: bosons (carriers of force) and fermions (what stuff is made of). Six decades (to the day) after the death of Einstein, unification of gravity and the other forces remains as elusive as when he first attempted it.

It is a noble task to try to unify disparate facts and theories into a common whole. Much of our progress in the age of science has come from such unification. Einstein unified space and time; matter and energy; acceleration and gravity; geometry and motion. We all benefit every day from technologies dependent upon these fundamental discoveries. He spent the last forty years of his life seeking the next grand unification. He never found it. For this effort we should applaud him.

I must remark upon how absurd the price of this book is. At Amazon as of this writing, the hardcover is US$ 102.91 and the Kindle edition is US$ 88. Eighty-eight Yankee dollars for a 224 page book which is ranked #739,058 in the Kindle store?

Posted at 15:09 Permalink

Friday, April 10, 2015

Astronomical Numbers

Replica of the first transistor from 1947 In December 1947 there was a single transistor in the world, built at AT&T's Bell Labs by John Bardeen, Walter Brattain, and William Shockley, who would share the 1956 Nobel Prize in Physics for the discovery. The image at the right is of a replica of this first transistor.

According to an article in IEEE Spectrum, in the year 2014 semiconductor manufacturers around the world produced 2.5×1020 (250 billion billion) transistors. On average, about 8 trillion transistors were produced every second in 2014.

We speak of large numbers as "astronomical", but these numbers put astronomy to shame. There are about 400 billion (4×1011) stars in the Milky Way galaxy. In the single year 2014, humans fabricated 625 million times as many transistors as there are stars in their home galaxy. There are estimated to be around 200 billion galaxies in the universe. We thus made 1.25 billion times as many transistors as there are galaxies.

The number of transistors manufactured every year has been growing exponentially from its invention in 1947 to the present (Moore's law), and this growth is not expected to abate at any time in the near future. Let's take the number of galaxies in the universe as 200 billion and assume each has, on average, as many stars as the Milky Way (400 billion) (the latter estimate is probably high, since dwarf galaxies seem to outnumber large ones by a substantial factor). Then there would be around 8×1022 stars in the universe. We will only have to continue to double the number of transistors made per year an additional seven times to reach the point where we are manufacturing as many transistors every year as there are stars in the entire universe. Moore's law predicts that the number of transistors made doubles around every two years, so this milestone should be reached about 14 years from now.

This is right in the middle of the decade I described as the "Roaring Twenties" in my appearance on the Ricochet Podcast of 2015-02-12. It is in the 2020s that continued exponential growth of computing power at constant cost will enable solving, by brute computational force, a variety of problems currently considered intractable.

Posted at 16:59 Permalink

Wednesday, April 8, 2015

Reading List: Agenda 21: Into the Shadows

Beck, Glenn and Harriet Parke. Agenda 21: Into the Shadows. New York: Threshold Editions, 2015. ISBN 978-1-4767-4682-1.
When I read the authors' first Agenda 21 (November 2012) novel, I thought it was a superb dystopian view of the living hell into which anti-human environmental elites wish to consign the vast majority of the human race who are to be their serfs. I wrote at the time “This is a book which begs for one or more sequels.” Well, here is the first sequel and it is…disappointing. It's not terrible, by any means, but it does not come up to the high standard set by the first book. Perhaps it suffers from the blahs which often afflict the second volume of a trilogy.

First of all, if you haven't read the original Agenda 21 you will have absolutely no idea who the characters are, how they found themselves in the situation they're in at the start of the story, and the nature of the tyranny they're trying to escape. I describe some of this in my review of the original book, along with the factual basis of the real United Nations plan upon which the story is based.

As the novel begins, Emmeline, who we met in the previous book, learns that her infant daughter Elsa, with whom she has managed to remain in tenuous contact by working at the Children's Village, where the young are reared by the state apart from their parents, along with other children are to be removed to another facility, breaking this precious human bond. She and her state-assigned partner David rescue Elsa and, joined by a young boy, Micah, escape through a hole in the fence surrounding the compound to the Human Free Zone, the wilderness outside the compounds into which humans have been relocated. In the chaos after the escape, John and Joan, David's parents, decide to also escape, with the intention of leaving a false trail to lead the inevitable pursuers away from the young escapees.

Indeed, before long, a team of Earth Protection Agents led by Steven, the kind of authoritarian control freak thug who inevitably rises to the top in such organisations, is dispatched to capture the escapees and return them to the compound for punishment (probably “recycling” for the adults) and to serve as an example for other “citizens”. The team includes Julia, a rookie among the first women assigned to Earth Protection.

The story cuts back and forth among the groups in the Human Free Zone. Emmeline's band meets two people who have lived in a cave ever since escaping the initial relocation of humans to the compounds. They learn the history of the implementation of Agenda 21 and the rudiments of survival outside the tyranny. As the groups encounter one another, the struggle between normal human nature and the cruel and stunted world of the slavers comes into focus.

Harriet Parke is the principal author of the novel. Glenn Beck acknowledges this in the afterword he contributed which describes the real-world U.N. Agenda 21. Obviously, by lending his name to the project, he increases its visibility and readership, which is all for the good. Let's hope the next book in the series returns to the high standard set by the first.

Posted at 23:49 Permalink

Tuesday, March 31, 2015

Reading List: Living Among Giants

Carroll, Michael. Living Among Giants. Cham, Switzerland: Springer International, 2015. ISBN 978-3-319-10673-1.
In school science classes, we were taught that the solar system, our home in the galaxy, is a collection of planets circling a star, along with assorted debris (asteroids, comets, and interplanetary dust). Rarely did we see a representation of either the planets or the solar system to scale, which would allow us to grasp just how different various parts of the solar system are from another. (For example, Jupiter is more massive than all the other planets and their moons combined: a proud Jovian would probably describe the solar system as the Sun, Jupiter, and other detritus.)

Looking more closely at the solar system, with the aid of what has been learned from spacecraft exploration in the last half century, results in a different picture. The solar system is composed of distinct neighbourhoods, each with its own characteristics. There are four inner “terrestrial” or rocky planets: Mercury, Venus, Earth, and Mars. These worlds huddle close to the Sun, bathing in its lambent rays. The main asteroid belt consists of worlds like Ceres, Vesta, and Pallas, all the way down to small rocks. Most orbit between Mars and Jupiter, and the feeble gravity of these bodies and their orbits makes it relatively easy to travel from one to another if you're patient.

Outside the asteroid belt is the domain of the giants, which are the subject of this book. There are two gas giants: Jupiter and Saturn, and two ice giants: Uranus and Neptune. Distances here are huge compared to the inner solar system, as are the worlds themselves. Sunlight is dim (at Saturn, just 1% of its intensity at Earth, at Neptune 1/900 that at Earth). The outer solar system is not just composed of the four giant planets: those planets have a retinue of 170 known moons (and doubtless many more yet to be discovered), which are a collection of worlds as diverse as anywhere else in the domain of the Sun: there are sulfur-spewing volcanos, subterranean oceans of salty water, geysers, lakes and rain of hydrocarbons, and some of the most spectacular terrain and geology known. Jupiter's moon Ganymede is larger than the planet Mercury, and appears to have a core of molten iron, like the Earth.

Beyond the giants is the Kuiper Belt, with Pluto its best known denizen. This belt is home to a multitude of icy worlds—statistical estimates are that there may be as many as 700 undiscovered worlds as large or larger than Pluto in the belt. Far more distant still, extending as far as two light-years from the Sun, is the Oort cloud, about which we know essentially nothing except what we glean from the occasional comet which, perturbed by a chance encounter or passing star, plunges into the inner solar system. With our present technology, objects in the Oort cloud are utterly impossible to detect, but based upon extrapolation from comets we've observed, it may contain trillions of objects larger than one kilometre.

When I was a child, the realm of the outer planets was shrouded in mystery. While Jupiter, Saturn, and Uranus can be glimpsed by the unaided eye (Uranus, just barely, under ideal conditions, if you know where to look), and Neptune can be spotted with a modest telescope, the myriad moons of these planets were just specks of light through the greatest of Earth-based telescopes. It was not until the era of space missions to these worlds, beginning with the fly-by probes Pioneer and Voyager, then the orbiters Galileo and Cassini, that the wonders of these worlds were revealed.

This book, by science writer and space artist Michael Carroll, is a tourist's and emigrant's guide to the outer solar system. Everything here is on an extravagant scale, and not always one hospitable to frail humans. Jupiter's magnetic field is 20,000 times stronger than that of Earth and traps radiation so intense that astronauts exploring its innermost large moon Io would succumb to a lethal dose of radiation in minutes. (One planetary scientist remarked, “You need to have a good supply of grad students when you go investigate Io.”) Several of the moons of the outer planets appear to have oceans of liquid water beneath their icy crust, kept liquid by tidal flexing as they orbit their planet and interact with other moons. Some of these oceans may contain more water than all of the Earth's oceans. Tidal flexing may create volcanic plumes which inject heat and minerals into these oceans. On Earth, volcanic vents on the ocean floor provide the energy and nutrients for a rich ecosystem of life which exists independent of the Sun's energy. On these moons—who knows? Perhaps some day we shall explore these oceans in our submarines and find out.

Saturn's moon Titan is an amazing world. It is larger than Mercury, and has an atmosphere 50% denser than the Earth's, made up mostly of nitrogen. It has rainfall, rivers, and lakes of methane and ethane, and at its mean temperature of 93.7°K, water ice is a rock as hard as granite. Unique among worlds in the solar system, you could venture outside your space ship on Titan without a space suit. You'd need to dress very warmly, to be sure, and wear an oxygen mask, but you could explore the shores, lakes, and dunes of Titan protected only against the cold. With the dense atmosphere and gravity just 85% of that of the Earth's Moon, you might be able to fly with suitable wings.

We have had just a glimpse of the moons of Uranus and Neptune as Voyager 2 sped through their systems on its way to the outer darkness. Further investigation will have to wait for orbiters to visit these planets, which probably will not happen for nearly two decades. What Voyager 2 saw was tantalising. On Uranus's moon Miranda, there are cliffs 14 km high. With the tiny gravity, imagine the extreme sports you could do there! Neptune's moon Triton appears to be a Kuiper Belt object captured into orbit around Neptune and, despite its cryogenic temperature, appears to be geologically active.

There is no evidence for life on any of these worlds. (Still, one wonders about those fish in the dark oceans.) If barren, “all these worlds are ours”, and in the fullness of time we shall explore, settle, and exploit them to our own ends. The outer solar system is just so much bigger and more grandiose than the inner. It's as if we've inhabited a small island for all of our history and, after making a treacherous ocean voyage, discovered an enormous empty continent just waiting for us. Perhaps in a few centuries residents of these remote worlds will look back toward the Sun, trying to spot that pale blue dot so close to it where their ancestors lived, and remark to their children, “Once, that's all there was.”

Posted at 00:53 Permalink

Friday, March 20, 2015

Partial Solar Eclipse: 2015-03-20

pse_2015-03-20.jpg

Click image to enlarge.

Here is the solar eclipse of March 20th, 2015, taken at maximum eclipse, around 09:35 UTC. Although this was a total eclipse, from my location (47°4' N 7°3' E) the Sun was only about 70% obscured. The sky was milky/murky, but the Sun was clearly visible through the solar filter.

(Photo taken with a Nikon D600 camera and NIKKOR 300 mm prime lens through a full aperture Orion metal on glass solar filter. Exposure was 1/125 second at f/8.)

Posted at 20:59 Permalink

Wednesday, March 18, 2015

Reading List: Rocket Ship Galileo

Heinlein, Robert A. Rocket Ship Galileo. Seattle: Amazon Digital Services, [1947, 1974, 1988] 2014. ASIN B00H8XGKVU.
After the end of World War II, Robert A. Heinlein put his wartime engineering work behind him and returned to professional writing. His ambition was to break out of the pulp magazine ghetto in which science fiction had been largely confined before the war into the more prestigious (and better paying) markets of novels and anthologies published by top-tier New York firms and the “slick” general-interest magazines such as Collier's and The Saturday Evening Post, which published fiction in those days. For the novels, he decided to focus initially on a segment of the market he understood well from his pre-war career: “juveniles”—books aimed a young audience (in the case of science fiction, overwhelmingly male), and sold, in large part, in hardcover to public and school libraries (mass market paperbacks were just beginning to emerge in the late 1940s, and had not yet become important to mainstream publishers).

Rocket Ship Galileo was the first of Heinlein's juveniles, and it was a tour de force which established him in the market and led to a series which would extend to twelve volumes. (Heinlein scholars differ on which of his novels are classified as juveniles. Some include Starship Troopers as a juvenile, but despite its having been originally written as one and rejected by his publisher, Heinlein did not classify it thus.)

The plot could not be more engaging to a young person at the dawn of the atomic and space age. Three high school seniors, self-taught in the difficult art of rocketry (often, as was the case for their seniors in the era, by trial and [noisy and dangerous] error), are recruited by an uncle of one of them, veteran of the wartime atomic project, who wants to go to the Moon. He's invented a novel type of nuclear engine which allows a single-stage ship to make the round trip, and having despaired of getting sclerotic government or industry involved, decides to do it himself using cast-off parts and the talent and boundless energy of young people willing to learn by doing.

Working in their remote desert location, they become aware that forces unknown are taking an untoward interest in their work and seem to want to bring it to a halt, going as far as sabotage and lawfare. Finally, it's off to the Moon, where they discover the dark secret on the far side: space Nazis!

The remarkable thing about this novel is how well it holds up, almost seventy years after publication. While Heinlein was writing for a young audience, he never condescended to them. The science and engineering were as accurate as was known at the time, and Heinlein manages to instill in his audience a basic knowledge of rocket propulsion, orbital mechanics, and automated guidance systems as the yarn progresses. Other than three characters being young people, there is nothing about this story which makes it “juvenile” fiction: there is a hard edge of adult morality and the value of courage which forms the young characters as they live the adventure.

At the moment, only this Kindle edition and an unabridged audio book edition are available new. Used copies of earlier paperback editions are readily available.

Posted at 22:30 Permalink

Friday, February 20, 2015

Reading List: A Force of Nature

Reeves, Richard. A Force of Nature. New York: W. W. Norton, 2008. ISBN 978-0-393-33369-5.
In 1851, the Crystal Palace Exhibition opened in London. It was a showcase of the wonders of industry and culture of the greatest empire the world had ever seen and attracted a multitude of visitors. Unlike present-day “World's Fair” boondoggles, it made money, and the profits were used to fund good works, including endowing scholarships for talented students from the far reaches of the Empire to study in Britain. In 1895, Ernest Rutherford, hailing from a remote area in New Zealand and recent graduate of Canterbury College in Christchurch, won a scholarship to study at Cambridge. Upon learning of the award in a field of his family's farm, he threw his shovel in the air and exclaimed, “That's the last potato I'll ever dig.” It was.

When he arrived at Cambridge, he could hardly have been more out of place. He and another scholarship winner were the first and only graduate students admitted who were not Cambridge graduates. Cambridge, at the end of the Victorian era, was a clubby, upper-class place, where even those pursuing mathematics were steeped in the classics, hailed from tony public schools, and spoke with refined accents. Rutherford, by contrast, was a rough-edged colonial, bursting with energy and ambition. He spoke with a bizarre accent (which he retained all his life) which blended the Scottish brogue of his ancestors with the curious intonations of the antipodes. He was anything but the ascetic intellectual so common at Cambridge—he had been a fierce competitor at rugby, spoke about three times as loud as was necessary (many years later, when the eminent Rutherford was tapped to make a radio broadcast from Cambridge, England to Cambridge, Massachusetts, one of his associates asked, “Why use radio?”), and spoke vehemently on any and all topics (again, long afterward, when a ceremonial portrait was unveiled, his wife said she was surprised the artist had caught him with his mouth shut).

But it quickly became apparent that this burly, loud, New Zealander was extraordinarily talented, and under the leadership of J.J. Thomson, he began original research in radio, but soon abandoned the field to pursue atomic research, which Thomson had pioneered with his discovery of the electron. In 1898, with Thomson's recommendation, Rutherford accepted a professorship at McGill University in Montreal. While North America was considered a scientific backwater in the era, the generous salary would allow him to marry his fiancée, who he had left behind in New Zealand until he could find a position which would support them.

At McGill, he and his collaborator Frederick Soddy, studying the radioactive decay of thorium, discovered that radioactive decay was characterised by a unique half-life, and was composed of two distinct components which he named alpha and beta radiation. He later named the most penetrating product of nuclear reactions gamma rays. Rutherford was the first to suggest, in 1902, that radioactivity resulted from the transformation of one chemical element into another—something previously thought impossible.

In 1907, Rutherford was offered, and accepted a chair of physics at the University of Manchester, where, with greater laboratory resources than he had had in Canada, pursued the nature of the products of radioactive decay. By 1907, by a clever experiment, he had identified alpha radiation (or particles, as we now call them) with the nuclei of helium atoms—nuclear decay was heavy atoms being spontaneously transformed into a lighter element and a helium nucleus.

Based upon this work, Rutherford won the Nobel Prize in Chemistry in 1908. As a person who considered himself first and foremost an experimental physicist and who was famous for remarking, “All science is either physics or stamp collecting”, winning the Chemistry Nobel had to feel rather odd. He quipped that while he had observed the transmutation of elements in his laboratory, no transmutation was as startling as discovering he had become a chemist. Still, physicist or chemist, his greatest work was yet to come.

In 1909, along with Hans Geiger (later to invent the Geiger counter) and Ernest Marsden, he conducted an experiment where high-energy alpha particles were directed against a very thin sheet of gold foil. The expectation was that few would be deflected and those only slightly. To the astonishment of the experimenters, some alpha particles were found to be deflected through large angles, some bouncing directly back toward the source. Geiger exclaimed, “It was almost as incredible as if you fired a 15-inch [battleship] shell at a piece of tissue paper and it came back and hit you.” It took two years before Rutherford fully understood and published what was going on, and it forever changed the concept of the atom. The only way to explain the scattering results was to replace the early model of the atom with one in which a diffuse cloud of negatively charged electrons surrounded a tiny, extraordinarily dense, positively charged nucleus (that word was not used until 1913). This experimental result fed directly into the development of quantum theory and the elucidation of the force which bound the particles in the nucleus together, which was not fully understood until more than six decades later.

In 1919 Rutherford returned to Cambridge to become the head of the Cavendish Laboratory, the most prestigious position in experimental physics in the world. Continuing his research with alpha emitters, he discovered that bombarding nitrogen gas with alpha particles would transmute nitrogen into oxygen, liberating a proton (the nucleus of hydrogen). Rutherford simultaneously was the first to deliberately transmute one element into another, and also to discover the proton. In 1921, he predicted the existence of the neutron, completing the composition of the nucleus. The neutron was eventually discovered by his associate, James Chadwick, in 1932.

Rutherford's discoveries, all made with benchtop apparatus and a small group of researchers, were the foundation of nuclear physics. He not only discovered the nucleus, he also found or predicted its constituents. He was the first to identify natural nuclear transmutation and the first to produce it on demand in the laboratory. As a teacher and laboratory director his legacy was enormous: eleven of his students and research associates went on to win Nobel prizes. His students John Cockcroft and Ernest Walton built the first particle accelerator and ushered in the era of “big science”. Rutherford not only created the science of nuclear physics, he was the last person to make major discoveries in the field by himself, alone or with a few collaborators, and with simple apparatus made in his own laboratory.

In the heady years between the wars, there were, in the public mind, two great men of physics: Einstein the theoretician and Rutherford the experimenter. (This perception may have understated the contributions of the creators of quantum mechanics, but they were many and less known.) Today, we still revere Einstein, but Rutherford is less remembered (except in New Zealand, where everybody knows his name and achievements). And yet there are few experimentalists who have discovered so much in their lifetimes, with so little funding and the simplest apparatus. Rutherford, that boisterous, loud, and restless colonial, figured out much of what we now know about the atom, largely by himself, through a multitude of tedious experiments which often failed, and he should rightly be regarded as a pillar of 20th century physics.

This is the thousandth book to appear since I began to keep the reading list in January 2001.

Posted at 21:01 Permalink

Wednesday, February 18, 2015

Reading List: Tools for Survival

Rawles, James Wesley. Tools for Survival. New York: Plume, 2014. ISBN 978-0-452-29812-5.
Suppose one day the music stops. We all live, more or less, as part of an intricately-connected web of human society. The water that comes out of the faucet when we open the tap depends (for the vast majority of people) on pumps powered by an electrical grid that spans a continent. So does the removal of sewage when you flush the toilet. The typical city in developed nations has only about three days' supply of food on hand in stores and local warehouses and depends upon a transportation infrastructure as well as computerised inventory and payment systems to function. This system has been optimised over decades to be extremely efficient, but at the same time it has become dangerously fragile against any perturbation. A financial crisis which disrupts just-in-time payments, a large-scale and protracted power outage due to a solar flare or EMP attack, disruption of data networks by malicious attacks, or social unrest can rapidly halt the flow of goods and services upon which hundreds of millions of people depend and rely upon without rarely giving a thought to what life might be like if one day they weren't there.

The author, founder of the essential SurvivalBlog site, has addressed such scenarios in his fiction, which is highly recommended. Here the focus is less speculative, and entirely factual and practical. What are the essential skills and tools one needs to survive in what amounts to a 19th century homestead? If the grid (in all senses) goes down, those who wish to survive the massive disruptions and chaos which will result may find themselves in the position of those on the American frontier in the 1870s: forced into self-reliance for all of the necessities of life, and compelled to use the simple, often manual, tools which their ancestors used—tools which can in many cases be fabricated and repaired on the homestead.

The author does not assume a total collapse to the nineteenth century. He envisions that those who have prepared to ride out a discontinuity in civilisation will have equipped themselves with rudimentary solar electric power and electronic communication systems. But at the same time, people will be largely on their own when it comes to gardening, farming, food preservation, harvesting trees for firewood and lumber, first aid and dental care, self-defence, metalworking, and a multitude of other tasks. As always, the author stresses, it isn't the tools you have but rather the skills between your ears that determine whether you'll survive. You may have the most comprehensive medical kit imaginable, but if nobody knows how to stop the bleeding from a minor injury, disinfect the wound, and suture it, what today is a short trip to the emergency room might be life-threatening.

Here is what I took away from this book. Certainly, you want to have on hand what you need to deal with immediate threats (for example, firefighting when the fire department does not respond, self-defence when there is no sheriff, a supply of water and food so you don't become a refugee if supplies are interrupted, and a knowledge of sanitation so you don't succumb to disease when the toilet doesn't flush). If you have skills in a particular area, for example, if you're a doctor, nurse, or emergency medical technician, by all means lay in a supply of what you need not just to help yourself and your family, but your neighbours. The same goes if you're a welder, carpenter, plumber, shoemaker, or smith. It just isn't reasonable, however, to expect any given family to acquire all the skills and tools (even if they could afford them, where would they put them?) to survive on their own. Far more important is to make the acquaintance of like-minded people in the vicinity who have the diverse set of skills required to survive together. The ability to build and maintain such a community may be the most important survival skill of all.

This book contains a wealth of resources available on the Web (most presented as shortened URLs, not directly linked in the Kindle edition) and a great deal of wisdom about which I find little or nothing to disagree. For the most part the author uses quaint units like inches, pounds, and gallons, but he is writing for a mostly American audience. Please take to heart the safety warnings: it is very easy to kill or gravely injure yourself when woodworking, metal fabricating, welding, doing electrical work, or felling trees and processing lumber. If your goal is to survive and prosper whatever the future may bring, it can ruin your whole plan if you kill yourself acquiring the skills you need to do so.

Posted at 22:14 Permalink

Monday, February 9, 2015

Reading List: The Testament of James

Suprynowicz, Vin. The Testament of James. Pahrump, NV: Mountain Media, 2014. ISBN 978-0-9670259-4-0.
The author is a veteran newspaperman and was arguably the most libertarian writer in the mainstream media during his long career with the Las Vegas Review-Journal. He earlier turned his hand to fiction in 2005's The Black Arrow (May 2005), a delightful libertarian superhero fantasy. In the present volume he tells an engaging tale which weaves together mystery, the origins of Christianity, and the curious subculture of rare book collectors and dealers.

Matthew Hunter is the proprietor of a used book shop in Providence, Rhode Island, dealing both in routine merchandise but also rare volumes obtained from around the world and sold to a network of collectors who trust Hunter's judgement and fair pricing. While Hunter is on a trip to Britain, an employee of the store is found dead under suspicious circumstances, while waiting after hours to receive a visitor from Egypt with a manuscript to be evaluated and sold.

Before long, a series of curious, shady, and downright intimidating people start arriving at the bookshop, all seeking to buy the manuscript which, it appears, was never delivered. The person who was supposed to bring it to the shop has vanished, and his brothers have come to try to find him. Hunter and his friend Chantal Stevens, ex-military who has agreed to help out in the shop, find themselves in the middle of the quest for one of the most legendary, and considered mythical, rare books of all time, The Testament of James, reputed to have been written by James the Just, the (half-)brother of Jesus Christ. (His precise relationship to Jesus is a matter of dispute among Christian sects and scholars.) This Testament (not to be confused with the Epistle of James in the New Testament, also sometimes attributed to James the Just), would have been the most contemporary record of the life of Jesus, well predating the Gospels.

Matthew and Chantal seek to find the book, rescue the seller, and get to the bottom of a mystery dating from the origin of Christianity. Initially dubious such a book might exist, Matthew concludes that so many people would not be trying so hard to lay their hands on it if there weren't something there.

A good part of the book is a charming and often humorous look inside the world of rare books, one with which the author is clearly well-acquainted. There is intrigue, a bit of mysticism, and the occasional libertarian zinger aimed at a deserving target. As the story unfolds, an alternative interpretation of the life and work of Jesus and the history of the early Church emerges, which explains why so many players are so desperately seeking the lost book.

As a mystery, this book works superbly. Its view of “bookmen” (hunters, sellers, and collectors) is a delight. Orthodox Christians (by which I mean those adhering to the main Christian denominations, not just those called “Orthodox”) may find some of the content blasphemous, but before they explode in red-faced sputtering, recall that one can never be sure about the provenance and authenticity of any ancient manuscript. Some of the language and situations are not suitable for young readers, but by the standards of contemporary mass-market fiction, the book is pretty tame. There are essentially no spelling or grammatical errors. To be clear, this is entirely a work of fiction: there is no Testament of James apart from this book, in which it's an invention of the author. A bibliography of works providing alternative (which some will consider heretical) interpretations of the origins of Christianity is provided. You can read an excerpt from the novel at the author's Web log; continue to follow the links in the excerpts to read the first third—20,000 words—of the book for free.

Posted at 23:45 Permalink

Friday, January 30, 2015

Reading List: The Case of the Displaced Detective Omnibus

Osborn, Stephanie. The Case of the Displaced Detective Omnibus. Kingsport, TN: Twilight Times Books, 2013. ASIN B00FOR5LJ4.
This book, available only for the Kindle, collects the first four novels of the author's Displaced Detective series. The individual books included here are The Arrival, At Speed, The Rendlesham Incident, and Endings and Beginnings. Each pair of books, in turn, comprises a single story, the first two The Case of the Displaced Detective and the latter two The Case of the Cosmological Killer. If you read only the first of either pair, it will be obvious that the story has been left in the middle with little resolved. In the trade paperback edition, the four books total more than 1100 pages, so this omnibus edition will keep you busy for a while.

Dr. Skye Chadwick is a hyperspatial physicist and chief scientist of Project Tesseract. Research into the multiverse and brane world solutions of string theory has revealed that our continuum—all of the spacetime we inhabit—is just one of an unknown number adjacent to one another in a higher dimensional membrane (“brane”), and that while every continuum is different, those close to one another in the hyperdimensional space tend to be similar. Project Tesseract, a highly classified military project operating from an underground laboratory in Colorado, is developing hardware based on advanced particle physics which allows passively observing or even interacting with these other continua (or parallel universes).

The researchers are amazed to discover that in some continua characters which are fictional in our world actually exist, much as they were described in literature. Perhaps Heinlein and Borges were right in speculating that fiction exists in parallel universes, and maybe that's where some of authors' ideas come from. In any case, exploration of Continuum 114 has revealed it to be one of those in which Sherlock Holmes is a living, breathing man. Chadwick and her team decide to investigate one of the pivotal and enigmatic episodes in the Holmes literature, the fight at Reichenbach Falls. As Holmes and Moriarty battle, it is apparent that both will fall to their death. Chadwick acts impulsively and pulls Holmes from the brink of the cliff, back through the Tesseract, into our continuum. In an instant, Sherlock Holmes, consulting detective of 1891 London, finds himself in twenty-first century Colorado, where he previously existed only in the stories of Arthur Conan Doyle.

Holmes finds much to adapt to in this often bewildering world, but then he was always a shrewd observer and master of disguise, so few people would be as well equipped. At the same time, the Tesseract project faces a crisis, as a disaster and subsequent investigation reveals the possibility of sabotage and an espionage ring operating within the project. A trusted, outside investigator with no ties to the project is needed, and who better than Holmes, who owes his life to it? With Chadwick at his side, they dig into the mystery surrounding the project.

As they work together, they find themselves increasingly attracted to one another, and Holmes must confront his fear that emotional involvement will impair the logical functioning of his mind upon which his career is founded. Chadwick, learning to become a talented investigator in her own right, fears that a deeper than professional involvement with Holmes will harm her own emerging talents.

I found that this long story started out just fine, and indeed I recommended it to several people after finishing the first of the four novels collected here. To me, it began to run off the rails in the second book and didn't get any better in the remaining two (which begin with Holmes and Chadwick an established detective team, summoned to help with a perplexing mystery in Britain which may have consequences for all of the myriad contunua in the multiverse). The fundamental problem is that these books are trying to do too much all at the same time. They can't decide whether they're science fiction, mystery, detective procedural, or romance, and as they jump back and forth among the genres, so little happens in the ones being neglected at the moment that the parallel story lines develop at a glacial pace. My estimation is that an editor with a sharp red pencil could cut this material by 50–60% and end up with a better book, omitting nothing central to the story and transforming what often seemed a tedious slog into a page-turner.

Sherlock Holmes is truly one of the great timeless characters in literature. He can be dropped into any epoch, any location, and, in this case, anywhere in the multiverse, and rapidly start to get to the bottom of the situation while entertaining the reader looking over his shoulder. There is nothing wrong with the premise of these books and there are interesting ideas and characters in them, but the execution just isn't up to the potential of the concept. The science fiction part sometimes sinks to the techno-babble level of Star Trek (“Higgs boson injection beginning…”). I am no prude, but I found the repeated and explicit sex scenes a bit much (tedious, actually), and they make the books unsuitable for younger readers for whom the original Sherlock Holmes stories are a pure delight. If you're interested in the idea, I'd suggest buying just the first book separately and see how you like it before deciding to proceed, bearing in mind that I found it the best of the four.

Posted at 22:36 Permalink